>>> py3-scipy: Building community/py3-scipy 1.16.3-r0 (using abuild 3.16.0_rc4-r0) started Sat, 15 Nov 2025 09:23:22 +0000 >>> py3-scipy: Validating /home/buildozer/aports/community/py3-scipy/APKBUILD... >>> py3-scipy: Analyzing dependencies... >>> py3-scipy: Installing for build: build-base py3-pooch py3-numpy cython gfortran openblas-dev py3-gpep517 py3-meson-python py3-numpy-dev py3-numpy-f2py py3-pybind11-dev py3-setuptools py3-wheel python3-dev pythran py3-hypothesis py3-pytest ( 1/85) Installing gdbm (1.26-r0) ( 2/85) Installing xz-libs (5.8.1-r0) ( 3/85) Installing mpdecimal (4.0.1-r0) ( 4/85) Installing libpanelw (6.5_p20251010-r0) ( 5/85) Installing python3 (3.12.12-r0) ( 6/85) Installing python3-pycache-pyc0 (3.12.12-r0) ( 7/85) Installing pyc (3.12.12-r0) ( 8/85) Installing py3-pooch-pyc (1.8.2-r1) ( 9/85) Installing py3-packaging-pyc (25.0-r0) (10/85) Installing python3-pyc (3.12.12-r0) (11/85) Installing py3-parsing (3.2.3-r0) (12/85) Installing py3-parsing-pyc (3.2.3-r0) (13/85) Installing py3-packaging (25.0-r0) (14/85) Installing py3-platformdirs (4.5.0-r0) (15/85) Installing py3-platformdirs-pyc (4.5.0-r0) (16/85) Installing py3-certifi (2025.10.5-r0) (17/85) Installing py3-certifi-pyc (2025.10.5-r0) (18/85) Installing py3-charset-normalizer (3.4.4-r0) (19/85) Installing py3-charset-normalizer-pyc (3.4.4-r0) (20/85) Installing py3-idna (3.10-r0) (21/85) Installing py3-idna-pyc (3.10-r0) (22/85) Installing py3-urllib3 (1.26.20-r0) (23/85) Installing py3-urllib3-pyc (1.26.20-r0) (24/85) Installing py3-requests (2.32.5-r0) (25/85) Installing py3-requests-pyc (2.32.5-r0) (26/85) Installing py3-pooch (1.8.2-r1) (27/85) Installing libgfortran (15.2.0-r2) (28/85) Installing openblas (0.3.30-r0) (29/85) Installing py3-numpy (2.3.4-r0) (30/85) Installing py3-numpy-tests (2.3.4-r0) (31/85) Installing py3-numpy-pyc (2.3.4-r0) (32/85) Installing cython (3.1.6-r0) (33/85) Installing cython-pyc (3.1.6-r0) (34/85) Installing libquadmath (15.2.0-r2) (35/85) Installing gfortran (15.2.0-r2) (36/85) Installing liblapack (0.3.30-r0) (37/85) Installing liblapacke (0.3.30-r0) (38/85) Installing openblas-dev (0.3.30-r0) (39/85) Installing py3-installer (0.7.0-r2) (40/85) Installing py3-installer-pyc (0.7.0-r2) (41/85) Installing py3-gpep517 (19-r1) (42/85) Installing py3-gpep517-pyc (19-r1) (43/85) Installing samurai (1.2-r7) (44/85) Installing meson (1.9.1-r0) (45/85) Installing meson-pyc (1.9.1-r0) (46/85) Installing py3-pyproject-metadata (0.9.1-r0) (47/85) Installing py3-pyproject-metadata-pyc (0.9.1-r0) (48/85) Installing py3-meson-python (0.18.0-r1) (49/85) Installing py3-meson-python-pyc (0.18.0-r1) (50/85) Installing py3-numpy-dev (2.3.4-r0) (51/85) Installing python3-dev (3.12.12-r0) (52/85) Installing py3-numpy-f2py (2.3.4-r0) (53/85) Installing py3-pybind11 (2.13.6-r0) (54/85) Installing py3-pybind11-pyc (2.13.6-r0) (55/85) Installing py3-pybind11-dev (2.13.6-r0) (56/85) Installing py3-setuptools (80.9.0-r2) (57/85) Installing py3-setuptools-pyc (80.9.0-r2) (58/85) Installing py3-wheel (0.46.1-r0) (59/85) Installing py3-wheel-pyc (0.46.1-r0) (60/85) Installing py3-gast (0.6.0-r0) (61/85) Installing py3-gast-pyc (0.6.0-r0) (62/85) Installing py3-beniget (0.4.2-r0) (63/85) Installing py3-beniget-pyc (0.4.2-r0) (64/85) Installing py3-ply (3.11-r11) (65/85) Installing py3-ply-pyc (3.11-r11) (66/85) Installing pythran (0.18.0-r0) (67/85) Installing pythran-pyc (0.18.0-r0) (68/85) Installing py3-attrs (25.3.0-r0) (69/85) Installing py3-attrs-pyc (25.3.0-r0) (70/85) Installing py3-sortedcontainers (2.4.0-r5) (71/85) Installing py3-sortedcontainers-pyc (2.4.0-r5) (72/85) Installing py3-hypothesis (6.146.0-r0) (73/85) Installing py3-hypothesis-pyc (6.146.0-r0) (74/85) Installing py3-iniconfig (2.3.0-r0) (75/85) Installing py3-iniconfig-pyc (2.3.0-r0) (76/85) Installing py3-pluggy (1.6.0-r0) (77/85) Installing py3-pluggy-pyc (1.6.0-r0) (78/85) Installing py3-py (1.11.0-r4) (79/85) Installing py3-py-pyc (1.11.0-r4) (80/85) Installing py3-pygments (2.19.2-r0) (81/85) Installing py3-pygments-pyc (2.19.2-r0) (82/85) Installing py3-pytest (8.4.2-r1) (83/85) Installing py3-pytest-pyc (8.4.2-r1) (84/85) Installing .makedepends-py3-scipy (20251115.092326) (85/85) Installing abuild-meson (1.9.1-r0) busybox-1.37.0-r25.trigger: Executing script... OK: 864 MiB in 236 packages >>> py3-scipy: Cleaning up srcdir >>> py3-scipy: Cleaning up pkgdir >>> py3-scipy: Cleaning up tmpdir >>> py3-scipy: Fetching https://distfiles.alpinelinux.org/distfiles/v3.23/scipy-1.16.3.tar.gz Connecting to distfiles.alpinelinux.org (172.105.82.32:443) saving to '/var/cache/distfiles/v3.23/scipy-1.16.3.tar.gz.part' scipy-1.16.3.tar.gz. 0% | | 223k 0:02:12 ETA scipy-1.16.3.tar.gz. 16% |***** | 4847k 0:00:10 ETA scipy-1.16.3.tar.gz. 42% |************* | 12.4M 0:00:04 ETA scipy-1.16.3.tar.gz. 71% |********************** | 20.7M 0:00:01 ETA scipy-1.16.3.tar.gz. 99% |******************************* | 29.0M 0:00:00 ETA scipy-1.16.3.tar.gz. 100% |********************************| 29.1M 0:00:00 ETA '/var/cache/distfiles/v3.23/scipy-1.16.3.tar.gz.part' saved /var/cache/distfiles/v3.23/scipy-1.16.3.tar.gz: OK >>> py3-scipy: Fetching https://distfiles.alpinelinux.org/distfiles/v3.23/scipy-1.16.3.tar.gz /var/cache/distfiles/v3.23/scipy-1.16.3.tar.gz: OK >>> py3-scipy: Unpacking /var/cache/distfiles/v3.23/scipy-1.16.3.tar.gz... 2025-11-15 09:23:35,720 gpep517 INFO Building wheel via backend mesonpy + meson setup /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3 /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy -Dbuildtype=release -Db_ndebug=if-release -Db_vscrt=md --native-file=/home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/meson-python-native-file.ini The Meson build system Version: 1.9.1 Source dir: /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3 Build dir: /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy Build type: native build Project name: scipy Project version: 1.16.3 C compiler for the host machine: cc (gcc 15.2.0 "cc (Alpine 15.2.0) 15.2.0") C linker for the host machine: cc ld.bfd 2.45 C++ compiler for the host machine: c++ (gcc 15.2.0 "c++ (Alpine 15.2.0) 15.2.0") C++ linker for the host machine: c++ ld.bfd 2.45 Cython compiler for the host machine: cython (cython 3.1.6) Host machine cpu family: ppc64 Host machine cpu: ppc64le Program python found: YES (/usr/bin/python3) Found pkg-config: YES (/usr/bin/pkg-config) 2.5.1 Run-time dependency python found: YES 3.12 Program cython found: YES (/usr/bin/cython) Compiler for C supports arguments -Wno-unused-but-set-variable: YES Compiler for C supports arguments -Wno-unused-function: YES Compiler for C supports arguments -Wno-conversion: YES Compiler for C supports arguments -Wno-misleading-indentation: YES Library m found: YES Fortran compiler for the host machine: gfortran (gcc 15.2.0 "GNU Fortran (Alpine 15.2.0) 15.2.0") Fortran linker for the host machine: gfortran ld.bfd 2.45 ../meson.build:94: WARNING: Consider using the built-in option for language standard version instead of using "-std=legacy". Compiler for Fortran supports arguments -Wno-conversion: YES Checking if "-Wl,--version-script" links: YES Program tools/generate_f2pymod.py found: YES (/usr/bin/python3 /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/tools/generate_f2pymod.py) Program scipy/_build_utils/tempita.py found: YES (/usr/bin/python3 /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_build_utils/tempita.py) Program pythran found: YES 0.18.0 0.18.0 (/usr/bin/pythran) Did not find CMake 'cmake' Found CMake: NO Run-time dependency xsimd found: NO (tried pkgconfig and cmake) Executing subproject xsf xsf| Project name: xsf xsf| Project version: 0.1.3 xsf| C++ compiler for the host machine: c++ (gcc 15.2.0 "c++ (Alpine 15.2.0) 15.2.0") xsf| C++ linker for the host machine: c++ ld.bfd 2.45 xsf| Build targets in project: 0 xsf| Subproject xsf finished. Executing subproject boost_math boost_math| Project name: boost-math boost_math| Project version: 1.88.0 boost_math| Build targets in project: 0 boost_math| Subproject boost_math finished. Executing subproject qhull_r qhull_r| Project name: qhull_r qhull_r| Project version: 8.0.2 qhull_r| C compiler for the host machine: cc (gcc 15.2.0 "cc (Alpine 15.2.0) 15.2.0") qhull_r| C linker for the host machine: cc ld.bfd 2.45 qhull_r| Compiler for C supports arguments -Wno-unused-but-set-variable: YES (cached) qhull_r| Build targets in project: 1 qhull_r| Subproject qhull_r finished. Run-time dependency threads found: YES numpy-config found: YES (/usr/bin/numpy-config) 2.3.4 Run-time dependency numpy found: YES 2.3.4 Library npymath found: YES Run-time dependency pybind11 found: YES 2.13.6 Checking if "thread_local" compiles: NO Checking if "_Thread_local" compiles: YES Checking if "__thread" compiles: YES Configuring scipy_config.h using configuration Program f2py found: YES (/usr/bin/f2py) Run-time dependency scipy-openblas found: NO (tried pkgconfig) Run-time dependency openblas found: YES 0.3.30 Dependency openblas found: YES 0.3.30 (cached) Compiler for C supports arguments -Wno-maybe-uninitialized: YES Compiler for C supports arguments -Wno-discarded-qualifiers: YES Compiler for C supports arguments -Wno-empty-body: YES Compiler for C supports arguments -Wno-implicit-function-declaration: YES Compiler for C supports arguments -Wno-parentheses: YES Compiler for C supports arguments -Wno-switch: YES Compiler for C supports arguments -Wno-unused-label: YES Compiler for C supports arguments -Wno-unused-result: YES Compiler for C supports arguments -Wno-unused-variable: YES Compiler for C supports arguments -Wno-unused-but-set-variable: YES (cached) Compiler for C++ supports arguments -Wno-bitwise-instead-of-logical: NO Compiler for C++ supports arguments -Wno-cpp: YES Compiler for C++ supports arguments -Wno-class-memaccess: YES Compiler for C++ supports arguments -Wno-deprecated-declarations: YES Compiler for C++ supports arguments -Wno-deprecated-builtins: NO Compiler for C++ supports arguments -Wno-format-truncation: YES Compiler for C++ supports arguments -Wno-non-virtual-dtor: YES Compiler for C++ supports arguments -Wno-sign-compare: YES Compiler for C++ supports arguments -Wno-switch: YES Compiler for C++ supports arguments -Wno-terminate: YES Compiler for C++ supports arguments -Wno-unused-but-set-variable: YES Compiler for C++ supports arguments -Wno-unused-function: YES Compiler for C++ supports arguments -Wno-unused-local-typedefs: YES Compiler for C++ supports arguments -Wno-unused-variable: YES Compiler for C++ supports arguments -Wno-int-in-bool-context: YES Compiler for Fortran supports arguments -Wno-argument-mismatch: YES Compiler for Fortran supports arguments -Wno-conversion: YES (cached) Compiler for Fortran supports arguments -Wno-intrinsic-shadow: YES Compiler for Fortran supports arguments -Wno-maybe-uninitialized: YES Compiler for Fortran supports arguments -Wno-surprising: YES Compiler for Fortran supports arguments -Wno-uninitialized: YES Compiler for Fortran supports arguments -Wno-unused-dummy-argument: YES Compiler for Fortran supports arguments -Wno-unused-label: YES Compiler for Fortran supports arguments -Wno-unused-variable: YES Compiler for Fortran supports arguments -Wno-tabs: YES Compiler for Fortran supports arguments -Wno-argument-mismatch: YES (cached) Compiler for Fortran supports arguments -Wno-conversion: YES (cached) Compiler for Fortran supports arguments -Wno-maybe-uninitialized: YES (cached) Compiler for Fortran supports arguments -Wno-unused-dummy-argument: YES (cached) Compiler for Fortran supports arguments -Wno-unused-label: YES (cached) Compiler for Fortran supports arguments -Wno-unused-variable: YES (cached) Compiler for Fortran supports arguments -Wno-tabs: YES (cached) Checking if "Check atomic builtins without -latomic" links: YES Configuring __config__.py using configuration Checking for function "open_memstream" : YES Configuring messagestream_config.h using configuration Program _generate_pyx.py found: YES (/usr/bin/python3 /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_generate_pyx.py) Program _generate_pyx.py found: YES (/usr/bin/python3 /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_generate_pyx.py) Program ../_generate_sparsetools.py found: YES (/usr/bin/python3 /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/sparsetools/../_generate_sparsetools.py) Checking for size of "void*" : 8 Compiler for Fortran supports arguments -w: YES Checking for size of "void*" : 8 Executing subproject highs highs| Project name: highs highs| Project version: 1.8.0 highs| C compiler for the host machine: cc (gcc 15.2.0 "cc (Alpine 15.2.0) 15.2.0") highs| C linker for the host machine: cc ld.bfd 2.45 highs| C++ compiler for the host machine: c++ (gcc 15.2.0 "c++ (Alpine 15.2.0) 15.2.0") highs| C++ linker for the host machine: c++ ld.bfd 2.45 highs| Compiler for C++ supports arguments -Wno-invalid-offsetof: YES highs| Compiler for C++ supports arguments -Wno-maybe-uninitialized: YES highs| Compiler for C++ supports arguments -Wno-reorder: YES highs| Compiler for C++ supports arguments -Wno-reorder-ctor: NO highs| Compiler for C++ supports arguments -Wno-sometimes-uninitialized: NO highs| Compiler for C++ supports arguments -Wno-unused-but-set-variable: YES (cached) highs| Compiler for C++ supports arguments -Wno-unused-variable: YES (cached) highs| Compiler for C++ supports arguments -Wno-use-after-free: YES highs| Compiler for C++ supports arguments -Wno-comment: YES highs| Compiler for C supports arguments -Wno-comment: YES highs| Compiler for C supports arguments -Wno-invalid-offsetof: NO highs| Compiler for C supports arguments -Wno-maybe-uninitialized: YES (cached) highs| Compiler for C supports arguments -Wno-sometimes-uninitialized: NO highs| Compiler for C supports arguments -Wno-unused-label: YES (cached) highs| Compiler for C supports arguments -Wno-use-after-free: YES highs| Compiler for C supports arguments -Wno-unused-but-set-variable: YES (cached) highs| Compiler for C supports arguments -Wno-unused-variable: YES (cached) highs| Compiler for C supports arguments -Wno-use-after-free: YES (cached) highs| Compiler for C++ supports arguments -mpopcntd: YES highs| Dependency threads found: YES unknown (cached) highs| Checking if "Check atomic builtins without -latomic" links: YES (cached) highs| Dependency zlib skipped: feature use_zlib disabled highs| Checking if "mm_pause check" compiles: NO highs| Checking if "builtin_clz check" compiles: YES highs| Configuring HConfig.h.meson.interim using configuration highs| Found git repository at /home/buildozer/aports highs| Build targets in project: 144 highs| Subproject highs finished. Build targets in project: 194 scipy 1.16.3 Subprojects boost_math : YES highs : YES qhull_r : YES xsf : YES User defined options Native files: /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/meson-python-native-file.ini b_ndebug : if-release b_vscrt : md buildtype : release Found ninja-1.9 at /usr/bin/ninja + /usr/bin/ninja [1/1424] Compiling C object scipy/odr/__odrpack.cpython-312-powerpc64le-linux-musl.so.p/__odrpack.c.o [2/1424] Compiling Fortran object scipy/odr/libodrpack.a.p/odrpack_dlunoc.f.o [3/1424] Compiling Fortran object scipy/odr/libodrpack.a.p/odrpack_d_odr.f.o [4/1424] Compiling Fortran object scipy/odr/libodrpack.a.p/odrpack_d_mprec.f.o [5/1424] Compiling Fortran object scipy/odr/libodrpack.a.p/odrpack_d_lpk.f.o [6/1424] Compiling C object scipy/ndimage/_ctest.cpython-312-powerpc64le-linux-musl.so.p/src__ctest.c.o [7/1424] Compiling C++ object scipy/ndimage/_rank_filter_1d.cpython-312-powerpc64le-linux-musl.so.p/src__rank_filter_1d.cpp.o [8/1424] Compiling C object scipy/ndimage/_nd_image.cpython-312-powerpc64le-linux-musl.so.p/src_ni_support.c.o [9/1424] Compiling C object scipy/ndimage/_nd_image.cpython-312-powerpc64le-linux-musl.so.p/src_ni_splines.c.o [10/1424] Compiling C object scipy/ndimage/_nd_image.cpython-312-powerpc64le-linux-musl.so.p/src_ni_morphology.c.o [11/1424] Compiling C object scipy/ndimage/_nd_image.cpython-312-powerpc64le-linux-musl.so.p/src_ni_measure.c.o [12/1424] Compiling C object scipy/ndimage/_nd_image.cpython-312-powerpc64le-linux-musl.so.p/src_ni_interpolation.c.o [13/1424] Compiling C object scipy/ndimage/_nd_image.cpython-312-powerpc64le-linux-musl.so.p/src_ni_fourier.c.o [14/1424] Compiling C object scipy/ndimage/_nd_image.cpython-312-powerpc64le-linux-musl.so.p/src_ni_filters.c.o [15/1424] Compiling C object scipy/ndimage/_nd_image.cpython-312-powerpc64le-linux-musl.so.p/src_nd_image.c.o [16/1424] Generating 'scipy/interpolate/_rbfinterp_pythran.cpython-312-powerpc64le-linux-musl.so.p/_rbfinterp_pythran.cpp' [17/1424] Generating from 'src/dfitpack.pyf' [18/1424] Compiling C object scipy/interpolate/_fitpack.cpython-312-powerpc64le-linux-musl.so.p/src__fitpackmodule.c.o [19/1424] Compiling C++ object scipy/interpolate/_dierckx.cpython-312-powerpc64le-linux-musl.so.p/src__dierckxmodule.cc.o [20/1424] Compiling C++ object scipy/interpolate/lib__fitpack.a.p/src___fitpack.cc.o [21/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_pardtc.f.o [22/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_surfit.f.o [23/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_surev.f.o [24/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_sproot.f.o [25/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_splint.f.o [26/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_splev.f.o [27/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_splder.f.o [28/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_sphere.f.o [29/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_spgrid.f.o [30/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_spalde.f.o [31/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_regrid.f.o [32/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_profil.f.o [33/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_polar.f.o [34/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_pogrid.f.o [35/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_percur.f.o [36/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_parsur.f.o [37/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_pardeu.f.o [38/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_parder.f.o [39/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_parcur.f.o [40/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_insert.f.o [41/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fptrpe.f.o [42/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fptrnp.f.o [43/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpsysy.f.o [44/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpsurf.f.o [45/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpsuev.f.o [46/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpsphe.f.o [47/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpspgr.f.o [48/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpseno.f.o [49/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fprpsp.f.o [50/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fprppo.f.o [51/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fprota.f.o [52/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpregr.f.o [53/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fprati.f.o [54/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fprank.f.o [55/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fppola.f.o [56/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fppogr.f.o [57/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fppocu.f.o [58/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpperi.f.o [59/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fppasu.f.o [60/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fppara.f.o [61/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fporde.f.o [62/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpopsp.f.o [63/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpopdi.f.o [64/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpknot.f.o [65/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpintb.f.o [66/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpinst.f.o [67/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpgrsp.f.o [68/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpgrre.f.o [69/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpgrpa.f.o [70/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpgrdi.f.o [71/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpgivs.f.o [72/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpfrno.f.o [73/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpdisc.f.o [74/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpdeno.f.o [75/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpcyt2.f.o [76/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpcyt1.f.o [77/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpcuro.f.o [78/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpcurf.f.o [79/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpcsin.f.o [80/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpcosp.f.o [81/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpcons.f.o [82/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpcoco.f.o [83/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpclos.f.o [84/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpchep.f.o [85/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpched.f.o [86/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpchec.f.o [87/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpbspl.f.o [88/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpbisp.f.o [89/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpbfout.f.o [90/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpbacp.f.o [91/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpback.f.o [92/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpadpo.f.o [93/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpadno.f.o [94/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fpader.f.o [95/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_fourco.f.o [96/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_evapol.f.o [97/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_dblint.f.o [98/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_curfit.f.o [99/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_curev.f.o [100/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_cualde.f.o [101/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_concur.f.o [102/1424] Linking target scipy/ndimage/_ctest.cpython-312-powerpc64le-linux-musl.so [103/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_concon.f.o [104/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_cocosp.f.o [105/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_clocur.f.o [106/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_bispev.f.o [107/1424] Compiling Fortran object scipy/interpolate/libfitpack_lib.a.p/fitpack_bispeu.f.o [108/1424] Compiling C++ object scipy/signal/_spline.cpython-312-powerpc64le-linux-musl.so.p/_splinemodule.cc.o [109/1424] Generating 'scipy/signal/_max_len_seq_inner.cpython-312-powerpc64le-linux-musl.so.p/_max_len_seq_inner.cpp' [110/1424] Compiling C++ object scipy/signal/_sigtools.cpython-312-powerpc64le-linux-musl.so.p/_correlate_nd.cc.o [111/1424] Compiling C++ object scipy/signal/_sigtools.cpython-312-powerpc64le-linux-musl.so.p/_lfilter.cc.o [112/1424] Compiling C++ object scipy/signal/_sigtools.cpython-312-powerpc64le-linux-musl.so.p/_medianfilter.cc.o [113/1424] Compiling C++ object scipy/signal/_sigtools.cpython-312-powerpc64le-linux-musl.so.p/_sigtoolsmodule.cc.o [114/1424] Compiling C++ object scipy/signal/_sigtools.cpython-312-powerpc64le-linux-musl.so.p/_firfilter.cc.o [115/1424] Generating from 'tests/test_odeint_banded.pyf' [116/1424] Compiling C object scipy/integrate/_test_multivariate.cpython-312-powerpc64le-linux-musl.so.p/tests__test_multivariate.c.o [117/1424] Generating from 'dop.pyf' [118/1424] Generating from 'lsoda.pyf' [119/1424] Generating from 'vode.pyf' [120/1424] Compiling C object scipy/integrate/_odepack.cpython-312-powerpc64le-linux-musl.so.p/_odepackmodule.c.o [121/1424] Compiling C object scipy/integrate/_quadpack.cpython-312-powerpc64le-linux-musl.so.p/__quadpack.c.o [122/1424] Compiling Fortran object scipy/integrate/libdop_lib.a.p/dop_dopri5.f.o [123/1424] Compiling Fortran object scipy/integrate/libdop_lib.a.p/dop_dop853.f.o [124/1424] Compiling Fortran object scipy/integrate/libvode_lib.a.p/odepack_zvode.f.o [125/1424] Compiling Fortran object scipy/integrate/libvode_lib.a.p/odepack_vode.f.o [126/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_xsetun.f.o [127/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_xsetf.f.o [128/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_xerrwv.f.o [129/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_vmnorm.f.o [130/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_stoda.f.o [131/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_srcma.f.o [132/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_solsy.f.o [133/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_prja.f.o [134/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_lsoda.f.o [135/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_intdy.f.o [136/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_fnorm.f.o [137/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_ewset.f.o [138/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_cfode.f.o [139/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_bnorm.f.o [140/1424] Compiling Fortran object scipy/integrate/liblsoda_lib.a.p/odepack_blkdta000.f.o [141/1424] Compiling Fortran object scipy/integrate/libmach_lib.a.p/mach_xerror.f.o [142/1424] Compiling Fortran object scipy/integrate/libmach_lib.a.p/mach_d1mach.f.o [143/1424] Linking target scipy/integrate/_test_multivariate.cpython-312-powerpc64le-linux-musl.so [144/1424] Compiling C++ object scipy/spatial/_distance_pybind.cpython-312-powerpc64le-linux-musl.so.p/src_distance_pybind.cpp.o [145/1424] Compiling C object scipy/spatial/_distance_wrap.cpython-312-powerpc64le-linux-musl.so.p/src_distance_wrap.c.o [146/1424] Compiling C++ object scipy/spatial/_ckdtree.cpython-312-powerpc64le-linux-musl.so.p/ckdtree_src_sparse_distances.cxx.o [147/1424] Compiling C++ object scipy/spatial/_ckdtree.cpython-312-powerpc64le-linux-musl.so.p/ckdtree_src_query_pairs.cxx.o [148/1424] Compiling C++ object scipy/spatial/_ckdtree.cpython-312-powerpc64le-linux-musl.so.p/ckdtree_src_query_ball_tree.cxx.o [149/1424] Compiling C++ object scipy/spatial/_ckdtree.cpython-312-powerpc64le-linux-musl.so.p/ckdtree_src_query_ball_point.cxx.o [150/1424] Linking static target scipy/integrate/libmach_lib.a [151/1424] Compiling C++ object scipy/spatial/_ckdtree.cpython-312-powerpc64le-linux-musl.so.p/ckdtree_src_query.cxx.o [152/1424] Compiling C++ object scipy/spatial/_ckdtree.cpython-312-powerpc64le-linux-musl.so.p/ckdtree_src_count_neighbors.cxx.o [153/1424] Compiling C++ object scipy/spatial/_ckdtree.cpython-312-powerpc64le-linux-musl.so.p/ckdtree_src_build.cxx.o [154/1424] Compiling C object scipy/spatial/_qhull.cpython-312-powerpc64le-linux-musl.so.p/qhull_misc.c.o [155/1424] Copying file scipy/spatial/setlist.pxd [156/1424] Copying file scipy/spatial/_qhull.pxd [157/1424] Generating subprojects/highs/src/HConfig.h with a custom command [158/1424] Copying file scipy/optimize/cython_optimize/_zeros.pxd [159/1424] Copying file scipy/optimize/cython_optimize/c_zeros.pxd [160/1424] Copying file scipy/optimize/cython_optimize/__init__.py [161/1424] Compiling C object scipy/optimize/_trlib/_trlib.cpython-312-powerpc64le-linux-musl.so.p/trlib_tri_factor.c.o [162/1424] Compiling C object scipy/optimize/_trlib/_trlib.cpython-312-powerpc64le-linux-musl.so.p/trlib_quadratic_zero.c.o [163/1424] Compiling C object scipy/optimize/_trlib/_trlib.cpython-312-powerpc64le-linux-musl.so.p/trlib_leftmost.c.o [164/1424] Compiling C object scipy/optimize/_trlib/_trlib.cpython-312-powerpc64le-linux-musl.so.p/trlib_eigen_inverse.c.o [165/1424] Compiling C object scipy/optimize/_trlib/_trlib.cpython-312-powerpc64le-linux-musl.so.p/trlib_krylov.c.o [166/1424] Compiling C object scipy/optimize/_slsqplib.cpython-312-powerpc64le-linux-musl.so.p/__nnls.c.o [167/1424] Compiling C object scipy/optimize/_slsqplib.cpython-312-powerpc64le-linux-musl.so.p/__slsqp.c.o fatal: not a git repository (or any of the parent directories): .git [168/1424] Compiling C++ object scipy/optimize/_highspy/_highs_options.cpython-312-powerpc64le-linux-musl.so.p/highs_options.cpp.o [169/1424] Generating scipy/optimize/cython_optimize/_zeros_pyx with a custom command [170/1424] Compiling C++ object scipy/optimize/_highspy/_core.cpython-312-powerpc64le-linux-musl.so.p/.._.._.._subprojects_highs_src_highs_bindings.cpp.o [171/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_utils.cc.o [172/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_timer.cc.o [173/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_symbolic_invert.cc.o [174/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_starting_basis.cc.o [175/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_splitted_normal_matrix.cc.o [176/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_sparse_utils.cc.o [177/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_sparse_matrix.cc.o [178/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_normal_matrix.cc.o [179/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_model.cc.o [180/1424] Compiling C object scipy/integrate/_test_odeint_banded.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__test_odeint_bandedmodule.c.o [181/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_maxvolume.cc.o [182/1424] Compiling C object scipy/integrate/_dop.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__dopmodule.c.o [183/1424] Compiling C object scipy/integrate/_lsoda.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__lsodamodule.c.o [184/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_lu_update.cc.o [185/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_lu_factorization.cc.o [186/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_lp_solver.cc.o [187/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_linear_operator.cc.o [188/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_kkt_solver_diag.cc.o [189/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_kkt_solver_basis.cc.o [190/1424] Linking static target scipy/integrate/liblsoda_lib.a [191/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_kkt_solver.cc.o [192/1424] Compiling C object scipy/integrate/_vode.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__vodemodule.c.o [193/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_iterate.cc.o [194/1424] Linking target scipy/ndimage/_rank_filter_1d.cpython-312-powerpc64le-linux-musl.so [195/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_ipx_c.cc.o [196/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_ipm.cc.o [197/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_info.cc.o [198/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_indexed_vector.cc.o [199/1424] Linking static target scipy/integrate/libdop_lib.a [200/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_guess_basis.cc.o [201/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_forrest_tomlin.cc.o [202/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_diagonal_precond.cc.o [203/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_crossover.cc.o [204/1424] Compiling C++ object scipy/signal/_max_len_seq_inner.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__max_len_seq_inner.cpp.o [205/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_control.cc.o [206/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_conjugate_residuals.cc.o [207/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_basis.cc.o [208/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_basiclu_wrapper.cc.o [209/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_ipx_basiclu_kernel.cc.o [210/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_update.c.o [211/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_solve_triangular.c.o [212/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_solve_symbolic.c.o [213/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_solve_sparse.c.o [214/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_solve_for_update.c.o [215/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_solve_dense.c.o [216/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_singletons.c.o [217/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_setup_bump.c.o [218/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_residual_test.c.o [219/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_pivot.c.o [220/1424] Linking static target scipy/interpolate/libfitpack_lib.a [221/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_matrix_norm.c.o [222/1424] Linking target scipy/interpolate/_fitpack.cpython-312-powerpc64le-linux-musl.so [223/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_markowitz.c.o [224/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_internal.c.o [225/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_initialize.c.o [226/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_garbage_perm.c.o [227/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_file.c.o [228/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_factorize_bump.c.o [229/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_dfs.c.o [230/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_condest.c.o [231/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_lu_build_factors.c.o [232/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_basiclu_update.c.o [233/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_basiclu_solve_sparse.c.o [234/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_basiclu_solve_for_update.c.o [235/1424] Linking static target scipy/interpolate/lib__fitpack.a [236/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_basiclu_solve_dense.c.o [237/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_basiclu_object.c.o [238/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_basiclu_initialize.c.o [239/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_basiclu_get_factors.c.o [240/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_basiclu_basiclu_factorize.c.o [241/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_pdlp_cupdlp_cupdlp_utils.c.o [242/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_pdlp_cupdlp_cupdlp_step.c.o [243/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_pdlp_cupdlp_cupdlp_solver.c.o [244/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_pdlp_cupdlp_cupdlp_scaling_cuda.c.o [245/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_pdlp_cupdlp_cupdlp_restart.c.o [246/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_pdlp_cupdlp_cupdlp_proj.c.o [247/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_pdlp_cupdlp_cupdlp_linalg.c.o [248/1424] Compiling C object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_pdlp_cupdlp_cupdlp_cs.c.o [249/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_stringutil.cpp.o [250/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HighsUtils.cpp.o [251/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HighsSparseMatrix.cpp.o [252/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HighsSort.cpp.o [253/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HighsMatrixUtils.cpp.o [254/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HighsMatrixPic.cpp.o [255/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HighsLinearSumBounds.cpp.o [256/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HighsHash.cpp.o [257/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HVectorBase.cpp.o [258/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HSet.cpp.o [259/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HFactorUtils.cpp.o [260/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HFactorRefactor.cpp.o [261/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HFactorExtend.cpp.o [262/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HFactorDebug.cpp.o [263/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_util_HFactor.cpp.o [264/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_test_KktCh2.cpp.o [265/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_test_DevKkt.cpp.o [266/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HighsSimplexAnalysis.cpp.o [267/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HSimplexReport.cpp.o [268/1424] Linking target scipy/signal/_sigtools.cpython-312-powerpc64le-linux-musl.so [269/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HSimplexNlaProductForm.cpp.o [270/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HSimplexNlaFreeze.cpp.o [271/1424] Linking target scipy/interpolate/_dierckx.cpython-312-powerpc64le-linux-musl.so [272/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HSimplexNlaDebug.cpp.o [273/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HSimplexNla.cpp.o [274/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HSimplexDebug.cpp.o [275/1424] Linking static target scipy/integrate/libvode_lib.a [276/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HSimplex.cpp.o [277/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HEkkPrimal.cpp.o [278/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HEkkInterface.cpp.o [279/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HEkkDualRow.cpp.o [280/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HEkkDualRHS.cpp.o [281/1424] Linking target scipy/ndimage/_nd_image.cpython-312-powerpc64le-linux-musl.so [282/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HEkkDualMulti.cpp.o [283/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HEkkDual.cpp.o [284/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HEkkDebug.cpp.o [285/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HEkkControl.cpp.o [286/1424] Linking target scipy/signal/_spline.cpython-312-powerpc64le-linux-musl.so [287/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_simplex_HEkk.cpp.o [288/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_qpsolver_scaling.cpp.o [289/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_qpsolver_ratiotest.cpp.o [290/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_qpsolver_quass.cpp.o [291/1424] Compiling C object scipy/interpolate/_dfitpack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__dfitpackmodule.c.o [292/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_qpsolver_perturbation.cpp.o [293/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_qpsolver_basis.cpp.o [294/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_qpsolver_a_quass.cpp.o [295/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_qpsolver_a_asm.cpp.o [296/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_presolve_PresolveComponent.cpp.o [297/1424] Compiling C++ object scipy/interpolate/_rbfinterp_pythran.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__rbfinterp_pythran.cpp.o [298/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_presolve_ICrashX.cpp.o [299/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_presolve_ICrashUtil.cpp.o [300/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_presolve_ICrash.cpp.o [301/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_presolve_HighsSymmetry.cpp.o [302/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_presolve_HighsPostsolveStack.cpp.o [303/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_presolve_HPresolveAnalysis.cpp.o [304/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_presolve_HPresolve.cpp.o [305/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_pdlp_CupdlpWrapper.cpp.o [306/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_parallel_HighsTaskExecutor.cpp.o [307/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_model_HighsModel.cpp.o [308/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_model_HighsHessianUtils.cpp.o [309/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_model_HighsHessian.cpp.o [310/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsTransformedLp.cpp.o [311/1424] Linking target scipy/signal/_max_len_seq_inner.cpython-312-powerpc64le-linux-musl.so [312/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsTableauSeparator.cpp.o [313/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsSeparator.cpp.o [314/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsSeparation.cpp.o [315/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsSearch.cpp.o [316/1424] Linking target scipy/integrate/_quadpack.cpython-312-powerpc64le-linux-musl.so [317/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsRedcostFixing.cpp.o [318/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsPseudocost.cpp.o [319/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsPrimalHeuristics.cpp.o [320/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsPathSeparator.cpp.o [321/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsObjectiveFunction.cpp.o [322/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsNodeQueue.cpp.o [323/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsModkSeparator.cpp.o [324/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsMipSolverData.cpp.o [325/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsMipSolver.cpp.o [326/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsMipAnalysis.cpp.o [327/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsLpRelaxation.cpp.o [328/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsLpAggregator.cpp.o [329/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsImplications.cpp.o [330/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsGFkSolve.cpp.o [331/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsDynamicRowMatrix.cpp.o [332/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsDomain.cpp.o [333/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsDebugSol.cpp.o [334/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsCutPool.cpp.o [335/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsCutGeneration.cpp.o [336/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsConflictPool.cpp.o [337/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_mip_HighsCliqueTable.cpp.o [338/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsStatus.cpp.o [339/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsSolve.cpp.o [340/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsSolutionDebug.cpp.o [341/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsSolution.cpp.o [342/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsRanging.cpp.o [343/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsOptions.cpp.o [344/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsModelUtils.cpp.o [345/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsLpUtils.cpp.o [346/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsLp.cpp.o [347/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsInterface.cpp.o [348/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsInfoDebug.cpp.o [349/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsInfo.cpp.o [350/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsDeprecated.cpp.o [351/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsIis.cpp.o [352/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsDebug.cpp.o [353/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_HighsCallback.cpp.o [354/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_lp_data_Highs.cpp.o [355/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_ipm_IpxWrapper.cpp.o [356/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_io_LoadOptions.cpp.o [357/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_io_HighsIO.cpp.o [358/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_io_HMpsFF.cpp.o [359/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_io_HMPSIO.cpp.o [360/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_io_FilereaderMps.cpp.o [361/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_io_FilereaderLp.cpp.o [362/1424] Linking target scipy/spatial/_distance_wrap.cpython-312-powerpc64le-linux-musl.so [363/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_io_FilereaderEms.cpp.o [364/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_io_Filereader.cpp.o [365/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_src_interfaces_highs_c_api.cpp.o [366/1424] Compiling C++ object scipy/optimize/_highspy/libhighs.a.p/.._.._.._subprojects_highs_extern_filereaderlp_reader.cpp.o [367/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_utils.cc.o [368/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_timer.cc.o [369/1424] Linking static target scipy/odr/libodrpack.a [370/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_symbolic_invert.cc.o [371/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_starting_basis.cc.o [372/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_splitted_normal_matrix.cc.o [373/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_sparse_utils.cc.o [374/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_sparse_matrix.cc.o [375/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_normal_matrix.cc.o [376/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_model.cc.o [377/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_maxvolume.cc.o [378/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_lu_update.cc.o [379/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_lu_factorization.cc.o [380/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_lp_solver.cc.o [381/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_linear_operator.cc.o [382/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_kkt_solver_diag.cc.o [383/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_kkt_solver_basis.cc.o [384/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_kkt_solver.cc.o [385/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_iterate.cc.o [386/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_ipx_c.cc.o [387/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_ipm.cc.o [388/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_info.cc.o [389/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_indexed_vector.cc.o [390/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_guess_basis.cc.o [391/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_forrest_tomlin.cc.o [392/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_diagonal_precond.cc.o [393/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_crossover.cc.o [394/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_control.cc.o [395/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_conjugate_residuals.cc.o [396/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_basis.cc.o [397/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_basiclu_wrapper.cc.o [398/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_ipx_basiclu_kernel.cc.o [399/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_update.c.o [400/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_solve_triangular.c.o [401/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_solve_symbolic.c.o [402/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_solve_sparse.c.o [403/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_solve_for_update.c.o [404/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_solve_dense.c.o [405/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_singletons.c.o [406/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_setup_bump.c.o [407/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_residual_test.c.o [408/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_pivot.c.o [409/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_matrix_norm.c.o [410/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_markowitz.c.o [411/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_internal.c.o [412/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_initialize.c.o [413/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_garbage_perm.c.o [414/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_file.c.o [415/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_factorize_bump.c.o [416/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_dfs.c.o [417/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_condest.c.o [418/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_lu_build_factors.c.o [419/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_basiclu_update.c.o [420/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_basiclu_solve_sparse.c.o [421/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_basiclu_solve_for_update.c.o [422/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_basiclu_solve_dense.c.o [423/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_basiclu_object.c.o [424/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_basiclu_initialize.c.o [425/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_basiclu_get_factors.c.o [426/1424] Compiling C object subprojects/highs/src/libhighs.a.p/ipm_basiclu_basiclu_factorize.c.o [427/1424] Compiling C object subprojects/highs/src/libhighs.a.p/pdlp_cupdlp_cupdlp_utils.c.o [428/1424] Compiling C object subprojects/highs/src/libhighs.a.p/pdlp_cupdlp_cupdlp_step.c.o [429/1424] Compiling C object subprojects/highs/src/libhighs.a.p/pdlp_cupdlp_cupdlp_solver.c.o [430/1424] Compiling C object subprojects/highs/src/libhighs.a.p/pdlp_cupdlp_cupdlp_scaling_cuda.c.o [431/1424] Compiling C object subprojects/highs/src/libhighs.a.p/pdlp_cupdlp_cupdlp_restart.c.o [432/1424] Compiling C object subprojects/highs/src/libhighs.a.p/pdlp_cupdlp_cupdlp_proj.c.o [433/1424] Compiling C object subprojects/highs/src/libhighs.a.p/pdlp_cupdlp_cupdlp_linalg.c.o [434/1424] Compiling C object subprojects/highs/src/libhighs.a.p/pdlp_cupdlp_cupdlp_cs.c.o [435/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_stringutil.cpp.o [436/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HighsUtils.cpp.o [437/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HighsSparseMatrix.cpp.o [438/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HighsSort.cpp.o [439/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HighsMatrixUtils.cpp.o [440/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HighsMatrixPic.cpp.o [441/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HighsLinearSumBounds.cpp.o [442/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HighsHash.cpp.o [443/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HVectorBase.cpp.o [444/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HSet.cpp.o [445/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HFactorUtils.cpp.o [446/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HFactorRefactor.cpp.o [447/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HFactorExtend.cpp.o [448/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HFactorDebug.cpp.o [449/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/util_HFactor.cpp.o [450/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/test_KktCh2.cpp.o [451/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/test_DevKkt.cpp.o [452/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HighsSimplexAnalysis.cpp.o [453/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HSimplexReport.cpp.o [454/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HSimplexNlaProductForm.cpp.o [455/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HSimplexNlaFreeze.cpp.o [456/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HSimplexNlaDebug.cpp.o [457/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HSimplexNla.cpp.o [458/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HSimplexDebug.cpp.o [459/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HSimplex.cpp.o [460/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HEkkPrimal.cpp.o [461/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HEkkInterface.cpp.o [462/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HEkkDualRow.cpp.o [463/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HEkkDualRHS.cpp.o [464/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HEkkDualMulti.cpp.o [465/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HEkkDual.cpp.o [466/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HEkkDebug.cpp.o [467/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HEkkControl.cpp.o [468/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/simplex_HEkk.cpp.o [469/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/qpsolver_scaling.cpp.o [470/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/qpsolver_ratiotest.cpp.o [471/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/qpsolver_quass.cpp.o [472/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/qpsolver_perturbation.cpp.o [473/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/qpsolver_basis.cpp.o [474/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/qpsolver_a_quass.cpp.o [475/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/qpsolver_a_asm.cpp.o [476/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/presolve_PresolveComponent.cpp.o [477/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/presolve_ICrashX.cpp.o [478/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/presolve_ICrashUtil.cpp.o [479/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/presolve_ICrash.cpp.o [480/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/presolve_HighsSymmetry.cpp.o [481/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/presolve_HighsPostsolveStack.cpp.o [482/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/presolve_HPresolveAnalysis.cpp.o [483/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/presolve_HPresolve.cpp.o [484/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/pdlp_CupdlpWrapper.cpp.o [485/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/parallel_HighsTaskExecutor.cpp.o [486/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/model_HighsModel.cpp.o [487/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/model_HighsHessianUtils.cpp.o [488/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/model_HighsHessian.cpp.o [489/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsTransformedLp.cpp.o [490/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsTableauSeparator.cpp.o [491/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsSeparator.cpp.o [492/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsSeparation.cpp.o [493/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsSearch.cpp.o [494/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsRedcostFixing.cpp.o [495/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsPseudocost.cpp.o [496/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsPrimalHeuristics.cpp.o [497/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsPathSeparator.cpp.o [498/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsObjectiveFunction.cpp.o [499/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsNodeQueue.cpp.o [500/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsModkSeparator.cpp.o [501/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsMipSolverData.cpp.o [502/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsMipSolver.cpp.o [503/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsMipAnalysis.cpp.o [504/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsLpRelaxation.cpp.o [505/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsLpAggregator.cpp.o [506/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsImplications.cpp.o [507/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsGFkSolve.cpp.o [508/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsDynamicRowMatrix.cpp.o [509/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsDomain.cpp.o [510/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsDebugSol.cpp.o [511/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsCutPool.cpp.o [512/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsCutGeneration.cpp.o [513/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsConflictPool.cpp.o [514/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/mip_HighsCliqueTable.cpp.o [515/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsStatus.cpp.o [516/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsSolve.cpp.o [517/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsSolutionDebug.cpp.o [518/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsSolution.cpp.o [519/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsRanging.cpp.o [520/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsOptions.cpp.o [521/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsModelUtils.cpp.o [522/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsLpUtils.cpp.o [523/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsLp.cpp.o [524/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsInterface.cpp.o [525/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsInfoDebug.cpp.o [526/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsInfo.cpp.o [527/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsDeprecated.cpp.o [528/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsIis.cpp.o [529/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsDebug.cpp.o [530/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_HighsCallback.cpp.o [531/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/lp_data_Highs.cpp.o [532/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/ipm_IpxWrapper.cpp.o [533/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/io_LoadOptions.cpp.o [534/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/io_HighsIO.cpp.o In file included from /usr/include/c++/15.2.0/bits/stl_algobase.h:64, from /usr/include/c++/15.2.0/deque:64, from /usr/include/c++/15.2.0/queue:68, from ../subprojects/highs/src/mip/HighsSearch.h:15, from ../subprojects/highs/src/mip/HighsSearch.cpp:11: /usr/include/c++/15.2.0/bits/stl_pair.h: In instantiation of 'constexpr std::pair::type>::__type, typename std::__strip_reference_wrapper::type>::__type> std::make_pair(_T1&&, _T2&&) [with _T1 = double&; _T2 = double; typename __strip_reference_wrapper::type>::__type = double; typename decay<_Tp>::type = double; typename __strip_reference_wrapper::type>::__type = double; typename decay<_Tp2>::type = double]': ../subprojects/highs/src/mip/HighsSearch.cpp:535:24: required from here 535 | std::make_pair(downscore[candidate], | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ 536 |  pseudocost.getAvgInferencesDown(col)) >= | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/include/c++/15.2.0/bits/stl_pair.h:1164:5: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 1164 | make_pair(_T1&& __x, _T2&& __y) | ^~~~~~~~~ [535/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/io_HMpsFF.cpp.o [536/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/io_HMPSIO.cpp.o [537/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/io_FilereaderMps.cpp.o [538/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/io_FilereaderLp.cpp.o [539/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/io_FilereaderEms.cpp.o [540/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/io_Filereader.cpp.o [541/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/interfaces_highs_c_api.cpp.o [542/1424] Compiling C++ object subprojects/highs/src/libhighs.a.p/.._extern_filereaderlp_reader.cpp.o [543/1424] Copying file scipy/optimize/__init__.pxd [544/1424] Copying file scipy/optimize/cython_optimize.pxd [545/1424] Copying file scipy/optimize/__init__.py [546/1424] Generating 'scipy/optimize/_group_columns.cpython-312-powerpc64le-linux-musl.so.p/_group_columns.cpp' [547/1424] Compiling C++ object scipy/optimize/_pava_pybind.cpython-312-powerpc64le-linux-musl.so.p/_pava_pava_pybind.cpp.o [548/1424] Compiling C object scipy/optimize/_moduleTNC.cpython-312-powerpc64le-linux-musl.so.p/tnc_tnc.c.o [549/1424] Compiling C object scipy/optimize/_lbfgsb.cpython-312-powerpc64le-linux-musl.so.p/__lbfgsb.c.o [550/1424] Compiling C object scipy/optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/zeros.c.o [551/1424] Compiling C object scipy/optimize/librootfind.a.p/Zeros_ridder.c.o [552/1424] Compiling C object scipy/optimize/librootfind.a.p/Zeros_brentq.c.o [553/1424] Compiling C object scipy/optimize/librootfind.a.p/Zeros_brenth.c.o [554/1424] Compiling C object scipy/optimize/librootfind.a.p/Zeros_bisect.c.o [555/1424] Compiling C object scipy/optimize/_lsap.cpython-312-powerpc64le-linux-musl.so.p/_lsap.c.o [556/1424] Compiling C++ object scipy/optimize/librectangular_lsap.a.p/rectangular_lsap_rectangular_lsap.cpp.o [557/1424] Linking static target scipy/optimize/librootfind.a [558/1424] Linking target scipy/optimize/_zeros.cpython-312-powerpc64le-linux-musl.so [559/1424] Compiling C object scipy/optimize/_minpack.cpython-312-powerpc64le-linux-musl.so.p/__minpack.c.o [560/1424] Compiling C object scipy/optimize/_direct.cpython-312-powerpc64le-linux-musl.so.p/_directmodule.c.o [561/1424] Compiling C object scipy/optimize/_direct.cpython-312-powerpc64le-linux-musl.so.p/_direct_DIRsubrout.c.o [562/1424] Compiling C object scipy/optimize/_direct.cpython-312-powerpc64le-linux-musl.so.p/_direct_DIRserial.c.o [563/1424] Compiling C object scipy/optimize/_direct.cpython-312-powerpc64le-linux-musl.so.p/_direct_DIRect.c.o [564/1424] Compiling C object scipy/optimize/_direct.cpython-312-powerpc64le-linux-musl.so.p/_direct_direct_wrap.c.o [565/1424] Compiling C object scipy/io/_fast_matrix_market/_fmm_core.cpython-312-powerpc64le-linux-musl.so.p/fast_matrix_market_dependencies_ryu_ryu_d2fixed.c.o [566/1424] Compiling C object scipy/io/_fast_matrix_market/_fmm_core.cpython-312-powerpc64le-linux-musl.so.p/fast_matrix_market_dependencies_ryu_ryu_d2s.c.o [567/1424] Compiling C object scipy/io/_fast_matrix_market/_fmm_core.cpython-312-powerpc64le-linux-musl.so.p/fast_matrix_market_dependencies_ryu_ryu_f2s.c.o [568/1424] Compiling C++ object scipy/io/_fast_matrix_market/_fmm_core.cpython-312-powerpc64le-linux-musl.so.p/src__fmm_core_write_coo_64.cpp.o [569/1424] Compiling C++ object scipy/io/_fast_matrix_market/_fmm_core.cpython-312-powerpc64le-linux-musl.so.p/src__fmm_core_write_coo_32.cpp.o [570/1424] Compiling C++ object scipy/io/_fast_matrix_market/_fmm_core.cpython-312-powerpc64le-linux-musl.so.p/src__fmm_core_write_array.cpp.o [571/1424] Compiling C++ object scipy/io/_fast_matrix_market/_fmm_core.cpython-312-powerpc64le-linux-musl.so.p/src__fmm_core_read_coo.cpp.o [572/1424] Compiling C++ object scipy/io/_fast_matrix_market/_fmm_core.cpython-312-powerpc64le-linux-musl.so.p/src__fmm_core_read_array.cpp.o [573/1424] Compiling C++ object scipy/io/_fast_matrix_market/_fmm_core.cpython-312-powerpc64le-linux-musl.so.p/src__fmm_core.cpp.o [574/1424] Generating from 'test_fortran.pyf' [575/1424] Compiling C++ object scipy/fft/_pocketfft/pypocketfft.cpython-312-powerpc64le-linux-musl.so.p/pypocketfft.cxx.o [576/1424] Compiling C object scipy/stats/_rcont/rcont.cpython-312-powerpc64le-linux-musl.so.p/.._libnpyrandom_distributions.c.o [577/1424] Compiling C object scipy/stats/_rcont/rcont.cpython-312-powerpc64le-linux-musl.so.p/.._libnpyrandom_logfactorial.c.o [578/1424] Compiling C object scipy/stats/_rcont/rcont.cpython-312-powerpc64le-linux-musl.so.p/_rcont.c.o [579/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_vector.c.o [580/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_unur_fp.c.o [581/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_umath.c.o [582/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_umalloc.c.o [583/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_string.c.o [584/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_stream.c.o [585/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_slist.c.o [586/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_mrou_rectangle.c.o [587/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_matrix.c.o [588/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_lobatto.c.o [589/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_hooke.c.o [590/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_fmax.c.o [591/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_error.c.o [592/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_eigensystem.c.o [593/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_utils_debug.c.o [594/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_urng_urng_unuran.c.o [595/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_urng_urng_set.c.o [596/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_urng_urng_default.c.o [597/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_urng_urng.c.o [598/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_tests_timing.c.o [599/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_tests_tests.c.o [600/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_tests_quantiles.c.o [601/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_tests_printsample.c.o [602/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_tests_moments.c.o [603/1424] Compiling C object scipy/io/_test_fortran.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__test_fortranmodule.c.o [604/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_tests_inverror.c.o [605/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_tests_counturn.c.o [606/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_tests_countpdf.c.o [607/1424] Linking static target scipy/optimize/librectangular_lsap.a [608/1424] Linking target scipy/optimize/_lsap.cpython-312-powerpc64le-linux-musl.so [609/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_tests_correlation.c.o [610/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_tests_chi2test.c.o [611/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_specfunct_hypot.c.o [612/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_specfunct_cgamma.c.o [613/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_specfunct_cephes_polevl.c.o [614/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_specfunct_cephes_ndtri.c.o [615/1424] Linking target scipy/optimize/_direct.cpython-312-powerpc64le-linux-musl.so [616/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_specfunct_cephes_ndtr.c.o [617/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_specfunct_cephes_incbet.c.o [618/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_specfunct_cephes_igam.c.o [619/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_specfunct_cephes_gamma.c.o [620/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_specfunct_bessel_asympt.c.o [621/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_parser_stringparser.c.o [622/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_parser_parser.c.o [623/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_parser_functparser.c.o [624/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_x_gen.c.o [625/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_vnrou.c.o [626/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_vempk.c.o [627/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_utdr.c.o [628/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_unif.c.o [629/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_tdr.c.o [630/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_tabl.c.o [631/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_ssr.c.o [632/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_srou.c.o [633/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_pinv.c.o [634/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_nrou.c.o [635/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_norta.c.o [636/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_ninv.c.o [637/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_mvtdr.c.o [638/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_mvstd.c.o [639/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_mixt.c.o [640/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_mcorr.c.o [641/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_itdr.c.o [642/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_hri.c.o [643/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_hrd.c.o [644/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_hrb.c.o [645/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_hitro.c.o [646/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_hist.c.o [647/1424] Compiling C++ object scipy/optimize/_group_columns.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__group_columns.cpp.o [648/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_hinv.c.o [649/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_gibbs.c.o [650/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_empl.c.o [651/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_empk.c.o [652/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_dstd.c.o [653/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_dss.c.o [654/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_dsrou.c.o [655/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_dgt.c.o [656/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_dext.c.o [657/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_dau.c.o [658/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_dari.c.o [659/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_cstd.c.o [660/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_cext.c.o [661/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_auto.c.o [662/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_ars.c.o [663/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_methods_arou.c.o [664/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_vc_multistudent.c.o [665/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_vc_multinormal_gen.c.o [666/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_vc_multinormal.c.o [667/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_vc_multiexponential.c.o [668/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_vc_multicauchy.c.o [669/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_vc_copula.c.o [670/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_m_correlation.c.o [671/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_d_zipf_gen.c.o [672/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_d_zipf.c.o [673/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_d_poisson_gen.c.o [674/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_d_poisson.c.o [675/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_d_negativebinomial.c.o [676/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_d_logarithmic_gen.c.o [677/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_d_logarithmic.c.o [678/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_d_hypergeometric_gen.c.o [679/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_d_hypergeometric.c.o [680/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_d_geometric.c.o [681/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_d_binomial_gen.c.o [682/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_d_binomial.c.o [683/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_weibull.c.o [684/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_vg.c.o [685/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_uniform.c.o [686/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_triangular.c.o [687/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_student_gen.c.o [688/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_student.c.o [689/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_slash_gen.c.o [690/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_slash.c.o [691/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_rayleigh.c.o [692/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_powerexponential_gen.c.o [693/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_powerexponential.c.o [694/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_pareto.c.o [695/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_normal_gen.c.o [696/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_normal.c.o [697/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_meixner.c.o [698/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_lomax.c.o [699/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_lognormal.c.o [700/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_logistic.c.o [701/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_laplace.c.o [702/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_ig.c.o [703/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_hyperbolic.c.o [704/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_gig_gen.c.o [705/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_gig2.c.o [706/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_gig.c.o [707/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_ghyp.c.o [708/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_gamma_gen.c.o [709/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_gamma.c.o [710/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_extremeII.c.o [711/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_extremeI.c.o [712/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_exponential_gen.c.o [713/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_exponential.c.o [714/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_chisquare.c.o [715/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_chi_gen.c.o [716/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_chi.c.o [717/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_cauchy.c.o [718/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_burr.c.o [719/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_beta_gen.c.o [720/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_beta.c.o [721/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distributions_c_F.c.o [722/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distr_matr.c.o [723/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distr_distr_info.c.o [724/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distr_distr.c.o [725/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distr_discr.c.o [726/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distr_cxtrans.c.o [727/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distr_cvemp.c.o [728/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distr_cvec.c.o [729/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distr_corder.c.o [730/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distr_cont.c.o [731/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distr_condi.c.o [732/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/.._..__lib_unuran_unuran_src_distr_cemp.c.o [733/1424] Copying file scipy/stats/_unuran/unuran.pxd [734/1424] Copying file scipy/stats/_unuran/__init__.py [735/1424] Compiling C object scipy/stats/_levy_stable/lib_levyst.a.p/c_src_levyst.c.o [736/1424] Generating 'scipy/stats/_stats_pythran.cpython-312-powerpc64le-linux-musl.so.p/_stats_pythran.cpp' [737/1424] Compiling C object scipy/stats/_biasedurn.cpython-312-powerpc64le-linux-musl.so.p/libnpyrandom_distributions.c.o [738/1424] Compiling C++ object scipy/stats/_biasedurn.cpython-312-powerpc64le-linux-musl.so.p/biasedurn_wnchyppr.cpp.o [739/1424] Compiling C++ object scipy/stats/_biasedurn.cpython-312-powerpc64le-linux-musl.so.p/biasedurn_stoc3.cpp.o [740/1424] Compiling C++ object scipy/stats/_biasedurn.cpython-312-powerpc64le-linux-musl.so.p/biasedurn_stoc1.cpp.o [741/1424] Compiling C++ object scipy/stats/_biasedurn.cpython-312-powerpc64le-linux-musl.so.p/biasedurn_impls.cpp.o [742/1424] Linking static target scipy/stats/_levy_stable/lib_levyst.a [743/1424] Compiling C++ object scipy/stats/_biasedurn.cpython-312-powerpc64le-linux-musl.so.p/biasedurn_fnchyppr.cpp.o [744/1424] Copying file scipy/stats/_biasedurn.pxd [745/1424] Copying file scipy/stats/_stats.pxd [746/1424] Copying file scipy/stats/__init__.py [747/1424] Generating scipy/sparse/linalg/_eigen/arpack/arpack_module with a custom command [748/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_zvout.f.o [749/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_zmout.f.o [750/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_svout.f.o [751/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_smout.f.o [752/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_second_NONE.f.o [753/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_ivout.f.o [754/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_iswap.f.o [755/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_iset.f.o [756/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_icopy.f.o [757/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_icnteq.f.o [758/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_dvout.f.o [759/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_dmout.f.o [760/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_cvout.f.o [761/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_UTIL_cmout.f.o [762/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_zzdotc.f.o [763/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_zstatn.f.o [764/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_zsortc.f.o [765/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_zngets.f.o [766/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_zneupd.f.o [767/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_zneigh.f.o [768/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_znaupd.f.o [769/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_znaup2.f.o [770/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_znapps.f.o [771/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_znaitr.f.o [772/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_zgetv0.f.o [773/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_sstqrb.f.o [774/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_sstats.f.o [775/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_sstatn.f.o [776/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_ssortr.f.o [777/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_ssortc.f.o [778/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_ssgets.f.o [779/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_sseupd.f.o [780/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_ssesrt.f.o [781/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_sseigt.f.o [782/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_ssconv.f.o [783/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_ssaupd.f.o [784/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_ssaup2.f.o [785/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_ssapps.f.o [786/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_ssaitr.f.o [787/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_sngets.f.o [788/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_sneupd.f.o [789/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_sneigh.f.o [790/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_snconv.f.o [791/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_snaupd.f.o [792/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_snaup2.f.o [793/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_snapps.f.o [794/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_snaitr.f.o [795/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_sgetv0.f.o [796/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dstqrb.f.o [797/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dstats.f.o [798/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dstatn.f.o [799/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dsortr.f.o [800/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dsortc.f.o [801/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dsgets.f.o [802/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dseupd.f.o [803/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dsesrt.f.o [804/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dseigt.f.o [805/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dsconv.f.o [806/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dsaupd.f.o [807/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dsaup2.f.o [808/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dsapps.f.o [809/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dsaitr.f.o [810/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dngets.f.o [811/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dneupd.f.o [812/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dneigh.f.o [813/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dnconv.f.o [814/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dnaupd.f.o [815/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dnaup2.f.o [816/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dnapps.f.o [817/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dnaitr.f.o [818/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_dgetv0.f.o [819/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_cstatn.f.o [820/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_csortc.f.o [821/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_cngets.f.o [822/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_cneupd.f.o [823/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_cneigh.f.o [824/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_cnaupd.f.o [825/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_cnaup2.f.o [826/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_cnapps.f.o [827/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_cnaitr.f.o [828/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_cgetv0.f.o [829/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a.p/ARPACK_SRC_ccdotc.f.o [830/1424] Compiling C object scipy/sparse/linalg/_dsolve/_superlu.cpython-312-powerpc64le-linux-musl.so.p/_superluobject.c.o [831/1424] Compiling C object scipy/sparse/linalg/_dsolve/_superlu.cpython-312-powerpc64le-linux-musl.so.p/_superlu_utils.c.o [832/1424] Compiling C object scipy/sparse/linalg/_dsolve/_superlu.cpython-312-powerpc64le-linux-musl.so.p/_superlumodule.c.o [833/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zutil.c.o [834/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zsp_blas3.c.o [835/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zsp_blas2.c.o [836/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zsnode_dfs.c.o [837/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zsnode_bmod.c.o [838/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zreadtriple.c.o [839/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zreadrb.c.o [840/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zreadhb.c.o [841/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zreadMM.c.o [842/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zpruneL.c.o [843/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zpivotgrowth.c.o [844/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zpivotL.c.o [845/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zpanel_dfs.c.o [846/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zpanel_bmod.c.o [847/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zmyblas2.c.o [848/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zmemory.c.o [849/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zldperm.c.o [850/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zlaqgs.c.o [851/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zlangs.c.o [852/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zlacon2.c.o [853/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zgstrs.c.o [854/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zgstrf.c.o [855/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zgssvx.c.o [856/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zgssv.c.o [857/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zgsrfs.c.o [858/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zgsitrf.c.o [859/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zgsisx.c.o [860/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zgsequ.c.o [861/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zgscon.c.o [862/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zdiagonal.c.o [863/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zcopy_to_ucol.c.o [864/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zcolumn_dfs.c.o [865/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_zcolumn_bmod.c.o [866/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_util.c.o [867/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sutil.c.o [868/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_superlu_timer.c.o [869/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ssp_blas3.c.o [870/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ssp_blas2.c.o [871/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ssnode_dfs.c.o [872/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ssnode_bmod.c.o [873/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sreadtriple.c.o [874/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sreadrb.c.o [875/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sreadhb.c.o [876/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sreadMM.c.o [877/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_spruneL.c.o [878/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_spivotgrowth.c.o [879/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_spivotL.c.o [880/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_spanel_dfs.c.o [881/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_spanel_bmod.c.o [882/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sp_preorder.c.o [883/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sp_ienv.c.o [884/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sp_coletree.c.o [885/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_smyblas2.c.o [886/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_smemory.c.o [887/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_smach.c.o [888/1424] Linking static target scipy/sparse/linalg/_eigen/arpack/libarpack_lib.a [889/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sldperm.c.o [890/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_slaqgs.c.o [891/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_slangs.c.o [892/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_slacon2.c.o [893/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sgstrs.c.o [894/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sgstrf.c.o [895/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sgssvx.c.o [896/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sgssv.c.o [897/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sgsrfs.c.o [898/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sgsitrf.c.o [899/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sgsisx.c.o [900/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sgsequ.c.o [901/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sgscon.c.o [902/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_sdiagonal.c.o [903/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_scsum1.c.o [904/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_scopy_to_ucol.c.o [905/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_scomplex.c.o [906/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_scolumn_dfs.c.o [907/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_scolumn_bmod.c.o [908/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_relax_snode.c.o [909/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_qselect.c.o [910/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_mmd.c.o [911/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_memory.c.o [912/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_mark_relax.c.o [913/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_izmax1.c.o [914/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_input_error.c.o [915/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_zsnode_dfs.c.o [916/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_zpivotL.c.o [917/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_zpanel_dfs.c.o [918/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_zdrop_row.c.o [919/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_zcopy_to_ucol.c.o [920/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_zcolumn_dfs.c.o [921/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_ssnode_dfs.c.o [922/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_spivotL.c.o [923/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_spanel_dfs.c.o [924/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_sdrop_row.c.o [925/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_scopy_to_ucol.c.o [926/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_scolumn_dfs.c.o [927/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_relax_snode.c.o [928/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_heap_relax_snode.c.o [929/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_dsnode_dfs.c.o [930/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_dpivotL.c.o [931/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_dpanel_dfs.c.o [932/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_ddrop_row.c.o [933/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_dcopy_to_ucol.c.o [934/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_dcolumn_dfs.c.o [935/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_csnode_dfs.c.o [936/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_cpivotL.c.o [937/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_cpanel_dfs.c.o [938/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_cdrop_row.c.o [939/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_ccopy_to_ucol.c.o [940/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ilu_ccolumn_dfs.c.o [941/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_icmax1.c.o [942/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_heap_relax_snode.c.o [943/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_get_perm_c.c.o [944/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dzsum1.c.o [945/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dutil.c.o [946/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dsp_blas3.c.o [947/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dsp_blas2.c.o [948/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dsnode_dfs.c.o [949/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dsnode_bmod.c.o [950/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dreadtriple.c.o [951/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dreadrb.c.o [952/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dreadhb.c.o [953/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dreadMM.c.o [954/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dpruneL.c.o [955/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dpivotgrowth.c.o [956/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dpivotL.c.o [957/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dpanel_dfs.c.o [958/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dpanel_bmod.c.o [959/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dmyblas2.c.o [960/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dmemory.c.o [961/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dmach.c.o [962/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dldperm.c.o [963/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dlaqgs.c.o [964/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dlangs.c.o [965/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dlacon2.c.o [966/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dgstrs.c.o [967/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dgstrf.c.o [968/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dgssvx.c.o [969/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dgssv.c.o [970/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dgsrfs.c.o [971/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dgsitrf.c.o [972/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dgsisx.c.o [973/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dgsequ.c.o [974/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dgscon.c.o [975/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ddiagonal.c.o [976/1424] Compiling C object scipy/sparse/linalg/_eigen/arpack/_arpack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_..__arpackmodule.c.o [977/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dcopy_to_ucol.c.o [978/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dcomplex.c.o [979/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dcolumn_dfs.c.o [980/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dcolumn_bmod.c.o [981/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_dGetDiagU.c.o [982/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cutil.c.o [983/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_csp_blas3.c.o [984/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_csp_blas2.c.o [985/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_csnode_dfs.c.o [986/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_csnode_bmod.c.o [987/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_creadtriple.c.o [988/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_creadrb.c.o [989/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_creadhb.c.o [990/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_creadMM.c.o [991/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cpruneL.c.o [992/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cpivotgrowth.c.o [993/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cpivotL.c.o [994/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cpanel_dfs.c.o [995/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cpanel_bmod.c.o [996/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_colamd.c.o [997/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cmyblas2.c.o [998/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cmemory.c.o [999/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cldperm.c.o [1000/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_claqgs.c.o [1001/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_clangs.c.o [1002/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_clacon2.c.o [1003/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cgstrs.c.o [1004/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cgstrf.c.o [1005/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cgssvx.c.o [1006/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cgssv.c.o [1007/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cgsrfs.c.o [1008/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cgsitrf.c.o [1009/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cgsisx.c.o [1010/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cgsequ.c.o [1011/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cgscon.c.o [1012/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_cdiagonal.c.o [1013/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ccopy_to_ucol.c.o [1014/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ccolumn_dfs.c.o [1015/1424] Compiling C object scipy/sparse/linalg/_dsolve/libsuperlu_lib.a.p/SuperLU_SRC_ccolumn_bmod.c.o [1016/1424] Generating from 'zpropack.pyf' [1017/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_zmgs.risc.F.o [1018/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_zsafescal.F.o [1019/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_zritzvec.F.o [1020/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_zreorth.F.o [1021/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_zlansvd_irl.F.o [1022/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_zlansvd.F.o [1023/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_zlanbpro.F.o [1024/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_zgetu0.F.o [1025/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_zgemm_ovwr.F.o [1026/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_zblasext.F.o [1027/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_zzdotc.f.o [1028/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_printstat.F.o [1029/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_dgemm_ovwr.F.o [1030/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_dbsvd.F.o [1031/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__zpropack.a.p/PROPACK_complex16_dblasext.F.o [1032/1424] Generating from 'cpropack.pyf' [1033/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_cmgs.risc.F.o [1034/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_sgemm_ovwr.F.o [1035/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_sbsvd.F.o [1036/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_sblasext.F.o [1037/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_printstat.F.o [1038/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_csafescal.F.o [1039/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_critzvec.F.o [1040/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_creorth.F.o [1041/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_clansvd_irl.F.o [1042/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_clansvd.F.o [1043/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_clanbpro.F.o [1044/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_cgetu0.F.o [1045/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_cgemm_ovwr.F.o [1046/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_cblasext.F.o [1047/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__cpropack.a.p/PROPACK_complex8_ccdotc.F.o [1048/1424] Generating from 'dpropack.pyf' [1049/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__dpropack.a.p/PROPACK_double_dmgs.risc.F.o [1050/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__dpropack.a.p/PROPACK_double_printstat.F.o [1051/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__dpropack.a.p/PROPACK_double_dsafescal.F.o [1052/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__dpropack.a.p/PROPACK_double_dritzvec.F.o [1053/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__dpropack.a.p/PROPACK_double_dreorth.F.o [1054/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__dpropack.a.p/PROPACK_double_dlansvd_irl.F.o [1055/1424] Linking target scipy/optimize/_minpack.cpython-312-powerpc64le-linux-musl.so [1056/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__dpropack.a.p/PROPACK_double_dlansvd.F.o [1057/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__dpropack.a.p/PROPACK_double_dlanbpro.F.o [1058/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__dpropack.a.p/PROPACK_double_dgetu0.F.o [1059/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__dpropack.a.p/PROPACK_double_dgemm_ovwr.F.o [1060/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__dpropack.a.p/PROPACK_double_dbsvd.F.o [1061/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__dpropack.a.p/PROPACK_double_dblasext.F.o [1062/1424] Generating from 'spropack.pyf' [1063/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__spropack.a.p/PROPACK_single_smgs.risc.F.o [1064/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__spropack.a.p/PROPACK_single_ssafescal.F.o [1065/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__spropack.a.p/PROPACK_single_sritzvec.F.o [1066/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__spropack.a.p/PROPACK_single_sreorth.F.o [1067/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__spropack.a.p/PROPACK_single_slansvd_irl.F.o [1068/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__spropack.a.p/PROPACK_single_slansvd.F.o [1069/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__spropack.a.p/PROPACK_single_slanbpro.F.o [1070/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__spropack.a.p/PROPACK_single_sgetu0.F.o [1071/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__spropack.a.p/PROPACK_single_sgemm_ovwr.F.o [1072/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__spropack.a.p/PROPACK_single_sbsvd.F.o [1073/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__spropack.a.p/PROPACK_single_sblasext.F.o [1074/1424] Compiling Fortran object scipy/sparse/linalg/_propack/liblib__spropack.a.p/PROPACK_single_printstat.F.o [1075/1424] Copying file scipy/sparse/csgraph/parameters.pxi [1076/1424] Generating scipy/sparse/sparsetools/_sparsetools_headers with a custom command [1077/1424] Generating scipy/sparse/_csparsetools_pyx with a custom command [1078/1424] Generating 'scipy/linalg/_linalg_pythran.cpython-312-powerpc64le-linux-musl.so.p/_linalg_pythran.cpp' [1079/1424] Compiling C object scipy/linalg/_matfuncs_schur_sqrtm.cpython-312-powerpc64le-linux-musl.so.p/_matfuncs_sqrtm.c.o [1080/1424] Compiling C object scipy/linalg/_matfuncs_expm.cpython-312-powerpc64le-linux-musl.so.p/_matfuncs_expm.c.o [1081/1424] Generating scipy/linalg/_decomp_update with a custom command [1082/1424] Generating scipy/linalg/flapack_module with a custom command [1083/1424] Generating scipy/linalg/fblas_module with a custom command [1084/1424] Generating scipy/linalg/cython_linalg with a custom command [1085/1424] Copying file scipy/linalg/__init__.pxd [1086/1424] Copying file scipy/linalg/_cythonized_array_utils.pxd [1087/1424] Copying file scipy/linalg/__init__.py [1088/1424] Generating scipy/special/_data_local with a custom command [1089/1424] Generating scipy/special/_data_gsl with a custom command [1090/1424] Generating scipy/special/_data_boost with a custom command [1091/1424] Compiling C++ object scipy/sparse/sparsetools/_sparsetools.cpython-312-powerpc64le-linux-musl.so.p/sparsetools.cxx.o [1092/1424] Compiling C++ object scipy/sparse/sparsetools/_sparsetools.cpython-312-powerpc64le-linux-musl.so.p/other.cxx.o [1093/1424] Compiling C++ object scipy/sparse/sparsetools/_sparsetools.cpython-312-powerpc64le-linux-musl.so.p/csr.cxx.o [1094/1424] Compiling C++ object scipy/sparse/sparsetools/_sparsetools.cpython-312-powerpc64le-linux-musl.so.p/csc.cxx.o [1095/1424] Compiling C++ object scipy/sparse/sparsetools/_sparsetools.cpython-312-powerpc64le-linux-musl.so.p/bsr.cxx.o [1096/1424] Compiling C++ object scipy/special/_test_internal.cpython-312-powerpc64le-linux-musl.so.p/dd_real_wrappers.cpp.o [1097/1424] Compiling C++ object scipy/special/cython_special.cpython-312-powerpc64le-linux-musl.so.p/dd_real_wrappers.cpp.o [1098/1424] Compiling C++ object scipy/special/cython_special.cpython-312-powerpc64le-linux-musl.so.p/sf_error.cc.o [1099/1424] Compiling C++ object scipy/special/cython_special.cpython-312-powerpc64le-linux-musl.so.p/xsf_wrappers.cpp.o [1100/1424] Compiling C object scipy/special/cython_special.cpython-312-powerpc64le-linux-musl.so.p/_cosine.c.o [1101/1424] Compiling C++ object scipy/special/_ellip_harm_2.cpython-312-powerpc64le-linux-musl.so.p/sf_error.cc.o [1102/1424] Compiling C++ object scipy/special/_ufuncs_cxx.cpython-312-powerpc64le-linux-musl.so.p/wright.cc.o [1103/1424] Compiling C++ object scipy/special/_ufuncs_cxx.cpython-312-powerpc64le-linux-musl.so.p/sf_error.cc.o [1104/1424] Compiling C++ object scipy/special/_ufuncs_cxx.cpython-312-powerpc64le-linux-musl.so.p/ellint_carlson_wrap.cxx.o [1105/1424] Compiling C++ object scipy/special/_ufuncs_cxx.cpython-312-powerpc64le-linux-musl.so.p/_wright.cxx.o [1106/1424] Compiling C++ object scipy/special/_ufuncs.cpython-312-powerpc64le-linux-musl.so.p/dd_real_wrappers.cpp.o [1107/1424] Compiling C++ object scipy/special/_ufuncs.cpython-312-powerpc64le-linux-musl.so.p/sf_error.cc.o [1108/1424] Compiling C++ object scipy/special/_ufuncs.cpython-312-powerpc64le-linux-musl.so.p/xsf_wrappers.cpp.o [1109/1424] Compiling C object scipy/special/_ufuncs.cpython-312-powerpc64le-linux-musl.so.p/_cosine.c.o [1110/1424] Copying file scipy/special/__init__.pxd [1111/1424] Copying file scipy/special/cython_special.pxd [1112/1424] Generating scipy/special/cython_special with a custom command [1113/1424] Compiling C++ object scipy/special/_gufuncs.cpython-312-powerpc64le-linux-musl.so.p/sf_error.cc.o [1114/1424] Linking static target scipy/sparse/linalg/_propack/liblib__dpropack.a [1115/1424] Compiling C++ object scipy/special/_gufuncs.cpython-312-powerpc64le-linux-musl.so.p/_gufuncs_docs.cpp.o [1116/1424] Compiling C++ object scipy/special/_gufuncs.cpython-312-powerpc64le-linux-musl.so.p/_gufuncs.cpp.o [1117/1424] Compiling C++ object scipy/special/_special_ufuncs.cpython-312-powerpc64le-linux-musl.so.p/sf_error.cc.o [1118/1424] Compiling C++ object scipy/special/_special_ufuncs.cpython-312-powerpc64le-linux-musl.so.p/_special_ufuncs_docs.cpp.o [1119/1424] Compiling C++ object scipy/special/_special_ufuncs.cpython-312-powerpc64le-linux-musl.so.p/_special_ufuncs.cpp.o [1120/1424] Compiling C object scipy/special/libcdflib.a.p/cdflib.c.o [1121/1424] Linking static target scipy/sparse/linalg/_dsolve/libsuperlu_lib.a [1122/1424] Linking static target scipy/sparse/linalg/_propack/liblib__spropack.a [1123/1424] Compiling C object scipy/sparse/linalg/_propack/_zpropack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__zpropackmodule.c.o [1124/1424] Copying file scipy/special/_ufuncs_extra_code_common.pxi [1125/1424] Copying file scipy/special/_ufuncs_extra_code.pxi [1126/1424] Copying file scipy/special/sf_error.pxd [1127/1424] Copying file scipy/special/orthogonal_eval.pxd [1128/1424] Copying file scipy/special/_spence.pxd [1129/1424] Copying file scipy/special/_sici.pxd [1130/1424] Compiling C object scipy/sparse/linalg/_propack/_cpropack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__cpropackmodule.c.o [1131/1424] Compiling C object scipy/sparse/linalg/_propack/_dpropack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__dpropackmodule.c.o [1132/1424] Copying file scipy/special/_ndtri_exp.pxd [1133/1424] Copying file scipy/special/_legacy.pxd [1134/1424] Copying file scipy/special/_hypergeometric.pxd [1135/1424] Copying file scipy/special/_hyp0f1.pxd [1136/1424] Compiling C object scipy/sparse/linalg/_propack/_spropack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__spropackmodule.c.o [1137/1424] Copying file scipy/special/_factorial.pxd [1138/1424] Copying file scipy/special/_ellipk.pxd [1139/1424] Copying file scipy/special/_ellip_harm_2.pxd [1140/1424] Copying file scipy/special/_ellip_harm.pxd [1141/1424] Copying file scipy/special/_convex_analysis.pxd In file included from /usr/include/c++/15.2.0/bits/stl_algobase.h:64, from /usr/include/c++/15.2.0/deque:64, from /usr/include/c++/15.2.0/queue:68, from ../subprojects/highs/src/mip/HighsSearch.h:15, from ../subprojects/highs/src/mip/HighsSearch.cpp:11: /usr/include/c++/15.2.0/bits/stl_pair.h: In instantiation of 'constexpr std::pair::type>::__type, typename std::__strip_reference_wrapper::type>::__type> std::make_pair(_T1&&, _T2&&) [with _T1 = double&; _T2 = double; typename __strip_reference_wrapper::type>::__type = double; typename decay<_Tp>::type = double; typename __strip_reference_wrapper::type>::__type = double; typename decay<_Tp2>::type = double]': ../subprojects/highs/src/mip/HighsSearch.cpp:535:24: required from here 535 | std::make_pair(downscore[candidate], | ~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ 536 |  pseudocost.getAvgInferencesDown(col)) >= | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /usr/include/c++/15.2.0/bits/stl_pair.h:1164:5: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 1164 | make_pair(_T1&& __x, _T2&& __y) | ^~~~~~~~~ [1142/1424] Copying file scipy/special/_complexstuff.pxd [1143/1424] Linking static target scipy/sparse/linalg/_propack/liblib__zpropack.a [1144/1424] Copying file scipy/special/_cdflib_wrappers.pxd [1145/1424] Copying file scipy/special/_boxcox.pxd [1146/1424] Copying file scipy/special/_agm.pxd [1147/1424] Copying file scipy/special/__init__.py [1148/1424] Compiling C++ object scipy/_lib/_uarray/_uarray.cpython-312-powerpc64le-linux-musl.so.p/vectorcall.cxx.o [1149/1424] Compiling C++ object scipy/_lib/_uarray/_uarray.cpython-312-powerpc64le-linux-musl.so.p/_uarray_dispatch.cxx.o [1150/1424] Compiling C object scipy/_lib/_fpumode.cpython-312-powerpc64le-linux-musl.so.p/_fpumode.c.o [1151/1424] Compiling C object scipy/_lib/_test_ccallback.cpython-312-powerpc64le-linux-musl.so.p/src__test_ccallback.c.o [1152/1424] Copying file scipy/_lib/messagestream.pxd [1153/1424] Copying file scipy/_lib/ccallback.pxd [1154/1424] Copying file scipy/_lib/_ccallback_c.pxd In file included from ../scipy/special/dd_real_wrappers.cpp:8: ../subprojects/xsf/include/xsf/cephes/dd_real.h: In function 'std::pair xsf::cephes::detail::divrem(const double_double&, const double_double&)': ../subprojects/xsf/include/xsf/cephes/dd_real.h:384:66: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 384 | divrem(const double_double &lhs, const double_double &rhs) { | ^ [1155/1424] Copying file scipy/_lib/__init__.py [1156/1424] Generating scipy/_cyutility.c with a custom command [1157/1424] Copying file scipy/__init__.py [1158/1424] Compiling C object scipy/libdummy_g77_abi_wrappers.a.p/_build_utils_src_wrap_dummy_g77_abi.c.o In file included from ../scipy/special/dd_real_wrappers.cpp:8: ../subprojects/xsf/include/xsf/cephes/dd_real.h: In function 'std::pair xsf::cephes::detail::divrem(const double_double&, const double_double&)': ../subprojects/xsf/include/xsf/cephes/dd_real.h:384:66: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 384 | divrem(const double_double &lhs, const double_double &rhs) { | ^ [1159/1424] Compiling C object scipy/lib_fortranobject.a.p/57333795eb08438eb40efb78000e50f395e8deb5_site-packages_numpy_f2py_src_fortranobject.c.o [1160/1424] Linking target scipy/_lib/_fpumode.cpython-312-powerpc64le-linux-musl.so [1161/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_userprintf_rbox_r.c.o [1162/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_userprintf_r.c.o [1163/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_usermem_r.c.o [1164/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_user_r.c.o [1165/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_stat_r.c.o [1166/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_rboxlib_r.c.o [1167/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_random_r.c.o [1168/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_qset_r.c.o [1169/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_poly_r.c.o [1170/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_poly2_r.c.o In file included from ../scipy/special/dd_real_wrappers.cpp:8: ../subprojects/xsf/include/xsf/cephes/dd_real.h: In function 'std::pair xsf::cephes::detail::divrem(const double_double&, const double_double&)': ../subprojects/xsf/include/xsf/cephes/dd_real.h:384:66: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 384 | divrem(const double_double &lhs, const double_double &rhs) { | ^ [1171/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_merge_r.c.o [1172/1424] Generating 'scipy/interpolate/_rgi_cython.cpython-312-powerpc64le-linux-musl.so.p/_rgi_cython.c' [1173/1424] Generating 'scipy/interpolate/_ppoly.cpython-312-powerpc64le-linux-musl.so.p/_ppoly.c' [1174/1424] Linking static target scipy/libdummy_g77_abi_wrappers.a [1175/1424] Linking target scipy/odr/__odrpack.cpython-312-powerpc64le-linux-musl.so [1176/1424] Linking target scipy/integrate/_odepack.cpython-312-powerpc64le-linux-musl.so [1177/1424] Linking target scipy/optimize/_slsqplib.cpython-312-powerpc64le-linux-musl.so [1178/1424] Linking target scipy/optimize/_lbfgsb.cpython-312-powerpc64le-linux-musl.so [1179/1424] Linking target scipy/_lib/_test_ccallback.cpython-312-powerpc64le-linux-musl.so [1180/1424] Linking target scipy/sparse/linalg/_dsolve/_superlu.cpython-312-powerpc64le-linux-musl.so [1181/1424] Generating 'scipy/interpolate/_interpnd.cpython-312-powerpc64le-linux-musl.so.p/_interpnd.c' [1182/1424] Generating 'scipy/cluster/_vq.cpython-312-powerpc64le-linux-musl.so.p/_vq.c' [1183/1424] Generating 'scipy/cluster/_optimal_leaf_ordering.cpython-312-powerpc64le-linux-musl.so.p/_optimal_leaf_ordering.c' [1184/1424] Generating 'scipy/cluster/_hierarchy.cpython-312-powerpc64le-linux-musl.so.p/_hierarchy.c' [1185/1424] Generating 'scipy/spatial/_qhull.cpython-312-powerpc64le-linux-musl.so.p/_qhull.c' [1186/1424] Generating 'scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c' [1187/1424] Generating 'scipy/optimize/_trlib/_trlib.cpython-312-powerpc64le-linux-musl.so.p/_trlib.c' [1188/1424] Linking static target scipy/sparse/linalg/_propack/liblib__cpropack.a [1189/1424] Generating 'scipy/optimize/_lsq/givens_elimination.cpython-312-powerpc64le-linux-musl.so.p/givens_elimination.c' [1190/1424] Generating 'scipy/optimize/_bglu_dense.cpython-312-powerpc64le-linux-musl.so.p/_bglu_dense.c' [1191/1424] Generating 'scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/unuran_wrapper.c' [1192/1424] Compiling C++ object scipy/linalg/_linalg_pythran.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__linalg_pythran.cpp.o [1193/1424] Generating 'scipy/stats/_stats.cpython-312-powerpc64le-linux-musl.so.p/_stats.c' [1194/1424] Generating 'scipy/sparse/csgraph/_shortest_path.cpython-312-powerpc64le-linux-musl.so.p/_shortest_path.cpp' [1195/1424] Generating 'scipy/sparse/csgraph/_traversal.cpython-312-powerpc64le-linux-musl.so.p/_traversal.c' [1196/1424] Generating 'scipy/sparse/csgraph/_tools.cpython-312-powerpc64le-linux-musl.so.p/_tools.c' [1197/1424] Generating 'scipy/sparse/csgraph/_reordering.cpython-312-powerpc64le-linux-musl.so.p/_reordering.c' [1198/1424] Generating 'scipy/sparse/csgraph/_min_spanning_tree.cpython-312-powerpc64le-linux-musl.so.p/_min_spanning_tree.c' [1199/1424] Linking static target scipy/lib_fortranobject.a [1200/1424] Compiling Fortran object scipy/interpolate/_dfitpack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__dfitpack-f2pywrappers.f.o [1201/1424] Linking target scipy/optimize/_group_columns.cpython-312-powerpc64le-linux-musl.so [1202/1424] Compiling Fortran object scipy/integrate/_test_odeint_banded.cpython-312-powerpc64le-linux-musl.so.p/tests_banded5x5.f.o [1203/1424] Compiling Fortran object scipy/integrate/_test_odeint_banded.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__test_odeint_banded-f2pywrappers.f.o [1204/1424] Linking target scipy/interpolate/_dfitpack.cpython-312-powerpc64le-linux-musl.so [1205/1424] Compiling Fortran object scipy/integrate/_dop.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__dop-f2pywrappers.f.o [1206/1424] Linking target scipy/integrate/_dop.cpython-312-powerpc64le-linux-musl.so [1207/1424] Compiling Fortran object scipy/integrate/_lsoda.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__lsoda-f2pywrappers.f.o [1208/1424] Compiling Fortran object scipy/integrate/_vode.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__vode-f2pywrappers.f.o [1209/1424] Linking target scipy/integrate/_lsoda.cpython-312-powerpc64le-linux-musl.so [1210/1424] Linking target scipy/integrate/_vode.cpython-312-powerpc64le-linux-musl.so [1211/1424] Linking target scipy/integrate/_test_odeint_banded.cpython-312-powerpc64le-linux-musl.so [1212/1424] Compiling Fortran object scipy/io/_test_fortran.cpython-312-powerpc64le-linux-musl.so.p/_test_fortran.f.o [1213/1424] Compiling Fortran object scipy/io/_test_fortran.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__test_fortran-f2pywrappers.f.o [1214/1424] Compiling Fortran object scipy/sparse/linalg/_eigen/arpack/_arpack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_..__arpack-f2pywrappers.f.o [1215/1424] Compiling Fortran object scipy/sparse/linalg/_propack/_zpropack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__zpropack-f2pywrappers.f.o [1216/1424] Linking target scipy/sparse/linalg/_propack/_zpropack.cpython-312-powerpc64le-linux-musl.so [1217/1424] Compiling Fortran object scipy/sparse/linalg/_propack/_cpropack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__cpropack-f2pywrappers.f.o [1218/1424] Linking target scipy/io/_test_fortran.cpython-312-powerpc64le-linux-musl.so [1219/1424] Compiling Fortran object scipy/sparse/linalg/_propack/_dpropack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__dpropack-f2pywrappers.f.o [1220/1424] Linking target scipy/sparse/linalg/_propack/_cpropack.cpython-312-powerpc64le-linux-musl.so [1221/1424] Compiling Fortran object scipy/sparse/linalg/_propack/_spropack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__spropack-f2pywrappers.f.o [1222/1424] Linking target scipy/sparse/linalg/_propack/_dpropack.cpython-312-powerpc64le-linux-musl.so [1223/1424] Generating 'scipy/sparse/csgraph/_matching.cpython-312-powerpc64le-linux-musl.so.p/_matching.c' [1224/1424] Linking target scipy/sparse/linalg/_propack/_spropack.cpython-312-powerpc64le-linux-musl.so [1225/1424] Generating 'scipy/sparse/csgraph/_flow.cpython-312-powerpc64le-linux-musl.so.p/_flow.c' [1226/1424] Generating 'scipy/linalg/_cythonized_array_utils.cpython-312-powerpc64le-linux-musl.so.p/_cythonized_array_utils.c' [1227/1424] Generating 'scipy/linalg/_decomp_update.cpython-312-powerpc64le-linux-musl.so.p/_decomp_update.c' [1228/1424] Generating 'scipy/linalg/_decomp_lu_cython.cpython-312-powerpc64le-linux-musl.so.p/_decomp_lu_cython.c' [1229/1424] Linking target scipy/sparse/linalg/_eigen/arpack/_arpack.cpython-312-powerpc64le-linux-musl.so [1230/1424] Generating 'scipy/linalg/cython_lapack.cpython-312-powerpc64le-linux-musl.so.p/cython_lapack.c' [1231/1424] Compiling C object scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__zeros.c.o [1232/1424] Generating 'scipy/linalg/cython_blas.cpython-312-powerpc64le-linux-musl.so.p/cython_blas.c' [1233/1424] Compiling C++ object scipy/stats/_stats_pythran.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__stats_pythran.cpp.o [1234/1424] Compiling C object scipy/_cyutility.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_..__cyutility.c.o [1235/1424] Compiling C object scipy/interpolate/_rgi_cython.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__rgi_cython.c.o [1236/1424] Generating 'scipy/linalg/_matfuncs_sqrtm_triu.cpython-312-powerpc64le-linux-musl.so.p/_matfuncs_sqrtm_triu.c' [1237/1424] Compiling C object scipy/cluster/_optimal_leaf_ordering.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__optimal_leaf_ordering.c.o [1238/1424] Compiling C object scipy/optimize/_trlib/_trlib.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__trlib.c.o [1239/1424] Generating 'scipy/linalg/_solve_toeplitz.cpython-312-powerpc64le-linux-musl.so.p/_solve_toeplitz.c' [1240/1424] Compiling C object scipy/cluster/_vq.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__vq.c.o [1241/1424] Compiling C object scipy/interpolate/_interpnd.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__interpnd.c.o [1242/1424] Generating 'scipy/linalg/_decomp_interpolative.cpython-312-powerpc64le-linux-musl.so.p/_decomp_interpolative.c' [1243/1424] Linking target scipy/optimize/_pava_pybind.cpython-312-powerpc64le-linux-musl.so [1244/1424] Compiling C object scipy/optimize/_bglu_dense.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__bglu_dense.c.o [1245/1424] Compiling C object scipy/sparse/csgraph/_tools.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__tools.c.o [1246/1424] Generating 'scipy/special/cython_special.cpython-312-powerpc64le-linux-musl.so.p/cython_special.c' [1247/1424] Compiling C object scipy/sparse/csgraph/_min_spanning_tree.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__min_spanning_tree.c.o [1248/1424] Compiling C object scipy/sparse/csgraph/_reordering.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__reordering.c.o [1249/1424] Generating 'scipy/special/_ellip_harm_2.cpython-312-powerpc64le-linux-musl.so.p/_ellip_harm_2.c' [1250/1424] Compiling C object scipy/cluster/_hierarchy.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__hierarchy.c.o [1251/1424] Generating 'scipy/special/_ufuncs_cxx.cpython-312-powerpc64le-linux-musl.so.p/_ufuncs_cxx.cpp' [1252/1424] Compiling C object scipy/sparse/csgraph/_flow.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__flow.c.o [1253/1424] Compiling C object scipy/sparse/csgraph/_matching.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__matching.c.o [1254/1424] Generating 'scipy/special/_ufuncs.cpython-312-powerpc64le-linux-musl.so.p/_ufuncs.c' [1255/1424] Linking target scipy/linalg/_matfuncs_schur_sqrtm.cpython-312-powerpc64le-linux-musl.so [1256/1424] Generating 'scipy/_lib/messagestream.cpython-312-powerpc64le-linux-musl.so.p/messagestream.c' [1257/1424] Compiling C object scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_unuran_wrapper.c.o [1258/1424] Compiling C++ object scipy/sparse/csgraph/_shortest_path.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__shortest_path.cpp.o [1259/1424] Compiling C object scipy/sparse/csgraph/_traversal.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__traversal.c.o [1260/1424] Compiling C object scipy/linalg/_matfuncs_sqrtm_triu.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__matfuncs_sqrtm_triu.c.o [1261/1424] Compiling C object scipy/linalg/_solve_toeplitz.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__solve_toeplitz.c.o [1262/1424] Linking target scipy/linalg/_matfuncs_expm.cpython-312-powerpc64le-linux-musl.so [1263/1424] Generating 'scipy/_lib/_ccallback_c.cpython-312-powerpc64le-linux-musl.so.p/_ccallback_c.c' scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c: In function '__pyx_f_5scipy_8optimize_15cython_optimize_6_zeros_bisect': scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c:3402:37: warning: '__pyx_v_solver_stats.iterations' may be used uninitialized [-Wmaybe-uninitialized] 3402 | __pyx_v_full_output->iterations = __pyx_t_2; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c:3340:20: note: '__pyx_v_solver_stats.iterations' was declared here 3340 | scipy_zeros_info __pyx_v_solver_stats; | ^~~~~~~~~~~~~~~~~~~~ scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c: In function '__pyx_f_5scipy_8optimize_15cython_optimize_6_zeros_brenth': scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c:3650:37: warning: '__pyx_v_solver_stats.iterations' may be used uninitialized [-Wmaybe-uninitialized] 3650 | __pyx_v_full_output->iterations = __pyx_t_2; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c:3588:20: note: '__pyx_v_solver_stats.iterations' was declared here 3588 | scipy_zeros_info __pyx_v_solver_stats; | ^~~~~~~~~~~~~~~~~~~~ scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c: In function '__pyx_f_5scipy_8optimize_15cython_optimize_6_zeros_brentq': scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c:3774:37: warning: '__pyx_v_solver_stats.iterations' may be used uninitialized [-Wmaybe-uninitialized] 3774 | __pyx_v_full_output->iterations = __pyx_t_2; | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c:3712:20: note: '__pyx_v_solver_stats.iterations' was declared here 3712 | scipy_zeros_info __pyx_v_solver_stats; | ^~~~~~~~~~~~~~~~~~~~ In function '__Pyx_PyLong_From_int', inlined from '__pyx_convert__to_py___pyx_t_5scipy_8optimize_15cython_optimize_6_zeros_zeros_full_output' at scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c:9735:12, inlined from '__pyx_pf_5scipy_8optimize_15cython_optimize_6_zeros_2full_output_example' at scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c:4833:15, inlined from '__pyx_pw_5scipy_8optimize_15cython_optimize_6_zeros_3full_output_example' at scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c:4797:13: scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c:10059:20: warning: '__pyx_v_solver_stats.iterations' may be used uninitialized [-Wmaybe-uninitialized] 10059 | return PyLong_FromLong((long) value); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c: In function '__pyx_pw_5scipy_8optimize_15cython_optimize_6_zeros_3full_output_example': scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so.p/_zeros.c:3712:20: note: '__pyx_v_solver_stats.iterations' was declared here 3712 | scipy_zeros_info __pyx_v_solver_stats; | ^~~~~~~~~~~~~~~~~~~~ [1264/1424] Linking target scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so [1265/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_mem_r.c.o In file included from /usr/include/python3.12/Python.h:44, from ../scipy/_lib/_uarray/_uarray_dispatch.cxx:1: In function 'PyTypeObject* Py_TYPE(PyObject*)', inlined from 'static void {anonymous}::BackendState::dealloc({anonymous}::BackendState*)' at ../scipy/_lib/_uarray/_uarray_dispatch.cxx:316:5: /usr/include/python3.12/object.h:220:16: warning: '*(PyObject*)self._object::ob_type' is used uninitialized [-Wuninitialized] 220 | return ob->ob_type; | ^~~~~~~ In function 'PyTypeObject* Py_TYPE(PyObject*)', inlined from 'static void {anonymous}::SkipBackendContext::dealloc({anonymous}::SkipBackendContext*)' at ../scipy/_lib/_uarray/_uarray_dispatch.cxx:866:5: /usr/include/python3.12/object.h:220:16: warning: '*(PyObject*)self._object::ob_type' is used uninitialized [-Wuninitialized] 220 | return ob->ob_type; | ^~~~~~~ In function 'PyTypeObject* Py_TYPE(PyObject*)', inlined from 'static void {anonymous}::SetBackendContext::dealloc({anonymous}::SetBackendContext*)' at ../scipy/_lib/_uarray/_uarray_dispatch.cxx:768:5: /usr/include/python3.12/object.h:220:16: warning: '*(PyObject*)self._object::ob_type' is used uninitialized [-Wuninitialized] 220 | return ob->ob_type; | ^~~~~~~ In function 'PyTypeObject* Py_TYPE(PyObject*)', inlined from 'static void {anonymous}::Function::dealloc({anonymous}::Function*)' at ../scipy/_lib/_uarray/_uarray_dispatch.cxx:1091:5: /usr/include/python3.12/object.h:220:16: warning: '*(PyObject*)self._object::ob_type' is used uninitialized [-Wuninitialized] 220 | return ob->ob_type; | ^~~~~~~ [1266/1424] Linking target scipy/_lib/_uarray/_uarray.cpython-312-powerpc64le-linux-musl.so [1267/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_libqhull_r.c.o [1268/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_io_r.c.o [1269/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_global_r.c.o [1270/1424] Compiling C object scipy/optimize/_lsq/givens_elimination.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_givens_elimination.c.o [1271/1424] Compiling C object scipy/linalg/cython_blas.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_cython_blas.c.o [1272/1424] Compiling C object scipy/stats/_stats.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__stats.c.o [1273/1424] Compiling C object scipy/special/_ellip_harm_2.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__ellip_harm_2.c.o [1274/1424] Compiling C++ object scipy/special/_ufuncs_cxx.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__ufuncs_cxx.cpp.o [1275/1424] Compiling C object scipy/_lib/messagestream.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_messagestream.c.o [1276/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_geom_r.c.o [1277/1424] Linking static target scipy/special/libcdflib.a [1278/1424] Compiling C object subprojects/qhull_r/liblibqhull_r.a.p/libqhull_r_geom2_r.c.o [1279/1424] Linking target scipy/sparse/csgraph/_min_spanning_tree.cpython-312-powerpc64le-linux-musl.so [1280/1424] Linking static target scipy/optimize/_highspy/libhighs.a [1281/1424] Compiling C object scipy/_lib/_ccallback_c.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__ccallback_c.c.o [1282/1424] Linking target scipy/optimize/_highspy/_highs_options.cpython-312-powerpc64le-linux-musl.so [1283/1424] Compiling C object scipy/interpolate/_ppoly.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__ppoly.c.o [1284/1424] Compiling C object scipy/linalg/_decomp_lu_cython.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__decomp_lu_cython.c.o [1285/1424] Linking target scipy/optimize/_lsq/givens_elimination.cpython-312-powerpc64le-linux-musl.so [1286/1424] Compiling C object scipy/spatial/_qhull.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__qhull.c.o [1287/1424] Linking target scipy/interpolate/_rgi_cython.cpython-312-powerpc64le-linux-musl.so [1288/1424] Linking target scipy/cluster/_vq.cpython-312-powerpc64le-linux-musl.so [1289/1424] Compiling C object scipy/linalg/_fblas.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_..__fblasmodule.c.o [1290/1424] Linking target scipy/_lib/messagestream.cpython-312-powerpc64le-linux-musl.so [1291/1424] Linking static target subprojects/qhull_r/liblibqhull_r.a [1292/1424] Linking target scipy/optimize/_trlib/_trlib.cpython-312-powerpc64le-linux-musl.so In file included from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/xsimd.hpp:56, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/numpy/exp.hpp:8, from scipy/interpolate/_rbfinterp_pythran.cpython-312-powerpc64le-linux-musl.so.p/_rbfinterp_pythran.cpp:27: ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/arch/xsimd_scalar.hpp: In function 'std::pair xsimd::sincos(float)': ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/arch/xsimd_scalar.hpp:1180:60: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 1180 | XSIMD_INLINE std::pair sincos(float val) noexcept | ^~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/arch/xsimd_scalar.hpp: In function 'std::pair xsimd::sincos(double)': ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/arch/xsimd_scalar.hpp:1187:63: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 1187 | XSIMD_INLINE std::pair sincos(double val) noexcept | ^~~~~~~~ In file included from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/types/numpy_op_helper.hpp:4, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/numpy/bool_.hpp:4, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/types/ndarray.hpp:19, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/ndarray.hpp:4, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/tuple.hpp:8, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/builtins/bool_.hpp:6, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/NoneType.hpp:6, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/slice.hpp:5, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/core.hpp:47, from scipy/interpolate/_rbfinterp_pythran.cpython-312-powerpc64le-linux-musl.so.p/_rbfinterp_pythran.cpp:1: ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/types/numpy_broadcast.hpp: In instantiation of '{anonymous}::pythonic::types::broadcast::const_iterator {anonymous}::pythonic::types::broadcast::begin() const [with T = double; B = double; const_iterator = {anonymous}::pythonic::types::const_broadcast_iterator]': ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp:51:19: required from '{anonymous}::pythonic::types::numpy_expr::const_iterator {anonymous}::pythonic::types::numpy_expr::_begin({anonymous}::pythonic::utils::index_sequence) const [with long unsigned int ...I = {0, 1}; Op = {anonymous}::pythonic::operator_::functor::mul; Args = {{anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::broadcast}; const_iterator = {anonymous}::pythonic::types::numpy_expr_iterator<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::pshape, {anonymous}::pythonic::types::const_nditerator<{anonymous}::pythonic::types::ndarray > >, {anonymous}::pythonic::types::const_broadcast_iterator >; {anonymous}::pythonic::utils::index_sequence = {anonymous}::pythonic::utils::integer_sequence]' 50 | const_cast::type const &>(std::get(args)) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 51 |  .begin()...}; | ~~~~~~^~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp:58:18: required from '{anonymous}::pythonic::types::numpy_expr::const_iterator {anonymous}::pythonic::types::numpy_expr::begin() const [with Op = {anonymous}::pythonic::operator_::functor::mul; Args = {{anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::broadcast}; const_iterator = {anonymous}::pythonic::types::numpy_expr_iterator<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::pshape, {anonymous}::pythonic::types::const_nditerator<{anonymous}::pythonic::types::ndarray > >, {anonymous}::pythonic::types::const_broadcast_iterator >]' 58 | return _begin(utils::make_index_sequence{}); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/utils/broadcast_copy.hpp:132:28: required from 'void {anonymous}::pythonic::utils::_broadcast_copy::operator()(E&&, const F&, Indices ...) [with E = {anonymous}::pythonic::types::ndarray >&; F = {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::broadcast >; Indices = {}; long unsigned int N = 2; vectorizer = {anonymous}::pythonic::types::novectorize]' 132 | std::copy(other.begin(), other.end(), self.begin()); | ~~~~~~~~~~~^~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/utils/broadcast_copy.hpp:231:52: required from 'void {anonymous}::pythonic::utils::broadcast_copy_dispatcher::operator()(E&, const F&) [with E = {anonymous}::pythonic::types::ndarray >&; F = {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::broadcast >; long unsigned int N = 2; long unsigned int D = 0]' 231 | _broadcast_copy{}(self, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/utils/broadcast_copy.hpp:258:65: required from 'E& {anonymous}::pythonic::utils::broadcast_copy_helper(E&, const F&, std::integral_constant, std::integral_constant) [with E = {anonymous}::pythonic::types::ndarray >&; F = {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::broadcast >; long unsigned int N = 2; int D = 0; bool vector_form = true]' 258 | broadcast_copy_dispatcher{}(self, other); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/utils/broadcast_copy.hpp:300:58: required from 'E& {anonymous}::pythonic::utils::broadcast_copy(E&, const F&) [with E = {anonymous}::pythonic::types::ndarray >&; F = {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::broadcast >; long unsigned int N = 2; int D = 0; bool vector_form = true]' 300 | return broadcast_copy_helper( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 301 |  self, other, std::integral_constant= 0)>(), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 302 |  std::integral_constant < bool, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 303 |  std::decay::type::is_flat | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 304 |  &&is_flat::type>::value > {}); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/ndarray.hpp:473:77: required from 'void {anonymous}::pythonic::types::ndarray::initialize_from_expr(const E&) [with E = {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::broadcast >; T = double; pS = {anonymous}::pythonic::types::pshape]' 471 | utils::broadcast_copy::value>( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 474 |  *this, expr); | ~~~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/ndarray.hpp:483:25: required from '{anonymous}::pythonic::types::ndarray::ndarray(const {anonymous}::pythonic::types::numpy_expr&) [with Op = {anonymous}::pythonic::operator_::functor::mul; Args = {{anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::broadcast}; T = double; pS = {anonymous}::pythonic::types::pshape]' 483 | initialize_from_expr(expr); | ~~~~~~~~~~~~~~~~~~~~^~~~~~ scipy/interpolate/_rbfinterp_pythran.cpython-312-powerpc64le-linux-musl.so.p/_rbfinterp_pythran.cpp:1042:131: required from 'typename {anonymous}::__pythran__rbfinterp_pythran::_build_evaluation_coefficients::type::result_type {anonymous}::__pythran__rbfinterp_pythran::_build_evaluation_coefficients::operator()(argument_type0, argument_type1, argument_type2, argument_type3, argument_type4, argument_type5, argument_type6) const [with argument_type0 = {anonymous}::pythonic::types::ndarray >; argument_type1 = {anonymous}::pythonic::types::ndarray >; argument_type2 = {anonymous}::pythonic::types::str; argument_type3 = double; argument_type4 = {anonymous}::pythonic::types::ndarray >; argument_type5 = {anonymous}::pythonic::types::ndarray >; argument_type6 = {anonymous}::pythonic::types::ndarray >; typename type::result_type = {anonymous}::pythonic::types::ndarray >]' 1042 | typename pythonic::assignable_noescape::type yeps = pythonic::operator_::mul(y, epsilon); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~ scipy/interpolate/_rbfinterp_pythran.cpython-312-powerpc64le-linux-musl.so.p/_rbfinterp_pythran.cpp:1191:106: required from here 1191 | auto res = __pythran__rbfinterp_pythran::_build_evaluation_coefficients()(x, y, kernel, epsilon, powers, shift, scale); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/types/numpy_broadcast.hpp:328:20: note: parameter passing for argument of type '{anonymous}::pythonic::types::broadcast::const_iterator' {aka '{anonymous}::pythonic::types::const_broadcast_iterator'} when C++17 is enabled changed to match C++14 in GCC 10.1 328 | const_iterator begin() const | ^~~~~ [1293/1424] Linking target scipy/interpolate/_rbfinterp_pythran.cpython-312-powerpc64le-linux-musl.so [1294/1424] Compiling C object scipy/linalg/_cythonized_array_utils.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__cythonized_array_utils.c.o [1295/1424] Linking target scipy/linalg/_matfuncs_sqrtm_triu.cpython-312-powerpc64le-linux-musl.so [1296/1424] Linking target scipy/linalg/cython_blas.cpython-312-powerpc64le-linux-musl.so [1297/1424] Linking target scipy/_lib/_ccallback_c.cpython-312-powerpc64le-linux-musl.so [1298/1424] Linking target scipy/_cyutility.cpython-312-powerpc64le-linux-musl.so [1299/1424] Generating 'scipy/ndimage/_cytest.cpython-312-powerpc64le-linux-musl.so.p/_cytest.c' [1300/1424] Generating 'scipy/ndimage/_ni_label.cpython-312-powerpc64le-linux-musl.so.p/_ni_label.c' [1301/1424] Generating 'scipy/signal/_upfirdn_apply.cpython-312-powerpc64le-linux-musl.so.p/_upfirdn_apply.c' [1302/1424] Generating 'scipy/signal/_sosfilt.cpython-312-powerpc64le-linux-musl.so.p/_sosfilt.c' [1303/1424] Generating 'scipy/signal/_peak_finding_utils.cpython-312-powerpc64le-linux-musl.so.p/_peak_finding_utils.c' [1304/1424] Generating 'scipy/fftpack/convolve.cpython-312-powerpc64le-linux-musl.so.p/convolve.c' [1305/1424] Generating 'scipy/spatial/transform/_rigid_transform.cpython-312-powerpc64le-linux-musl.so.p/_rigid_transform.c' [1306/1424] Generating 'scipy/spatial/transform/_rotation.cpython-312-powerpc64le-linux-musl.so.p/_rotation.c' [1307/1424] Generating 'scipy/spatial/_hausdorff.cpython-312-powerpc64le-linux-musl.so.p/_hausdorff.c' [1308/1424] Generating 'scipy/spatial/_voronoi.cpython-312-powerpc64le-linux-musl.so.p/_voronoi.c' [1309/1424] Generating 'scipy/spatial/_ckdtree.cpython-312-powerpc64le-linux-musl.so.p/_ckdtree.cpp' [1310/1424] Generating 'scipy/optimize/_moduleTNC.cpython-312-powerpc64le-linux-musl.so.p/_moduleTNC.c' [1311/1424] Generating 'scipy/io/matlab/_mio5_utils.cpython-312-powerpc64le-linux-musl.so.p/_mio5_utils.c' [1312/1424] Generating 'scipy/io/matlab/_mio_utils.cpython-312-powerpc64le-linux-musl.so.p/_mio_utils.c' [1313/1424] Generating 'scipy/io/matlab/_streams.cpython-312-powerpc64le-linux-musl.so.p/_streams.c' [1314/1424] Generating 'scipy/stats/_rcont/rcont.cpython-312-powerpc64le-linux-musl.so.p/rcont.c' [1315/1424] Generating 'scipy/stats/_levy_stable/levyst.cpython-312-powerpc64le-linux-musl.so.p/levyst.c' [1316/1424] Generating 'scipy/stats/_qmvnt_cy.cpython-312-powerpc64le-linux-musl.so.p/_qmvnt_cy.cpp' [1317/1424] Linking target scipy/sparse/csgraph/_tools.cpython-312-powerpc64le-linux-musl.so [1318/1424] Generating 'scipy/stats/_biasedurn.cpython-312-powerpc64le-linux-musl.so.p/_biasedurn.cpp' [1319/1424] Linking target scipy/sparse/csgraph/_flow.cpython-312-powerpc64le-linux-musl.so [1320/1424] Generating 'scipy/stats/_qmc_cy.cpython-312-powerpc64le-linux-musl.so.p/_qmc_cy.cpp' [1321/1424] Linking target scipy/special/_ellip_harm_2.cpython-312-powerpc64le-linux-musl.so [1322/1424] Generating 'scipy/stats/_sobol.cpython-312-powerpc64le-linux-musl.so.p/_sobol.c' [1323/1424] Linking target scipy/linalg/_solve_toeplitz.cpython-312-powerpc64le-linux-musl.so [1324/1424] Generating 'scipy/stats/_ansari_swilk_statistics.cpython-312-powerpc64le-linux-musl.so.p/_ansari_swilk_statistics.c' [1325/1424] Compiling C object scipy/linalg/_decomp_interpolative.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__decomp_interpolative.c.o [1326/1424] Linking target scipy/cluster/_optimal_leaf_ordering.cpython-312-powerpc64le-linux-musl.so [1327/1424] Generating 'scipy/sparse/_csparsetools.cpython-312-powerpc64le-linux-musl.so.p/_csparsetools.c' [1328/1424] Linking target scipy/sparse/csgraph/_reordering.cpython-312-powerpc64le-linux-musl.so [1329/1424] Generating 'scipy/special/_test_internal.cpython-312-powerpc64le-linux-musl.so.p/_test_internal.c' [1330/1424] Linking target scipy/optimize/_bglu_dense.cpython-312-powerpc64le-linux-musl.so [1331/1424] Generating 'scipy/special/_comb.cpython-312-powerpc64le-linux-musl.so.p/_comb.c' [1332/1424] Generating 'scipy/special/_specfun.cpython-312-powerpc64le-linux-musl.so.p/_specfun.cpp' [1333/1424] Compiling C object scipy/stats/_levy_stable/levyst.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_levyst.c.o In file included from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/xsimd.hpp:56, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/numpy/abs.hpp:9, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/builtins/abs.hpp:4, from scipy/linalg/_linalg_pythran.cpython-312-powerpc64le-linux-musl.so.p/_linalg_pythran.cpp:22: ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/arch/xsimd_scalar.hpp: In function 'std::pair xsimd::sincos(float)': ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/arch/xsimd_scalar.hpp:1180:60: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 1180 | XSIMD_INLINE std::pair sincos(float val) noexcept | ^~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/arch/xsimd_scalar.hpp: In function 'std::pair xsimd::sincos(double)': ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/arch/xsimd_scalar.hpp:1187:63: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 1187 | XSIMD_INLINE std::pair sincos(double val) noexcept | ^~~~~~~~ [1334/1424] Linking target scipy/linalg/_linalg_pythran.cpython-312-powerpc64le-linux-musl.so [1335/1424] Generating 'scipy/_lib/_test_deprecation_def.cpython-312-powerpc64le-linux-musl.so.p/_test_deprecation_def.c' [1336/1424] Linking target scipy/sparse/csgraph/_matching.cpython-312-powerpc64le-linux-musl.so [1337/1424] Generating 'scipy/_lib/_test_deprecation_call.cpython-312-powerpc64le-linux-musl.so.p/_test_deprecation_call.c' [1338/1424] Compiling C object scipy/io/matlab/_mio_utils.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__mio_utils.c.o [1339/1424] Compiling C object scipy/optimize/_moduleTNC.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__moduleTNC.c.o [1340/1424] Compiling C object scipy/spatial/_voronoi.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__voronoi.c.o [1341/1424] Compiling C object scipy/stats/_rcont/rcont.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_rcont.c.o [1342/1424] Compiling C object scipy/ndimage/_cytest.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__cytest.c.o [1343/1424] Compiling C object scipy/fftpack/convolve.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_convolve.c.o [1344/1424] Compiling C object scipy/spatial/_hausdorff.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__hausdorff.c.o [1345/1424] Linking target scipy/spatial/_distance_pybind.cpython-312-powerpc64le-linux-musl.so [1346/1424] Compiling C object scipy/special/_comb.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__comb.c.o [1347/1424] Compiling C object scipy/signal/_peak_finding_utils.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__peak_finding_utils.c.o [1348/1424] Compiling C object scipy/special/_test_internal.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__test_internal.c.o [1349/1424] Compiling C object scipy/io/matlab/_streams.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__streams.c.o [1350/1424] Compiling C++ object scipy/stats/_biasedurn.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__biasedurn.cpp.o [1351/1424] Compiling C object scipy/signal/_sosfilt.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__sosfilt.c.o [1352/1424] Linking target scipy/linalg/_decomp_lu_cython.cpython-312-powerpc64le-linux-musl.so [1353/1424] Compiling C++ object scipy/stats/_qmvnt_cy.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__qmvnt_cy.cpp.o [1354/1424] Compiling C object scipy/_lib/_test_deprecation_def.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__test_deprecation_def.c.o [1355/1424] Compiling C object scipy/spatial/transform/_rigid_transform.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__rigid_transform.c.o [1356/1424] Compiling C++ object scipy/stats/_qmc_cy.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__qmc_cy.cpp.o [1357/1424] Compiling C object scipy/linalg/_decomp_update.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__decomp_update.c.o [1358/1424] Linking target scipy/stats/_levy_stable/levyst.cpython-312-powerpc64le-linux-musl.so [1359/1424] Compiling C object scipy/stats/_ansari_swilk_statistics.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__ansari_swilk_statistics.c.o [1360/1424] Compiling C object scipy/_lib/_test_deprecation_call.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__test_deprecation_call.c.o [1361/1424] Compiling C++ object scipy/spatial/_ckdtree.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__ckdtree.cpp.o [1362/1424] Linking target scipy/_lib/_test_deprecation_def.cpython-312-powerpc64le-linux-musl.so [1363/1424] Compiling C object scipy/io/matlab/_mio5_utils.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__mio5_utils.c.o [1364/1424] Compiling C++ object scipy/special/_specfun.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__specfun.cpp.o [1365/1424] Compiling C object scipy/ndimage/_ni_label.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__ni_label.c.o [1366/1424] Compiling C object scipy/stats/_sobol.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__sobol.c.o [1367/1424] Linking target scipy/cluster/_hierarchy.cpython-312-powerpc64le-linux-musl.so [1368/1424] Compiling C object scipy/signal/_upfirdn_apply.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__upfirdn_apply.c.o [1369/1424] Linking target scipy/_lib/_test_deprecation_call.cpython-312-powerpc64le-linux-musl.so [1370/1424] Compiling C object scipy/spatial/transform/_rotation.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__rotation.c.o [1371/1424] Linking target scipy/io/matlab/_mio_utils.cpython-312-powerpc64le-linux-musl.so [1372/1424] Compiling C object scipy/special/_ufuncs.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__ufuncs.c.o [1373/1424] Linking target scipy/special/_comb.cpython-312-powerpc64le-linux-musl.so [1374/1424] Compiling C object scipy/sparse/_csparsetools.cpython-312-powerpc64le-linux-musl.so.p/meson-generated__csparsetools.c.o [1375/1424] Linking static target subprojects/highs/src/libhighs.a [1376/1424] Linking target scipy/spatial/_voronoi.cpython-312-powerpc64le-linux-musl.so [1377/1424] Linking target scipy/interpolate/_interpnd.cpython-312-powerpc64le-linux-musl.so [1378/1424] Linking target scipy/spatial/_hausdorff.cpython-312-powerpc64le-linux-musl.so [1379/1424] Linking target scipy/stats/_rcont/rcont.cpython-312-powerpc64le-linux-musl.so [1380/1424] Linking target scipy/special/_test_internal.cpython-312-powerpc64le-linux-musl.so [1381/1424] Linking target scipy/ndimage/_cytest.cpython-312-powerpc64le-linux-musl.so [1382/1424] Linking target scipy/fftpack/convolve.cpython-312-powerpc64le-linux-musl.so [1383/1424] Compiling C object scipy/special/cython_special.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_cython_special.c.o [1384/1424] Linking target scipy/optimize/_moduleTNC.cpython-312-powerpc64le-linux-musl.so [1385/1424] Linking target scipy/stats/_ansari_swilk_statistics.cpython-312-powerpc64le-linux-musl.so [1386/1424] Linking target scipy/signal/_peak_finding_utils.cpython-312-powerpc64le-linux-musl.so [1387/1424] Linking target scipy/io/matlab/_streams.cpython-312-powerpc64le-linux-musl.so [1388/1424] Linking target scipy/signal/_sosfilt.cpython-312-powerpc64le-linux-musl.so [1389/1424] Linking target scipy/linalg/_fblas.cpython-312-powerpc64le-linux-musl.so [1390/1424] Linking target scipy/stats/_biasedurn.cpython-312-powerpc64le-linux-musl.so [1391/1424] Linking target scipy/stats/_qmc_cy.cpython-312-powerpc64le-linux-musl.so [1392/1424] Linking target scipy/stats/_qmvnt_cy.cpython-312-powerpc64le-linux-musl.so In file included from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/xsimd.hpp:56, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/numpy/abs.hpp:9, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/builtins/abs.hpp:4, from scipy/stats/_stats_pythran.cpython-312-powerpc64le-linux-musl.so.p/_stats_pythran.cpp:25: ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/arch/xsimd_scalar.hpp: In function 'std::pair xsimd::sincos(float)': ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/arch/xsimd_scalar.hpp:1180:60: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 1180 | XSIMD_INLINE std::pair sincos(float val) noexcept | ^~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/arch/xsimd_scalar.hpp: In function 'std::pair xsimd::sincos(double)': ../../../../../../../../usr/lib/python3.12/site-packages/pythran/xsimd/arch/xsimd_scalar.hpp:1187:63: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 1187 | XSIMD_INLINE std::pair sincos(double val) noexcept | ^~~~~~~~ In file included from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/types/numpy_op_helper.hpp:4, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/numpy/bool_.hpp:4, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/types/ndarray.hpp:19, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/ndarray.hpp:4, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/tuple.hpp:8, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/builtins/bool_.hpp:6, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/NoneType.hpp:6, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/slice.hpp:5, from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/core.hpp:47, from scipy/stats/_stats_pythran.cpython-312-powerpc64le-linux-musl.so.p/_stats_pythran.cpp:1: ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/types/numpy_broadcast.hpp: In instantiation of '{anonymous}::pythonic::types::broadcast::const_iterator {anonymous}::pythonic::types::broadcast::begin() const [with T = double; B = long int; const_iterator = {anonymous}::pythonic::types::const_broadcast_iterator]': ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp:51:19: required from '{anonymous}::pythonic::types::numpy_expr::const_iterator {anonymous}::pythonic::types::numpy_expr::_begin({anonymous}::pythonic::utils::index_sequence) const [with long unsigned int ...I = {0, 1}; Op = {anonymous}::pythonic::operator_::functor::sub; Args = {{anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&}; const_iterator = {anonymous}::pythonic::types::numpy_expr_iterator<{anonymous}::pythonic::operator_::functor::sub, {anonymous}::pythonic::types::pshape, {anonymous}::pythonic::types::const_broadcast_iterator, const double*>; {anonymous}::pythonic::utils::index_sequence = {anonymous}::pythonic::utils::integer_sequence]' 50 | const_cast::type const &>(std::get(args)) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 51 |  .begin()...}; | ~~~~~~^~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp:58:18: required from '{anonymous}::pythonic::types::numpy_expr::const_iterator {anonymous}::pythonic::types::numpy_expr::begin() const [with Op = {anonymous}::pythonic::operator_::functor::sub; Args = {{anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&}; const_iterator = {anonymous}::pythonic::types::numpy_expr_iterator<{anonymous}::pythonic::operator_::functor::sub, {anonymous}::pythonic::types::pshape, {anonymous}::pythonic::types::const_broadcast_iterator, const double*>]' 58 | return _begin(utils::make_index_sequence{}); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/numpy/concatenate.hpp:90:60: required from 'void {anonymous}::pythonic::numpy::details::concatenate_helper::operator()(Out&&, const std::tuple<_Args2 ...>&, long int, {anonymous}::pythonic::utils::index_sequence) const [with Out = {anonymous}::pythonic::types::ndarray >&; Ts = {{anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::sub, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&>, {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::add, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&>}; long unsigned int ...I = {0, 1}; long unsigned int N = 1; {anonymous}::pythonic::utils::index_sequence = {anonymous}::pythonic::utils::integer_sequence]' 90 | (out_iter = std::copy(std::get(from).begin(), | ~~~~~~~~~~~~~~~~~~~~~~~^~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/numpy/concatenate.hpp:156:37: required from '{anonymous}::pythonic::types::ndarray::type::dtype ...>::type, {anonymous}::pythonic::types::array_base >::type::value, {anonymous}::pythonic::types::tuple_version> > {anonymous}::pythonic::numpy::concatenate(const std::tuple<_Elements ...>&, long int) [with Types = {{anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::sub, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&>, {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::add, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&>}; typename __combined::type::dtype ...>::type = double; typename std::tuple_element<0, std::tuple<_Elements ...> >::type = {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::sub, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&>]' 156 | details::concatenate_helper()( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 157 |  result, args, axis, utils::make_index_sequence{}); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/numpy/concatenate.hpp:26:3: required from 'decltype ({anonymous}::pythonic::numpy::concatenate((forward)(::pythonic::numpy::functor::concatenate::operator()::types)...)) {anonymous}::pythonic::numpy::functor::concatenate::operator()(Types&& ...) const [with Types = {std::tuple<{anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::sub, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&>, {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::add, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&> >}; decltype ({anonymous}::pythonic::numpy::concatenate((forward)(::pythonic::numpy::functor::concatenate::operator()::types)...)) = {anonymous}::pythonic::types::ndarray >]' 17 | return f(std::forward(types)...); \ scipy/stats/_stats_pythran.cpython-312-powerpc64le-linux-musl.so.p/_stats_pythran.cpp:1162:382: required from 'typename {anonymous}::__pythran__stats_pythran::_bvnu::type::result_type {anonymous}::__pythran__stats_pythran::_bvnu::operator()(argument_type0, argument_type1, argument_type2) const [with argument_type0 = double; argument_type1 = double; argument_type2 = double; typename type::result_type = double]' 1162 | typename pythonic::assignable_noescape::type sn = pythonic::numpy::functor::sin{}(pythonic::operator_::mul(asr, pythonic::numpy::functor::concatenate{}(pythonic::types::make_tuple(pythonic::operator_::sub(1L, x_), pythonic::operator_::add(1L, x_))))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ scipy/stats/_stats_pythran.cpython-312-powerpc64le-linux-musl.so.p/_stats_pythran.cpp:1759:77: required from here 1759 | auto res = __pythran__stats_pythran::_bvnu()(dh, dk, r); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/types/numpy_broadcast.hpp:328:20: note: parameter passing for argument of type '{anonymous}::pythonic::types::broadcast::const_iterator' {aka '{anonymous}::pythonic::types::const_broadcast_iterator'} when C++17 is enabled changed to match C++14 in GCC 10.1 328 | const_iterator begin() const | ^~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/types/numpy_broadcast.hpp: In instantiation of '{anonymous}::pythonic::types::broadcast::const_iterator {anonymous}::pythonic::types::broadcast::begin() const [with T = float; B = double; const_iterator = {anonymous}::pythonic::types::const_broadcast_iterator]': ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp:51:19: required from '{anonymous}::pythonic::types::numpy_expr::const_iterator {anonymous}::pythonic::types::numpy_expr::_begin({anonymous}::pythonic::utils::index_sequence) const [with long unsigned int ...I = {0, 1}; Op = {anonymous}::pythonic::operator_::functor::mul; Args = {{anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&}; const_iterator = {anonymous}::pythonic::types::numpy_expr_iterator<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::pshape, {anonymous}::pythonic::types::const_broadcast_iterator, const float*>; {anonymous}::pythonic::utils::index_sequence = {anonymous}::pythonic::utils::integer_sequence]' 50 | const_cast::type const &>(std::get(args)) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 51 |  .begin()...}; | ~~~~~~^~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp:58:18: required from '{anonymous}::pythonic::types::numpy_expr::const_iterator {anonymous}::pythonic::types::numpy_expr::begin() const [with Op = {anonymous}::pythonic::operator_::functor::mul; Args = {{anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&}; const_iterator = {anonymous}::pythonic::types::numpy_expr_iterator<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::pshape, {anonymous}::pythonic::types::const_broadcast_iterator, const float*>]' 58 | return _begin(utils::make_index_sequence{}); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp:51:19: required from '{anonymous}::pythonic::types::numpy_expr::const_iterator {anonymous}::pythonic::types::numpy_expr::_begin({anonymous}::pythonic::utils::index_sequence) const [with long unsigned int ...I = {0, 1}; Op = {anonymous}::pythonic::operator_::functor::sub; Args = {{anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&>}; const_iterator = {anonymous}::pythonic::types::numpy_expr_iterator<{anonymous}::pythonic::operator_::functor::sub, {anonymous}::pythonic::types::pshape, const float*, {anonymous}::pythonic::types::numpy_expr_iterator<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::pshape, {anonymous}::pythonic::types::const_broadcast_iterator, const float*> >; {anonymous}::pythonic::utils::index_sequence = {anonymous}::pythonic::utils::integer_sequence]' 50 | const_cast::type const &>(std::get(args)) | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 51 |  .begin()...}; | ~~~~~~^~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp:58:18: required from '{anonymous}::pythonic::types::numpy_expr::const_iterator {anonymous}::pythonic::types::numpy_expr::begin() const [with Op = {anonymous}::pythonic::operator_::functor::sub; Args = {{anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&>}; const_iterator = {anonymous}::pythonic::types::numpy_expr_iterator<{anonymous}::pythonic::operator_::functor::sub, {anonymous}::pythonic::types::pshape, const float*, {anonymous}::pythonic::types::numpy_expr_iterator<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::pshape, {anonymous}::pythonic::types::const_broadcast_iterator, const float*> >]' 58 | return _begin(utils::make_index_sequence{}); | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/utils/broadcast_copy.hpp:132:28: required from 'void {anonymous}::pythonic::utils::_broadcast_copy::operator()(E&&, const F&, Indices ...) [with E = {anonymous}::pythonic::types::ndarray >&; F = {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::sub, {anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&> >; Indices = {}; long unsigned int N = 1; vectorizer = {anonymous}::pythonic::types::novectorize]' 132 | std::copy(other.begin(), other.end(), self.begin()); | ~~~~~~~~~~~^~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/utils/broadcast_copy.hpp:231:52: [ skipping 3 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/ndarray.hpp:473:77: required from 'void {anonymous}::pythonic::types::ndarray::initialize_from_expr(const E&) [with E = {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::sub, {anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&> >; T = float; pS = {anonymous}::pythonic::types::pshape]' 471 | utils::broadcast_copy::value>( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 474 |  *this, expr); | ~~~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/ndarray.hpp:483:25: required from '{anonymous}::pythonic::types::ndarray::ndarray(const {anonymous}::pythonic::types::numpy_expr&) [with Op = {anonymous}::pythonic::operator_::functor::sub; Args = {{anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&>}; T = float; pS = {anonymous}::pythonic::types::pshape]' 483 | initialize_from_expr(expr); | ~~~~~~~~~~~~~~~~~~~~^~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/numpy/median.hpp:119:3: required from 'typename std::enable_if<((! {anonymous}::pythonic::types::is_ndarray::value) && {anonymous}::pythonic::types::is_numexpr_arg::value), decltype ({anonymous}::pythonic::numpy::median({anonymous}::pythonic::types::ndarray{expr}, (forward)(::pythonic::numpy::median::others)...))>::type {anonymous}::pythonic::numpy::median(const E&, Types&& ...) [with E = {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::sub, {anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&> >; Types = {}; typename std::enable_if<((! {anonymous}::pythonic::types::is_ndarray::value) && {anonymous}::pythonic::types::is_numexpr_arg::value), decltype ({anonymous}::pythonic::numpy::median({anonymous}::pythonic::types::ndarray{expr}, (forward)(::pythonic::numpy::median::others)...))>::type = double; decltype ({anonymous}::pythonic::numpy::median({anonymous}::pythonic::types::ndarray{expr}, (forward)(::pythonic::numpy::median::others)...)) = double; typename E::dtype = float; typename E::shape_t = {anonymous}::pythonic::types::pshape]' 28 | return fname(types::ndarray{expr}, \ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/numpy/median.hpp:32:3: required from 'decltype ({anonymous}::pythonic::numpy::median((forward)(::pythonic::numpy::functor::median::operator()::types)...)) {anonymous}::pythonic::numpy::functor::median::operator()(Types&& ...) const [with Types = {{anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::sub, {anonymous}::pythonic::types::ndarray >&, {anonymous}::pythonic::types::numpy_expr<{anonymous}::pythonic::operator_::functor::mul, {anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&> >}; decltype ({anonymous}::pythonic::numpy::median((forward)(::pythonic::numpy::functor::median::operator()::types)...)) = double]' 17 | return f(std::forward(types)...); \ scipy/stats/_stats_pythran.cpython-312-powerpc64le-linux-musl.so.p/_stats_pythran.cpp:1341:54: required from 'typename {anonymous}::__pythran__stats_pythran::siegelslopes::type::result_type {anonymous}::__pythran__stats_pythran::siegelslopes::operator()(argument_type0, argument_type1, argument_type2) const [with argument_type0 = {anonymous}::pythonic::types::ndarray >; argument_type1 = {anonymous}::pythonic::types::ndarray >; argument_type2 = {anonymous}::pythonic::types::str; typename type::result_type = {anonymous}::pythonic::types::array_base]' 1341 | medinter = pythonic::numpy::functor::median{}(pythonic::operator_::sub(y, pythonic::operator_::mul(medslope, x))); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ scipy/stats/_stats_pythran.cpython-312-powerpc64le-linux-musl.so.p/_stats_pythran.cpp:1839:84: required from here 1839 | auto res = __pythran__stats_pythran::siegelslopes()(y, x, method); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/include/types/numpy_broadcast.hpp:328:20: note: parameter passing for argument of type '{anonymous}::pythonic::types::broadcast::const_iterator' {aka '{anonymous}::pythonic::types::const_broadcast_iterator'} when C++17 is enabled changed to match C++14 in GCC 10.1 328 | const_iterator begin() const | ^~~~~ In file included from ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/ndarray.hpp:38: ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp: In member function '{anonymous}::pythonic::types::numpy_expr::const_iterator {anonymous}::pythonic::types::numpy_expr::_begin({anonymous}::pythonic::utils::index_sequence) const [with long unsigned int ...I = {0, 1}; Op = {anonymous}::pythonic::operator_::functor::mul; Args = {{anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&}]': ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp:51:24: note: parameter passing for argument of type '{anonymous}::pythonic::types::broadcast::const_iterator' {aka '{anonymous}::pythonic::types::const_broadcast_iterator'} when C++17 is enabled changed to match C++14 in GCC 10.1 51 | .begin()...}; | ^ ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp: In member function '{anonymous}::pythonic::types::numpy_expr::const_iterator {anonymous}::pythonic::types::numpy_expr::_begin({anonymous}::pythonic::utils::index_sequence) const [with long unsigned int ...I = {0, 1}; Op = {anonymous}::pythonic::operator_::functor::mul; Args = {{anonymous}::pythonic::types::broadcast, {anonymous}::pythonic::types::ndarray >&}]': ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp:51:24: note: parameter passing for argument of type '{anonymous}::pythonic::types::broadcast::const_iterator' {aka '{anonymous}::pythonic::types::const_broadcast_iterator'} when C++17 is enabled changed to match C++14 in GCC 10.1 ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp: In member function '{anonymous}::pythonic::types::numpy_expr::const_iterator {anonymous}::pythonic::types::numpy_expr::_begin({anonymous}::pythonic::utils::index_sequence) const [with long unsigned int ...I = {0, 1}; Op = {anonymous}::pythonic::operator_::functor::mul; Args = {{anonymous}::pythonic::types::numpy_gexpr >&, {anonymous}::pythonic::types::cstride_normalized_slice<1> >, {anonymous}::pythonic::types::broadcast}]': ../../../../../../../../usr/lib/python3.12/site-packages/pythran/pythonic/types/numpy_expr.hpp:51:24: note: parameter passing for argument of type '{anonymous}::pythonic::types::broadcast::const_iterator' {aka '{anonymous}::pythonic::types::const_broadcast_iterator'} when C++17 is enabled changed to match C++14 in GCC 10.1 [1393/1424] Linking target scipy/stats/_stats_pythran.cpython-312-powerpc64le-linux-musl.so [1394/1424] Linking target scipy/interpolate/_ppoly.cpython-312-powerpc64le-linux-musl.so [1395/1424] Compiling C object scipy/linalg/cython_lapack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_cython_lapack.c.o [1396/1424] Linking target scipy/io/_fast_matrix_market/_fmm_core.cpython-312-powerpc64le-linux-musl.so [1397/1424] Linking target scipy/special/_specfun.cpython-312-powerpc64le-linux-musl.so [1398/1424] Linking target scipy/io/matlab/_mio5_utils.cpython-312-powerpc64le-linux-musl.so [1399/1424] Linking target scipy/stats/_sobol.cpython-312-powerpc64le-linux-musl.so [1400/1424] Linking target scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so [1401/1424] Linking target scipy/signal/_upfirdn_apply.cpython-312-powerpc64le-linux-musl.so [1402/1424] Linking target scipy/spatial/transform/_rigid_transform.cpython-312-powerpc64le-linux-musl.so [1403/1424] Linking target scipy/sparse/csgraph/_shortest_path.cpython-312-powerpc64le-linux-musl.so scipy/linalg/_decomp_update.cpython-312-powerpc64le-linux-musl.so.p/_decomp_update.c: In function '__pyx_f_5scipy_6linalg_14_decomp_update_form_qTu': scipy/linalg/_decomp_update.cpython-312-powerpc64le-linux-musl.so.p/_decomp_update.c:27917:7: warning: '__pyx_v_us[0]' may be used uninitialized [-Wmaybe-uninitialized] 27917 | int __pyx_v_us[2]; | ^~~~~~~~~~ scipy/linalg/_decomp_update.cpython-312-powerpc64le-linux-musl.so.p/_decomp_update.c:27917:7: warning: '__pyx_v_us[1]' may be used uninitialized [-Wmaybe-uninitialized] [1404/1424] Linking target scipy/linalg/_decomp_update.cpython-312-powerpc64le-linux-musl.so [1405/1424] Linking target scipy/ndimage/_ni_label.cpython-312-powerpc64le-linux-musl.so [1406/1424] Linking target scipy/sparse/csgraph/_traversal.cpython-312-powerpc64le-linux-musl.so In file included from ../subprojects/xsf/include/xsf/log.h:3, from ../scipy/special/xsf_wrappers.cpp:18: ../subprojects/xsf/include/xsf/cephes/dd_real.h: In function 'std::pair xsf::cephes::detail::divrem(const double_double&, const double_double&)': ../subprojects/xsf/include/xsf/cephes/dd_real.h:384:66: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 384 | divrem(const double_double &lhs, const double_double &rhs) { | ^ In file included from ../subprojects/xsf/include/xsf/amos.h:3, from ../subprojects/xsf/include/xsf/airy.h:3, from ../scipy/special/xsf_wrappers.cpp:2: In function 'void xsf::amos::unik(std::complex, double, int, int, double, int*, std::complex*, std::complex*, std::complex*, std::complex*, std::complex*)', inlined from 'int xsf::amos::unk1(std::complex, double, int, int, int, std::complex*, double, double, double)' at ../subprojects/xsf/include/xsf/amos/amos.h:5716:17: ../subprojects/xsf/include/xsf/amos/amos.h:5379:9: warning: 'initd' may be used uninitialized [-Wmaybe-uninitialized] 5379 | if (*init == 0) { | ^~ ../subprojects/xsf/include/xsf/amos/amos.h: In function 'int xsf::amos::unk1(std::complex, double, int, int, int, std::complex*, double, double, double)': ../subprojects/xsf/include/xsf/amos/amos.h:5476:96: note: 'initd' was declared here 5476 | int i, ib, iflag = 0, ifn, il, inu, iuf, k, kdflg, kflag, kk, m, nw, nz, j, jc, ipard, initd, ic; | ^~~~~ [1407/1424] Linking target scipy/special/_ufuncs.cpython-312-powerpc64le-linux-musl.so In file included from ../subprojects/xsf/include/xsf/log.h:3, from ../scipy/special/xsf_wrappers.cpp:18: ../subprojects/xsf/include/xsf/cephes/dd_real.h: In function 'std::pair xsf::cephes::detail::divrem(const double_double&, const double_double&)': ../subprojects/xsf/include/xsf/cephes/dd_real.h:384:66: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 384 | divrem(const double_double &lhs, const double_double &rhs) { | ^ In file included from ../subprojects/xsf/include/xsf/amos.h:3, from ../subprojects/xsf/include/xsf/airy.h:3, from ../scipy/special/xsf_wrappers.cpp:2: In function 'void xsf::amos::unik(std::complex, double, int, int, double, int*, std::complex*, std::complex*, std::complex*, std::complex*, std::complex*)', inlined from 'int xsf::amos::unk1(std::complex, double, int, int, int, std::complex*, double, double, double)' at ../subprojects/xsf/include/xsf/amos/amos.h:5716:17: ../subprojects/xsf/include/xsf/amos/amos.h:5379:9: warning: 'initd' may be used uninitialized [-Wmaybe-uninitialized] 5379 | if (*init == 0) { | ^~ ../subprojects/xsf/include/xsf/amos/amos.h: In function 'int xsf::amos::unk1(std::complex, double, int, int, int, std::complex*, double, double, double)': ../subprojects/xsf/include/xsf/amos/amos.h:5476:96: note: 'initd' was declared here 5476 | int i, ib, iflag = 0, ifn, il, inu, iuf, k, kdflg, kflag, kk, m, nw, nz, j, jc, ipard, initd, ic; | ^~~~~ [1408/1424] Linking target scipy/spatial/_qhull.cpython-312-powerpc64le-linux-musl.so [1409/1424] Linking target scipy/linalg/cython_lapack.cpython-312-powerpc64le-linux-musl.so [1410/1424] Linking target scipy/spatial/_ckdtree.cpython-312-powerpc64le-linux-musl.so [1411/1424] Linking target scipy/linalg/_cythonized_array_utils.cpython-312-powerpc64le-linux-musl.so [1412/1424] Linking target scipy/stats/_stats.cpython-312-powerpc64le-linux-musl.so [1413/1424] Linking target scipy/sparse/_csparsetools.cpython-312-powerpc64le-linux-musl.so [1414/1424] Linking target scipy/special/_gufuncs.cpython-312-powerpc64le-linux-musl.so [1415/1424] Linking target scipy/optimize/_highspy/_core.cpython-312-powerpc64le-linux-musl.so [1416/1424] Linking target scipy/spatial/transform/_rotation.cpython-312-powerpc64le-linux-musl.so [1417/1424] Linking target scipy/linalg/_decomp_interpolative.cpython-312-powerpc64le-linux-musl.so In file included from ../scipy/fft/_pocketfft/pypocketfft.cxx:20: ../scipy/_lib/pocketfft/pocketfft_hdronly.h: In lambda function: ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3198:26: warning: 'it$p_o$' may be used uninitialized [-Wmaybe-uninitialized] 3198 | multi_iter it(tin, out, axes[iax]); | ^~ ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3198:26: warning: 'it$p_i$' may be used uninitialized [-Wmaybe-uninitialized] ../scipy/_lib/pocketfft/pocketfft_hdronly.h: In lambda function: ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3198:26: warning: 'it$p_o$' may be used uninitialized [-Wmaybe-uninitialized] ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3198:26: warning: 'it$p_i$' may be used uninitialized [-Wmaybe-uninitialized] ../scipy/_lib/pocketfft/pocketfft_hdronly.h: In lambda function: ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3198:26: warning: 'it$p_o$' may be used uninitialized [-Wmaybe-uninitialized] ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3198:26: warning: 'it$p_i$' may be used uninitialized [-Wmaybe-uninitialized] ../scipy/_lib/pocketfft/pocketfft_hdronly.h: In lambda function: ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3359:24: warning: 'it$p_o$' may be used uninitialized [-Wmaybe-uninitialized] 3359 | multi_iter it(in, out, axis); | ^~ In member function 'const T& pocketfft::detail::cndarr::operator[](std::ptrdiff_t) const [with T = pocketfft::detail::cmplx]', inlined from 'pocketfft::detail::general_c2r(const cndarr >&, ndarr&, std::size_t, bool, double, std::size_t)::' at ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3367:28: ../scipy/_lib/pocketfft/pocketfft_hdronly.h:2903:47: warning: 'it$p_i$' may be used uninitialized [-Wmaybe-uninitialized] 2903 | { return *reinterpret_cast(d+ofs); } | ^~~ ../scipy/_lib/pocketfft/pocketfft_hdronly.h: In lambda function: ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3359:24: note: 'it$p_i$' was declared here 3359 | multi_iter it(in, out, axis); | ^~ ../scipy/_lib/pocketfft/pocketfft_hdronly.h: In lambda function: ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3198:26: warning: 'it$p_o$' may be used uninitialized [-Wmaybe-uninitialized] 3198 | multi_iter it(tin, out, axes[iax]); | ^~ ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3198:26: warning: 'it$p_i$' may be used uninitialized [-Wmaybe-uninitialized] ../scipy/_lib/pocketfft/pocketfft_hdronly.h: In lambda function: ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3198:26: warning: 'it$p_o$' may be used uninitialized [-Wmaybe-uninitialized] ../scipy/_lib/pocketfft/pocketfft_hdronly.h:3198:26: warning: 'it$p_i$' may be used uninitialized [-Wmaybe-uninitialized] [1418/1424] Linking target scipy/fft/_pocketfft/pypocketfft.cpython-312-powerpc64le-linux-musl.so In file included from ../subprojects/xsf/include/xsf/amos.h:3, from ../subprojects/xsf/include/xsf/airy.h:3, from ../scipy/special/_special_ufuncs.cpp:7: In function 'void xsf::amos::unik(std::complex, double, int, int, double, int*, std::complex*, std::complex*, std::complex*, std::complex*, std::complex*)', inlined from 'int xsf::amos::unk1(std::complex, double, int, int, int, std::complex*, double, double, double)' at ../subprojects/xsf/include/xsf/amos/amos.h:5716:17: ../subprojects/xsf/include/xsf/amos/amos.h:5379:9: warning: 'initd' may be used uninitialized [-Wmaybe-uninitialized] 5379 | if (*init == 0) { | ^~ ../subprojects/xsf/include/xsf/amos/amos.h: In function 'int xsf::amos::unk1(std::complex, double, int, int, int, std::complex*, double, double, double)': ../subprojects/xsf/include/xsf/amos/amos.h:5476:96: note: 'initd' was declared here 5476 | int i, ib, iflag = 0, ifn, il, inu, iuf, k, kdflg, kflag, kk, m, nw, nz, j, jc, ipard, initd, ic; | ^~~~~ [1419/1424] Linking target scipy/special/_special_ufuncs.cpython-312-powerpc64le-linux-musl.so [1420/1424] Compiling C object scipy/linalg/_flapack.cpython-312-powerpc64le-linux-musl.so.p/meson-generated_..__flapackmodule.c.o In file included from ../subprojects/boost_math/math/include/boost/math/special_functions/detail/bernoulli_details.hpp:11, from ../subprojects/boost_math/math/include/boost/math/special_functions/bernoulli.hpp:16, from ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp:41, from ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:22, from ../scipy/special/boost_special_functions.h:9, from scipy/special/_ufuncs_cxx_defs.h:3, from scipy/special/_ufuncs_cxx.cpython-312-powerpc64le-linux-musl.so.p/_ufuncs_cxx.cpp:1153: ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::bracket_and_solve_root(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = boost::math::quantile, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >(const skew_normal_distribution, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >&, const float&)::; T = float; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/distributions/skew_normal.hpp:694:50: required from 'RealType boost::math::quantile(const skew_normal_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 694 | auto p_result = tools::bracket_and_solve_root(fun, result, scaling_factor, true, tools::eps_tolerance(get_digits), max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1268:33: required from 'Real skewnorm_ppf_wrap(Real, Real, Real, Real) [with Real = float]' 1268 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1269 |  boost::math::skew_normal_distribution(l, sc, sh), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1275:29: required from here 1275 | return skewnorm_ppf_wrap(x, l, sc, sh); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:516:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 516 | BOOST_MATH_GPU_ENABLED boost::math::pair bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::bracket_and_solve_root(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = boost::math::quantile, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >(const skew_normal_distribution, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >&, const double&)::; T = double; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/distributions/skew_normal.hpp:694:50: required from 'RealType boost::math::quantile(const skew_normal_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 694 | auto p_result = tools::bracket_and_solve_root(fun, result, scaling_factor, true, tools::eps_tolerance(get_digits), max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1268:33: required from 'Real skewnorm_ppf_wrap(Real, Real, Real, Real) [with Real = double]' 1268 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1269 |  boost::math::skew_normal_distribution(l, sc, sh), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1281:29: required from here 1281 | return skewnorm_ppf_wrap(x, l, sc, sh); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:516:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 516 | BOOST_MATH_GPU_ENABLED boost::math::pair bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~~~~~~~~~~ In file included from ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp:26: ../subprojects/boost_math/math/include/boost/math/policies/error_handling.hpp: In instantiation of 'std::pair<_FIter, _FIter> boost::math::detail::pair_from_single(const T&) [with T = float]': ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:543:57: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::bracket_and_solve_root(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = boost::math::quantile, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >(const skew_normal_distribution, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >&, const float&)::; T = float; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >; uintmax_t = long unsigned int]' 543 | return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/skew_normal.hpp:694:50: required from 'RealType boost::math::quantile(const skew_normal_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 694 | auto p_result = tools::bracket_and_solve_root(fun, result, scaling_factor, true, tools::eps_tolerance(get_digits), max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1268:33: required from 'Real skewnorm_ppf_wrap(Real, Real, Real, Real) [with Real = float]' 1268 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1269 |  boost::math::skew_normal_distribution(l, sc, sh), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1275:29: required from here 1275 | return skewnorm_ppf_wrap(x, l, sc, sh); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/policies/error_handling.hpp:1038:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 1038 | BOOST_MATH_GPU_ENABLED boost::math::pair pair_from_single(const T& val) BOOST_MATH_NOEXCEPT(T) | ^~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/policies/error_handling.hpp: In instantiation of 'std::pair<_FIter, _FIter> boost::math::detail::pair_from_single(const T&) [with T = double]': ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:543:57: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::bracket_and_solve_root(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = boost::math::quantile, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >(const skew_normal_distribution, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >&, const double&)::; T = double; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >; uintmax_t = long unsigned int]' 543 | return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/skew_normal.hpp:694:50: required from 'RealType boost::math::quantile(const skew_normal_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 694 | auto p_result = tools::bracket_and_solve_root(fun, result, scaling_factor, true, tools::eps_tolerance(get_digits), max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1268:33: required from 'Real skewnorm_ppf_wrap(Real, Real, Real, Real) [with Real = double]' 1268 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1269 |  boost::math::skew_normal_distribution(l, sc, sh), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1281:29: required from here 1281 | return skewnorm_ppf_wrap(x, l, sc, sh); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/policies/error_handling.hpp:1038:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 1038 | BOOST_MATH_GPU_ENABLED boost::math::pair pair_from_single(const T& val) BOOST_MATH_NOEXCEPT(T) | ^~~~~~~~~~~~~~~~ In file included from ../subprojects/boost_math/math/include/boost/math/distributions.hpp:40, from ../scipy/special/boost_special_functions.h:15: ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp: In instantiation of 'const std::pair<_FIter, _FIter> boost::math::range(const non_central_chi_squared_distribution&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy>]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:73:33: required from 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_chi_squared_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >; typename Dist::value_type = float]' 73 | ? check_range_result(range(dist).second, forwarding_policy(), function) | ~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp:476:57: required from 'RealType boost::math::detail::nccs_quantile(const boost::math::non_central_chi_squared_distribution&, const RealType&, bool) [with RealType = float; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 476 | value_type result = detail::generic_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~^ 477 |  non_central_chi_squared_distribution(k, l), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 478 |  p, | ~~ 479 |  guess, | ~~~~~~ 480 |  comp, | ~~~~~ 481 |  function); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp:981:38: required from 'RealType boost::math::quantile(const non_central_chi_squared_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 981 | return detail::nccs_quantile(dist, p, false); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:762:33: required from 'Real ncx2_ppf_wrap(Real, Real, Real) [with Real = float]' 762 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 763 |  boost::math::non_central_chi_squared_distribution(k, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:769:25: required from here 769 | return ncx2_ppf_wrap(x, k, l); | ~~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp:789:81: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 789 | BOOST_MATH_GPU_ENABLED inline const boost::math::pair range(const non_central_chi_squared_distribution& /* dist */) | ^~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp: In instantiation of 'const std::pair<_FIter, _FIter> boost::math::range(const non_central_chi_squared_distribution&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy>]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:73:33: required from 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_chi_squared_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >; typename Dist::value_type = double]' 73 | ? check_range_result(range(dist).second, forwarding_policy(), function) | ~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp:476:57: required from 'RealType boost::math::detail::nccs_quantile(const boost::math::non_central_chi_squared_distribution&, const RealType&, bool) [with RealType = double; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 476 | value_type result = detail::generic_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~^ 477 |  non_central_chi_squared_distribution(k, l), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 478 |  p, | ~~ 479 |  guess, | ~~~~~~ 480 |  comp, | ~~~~~ 481 |  function); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp:981:38: required from 'RealType boost::math::quantile(const non_central_chi_squared_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 981 | return detail::nccs_quantile(dist, p, false); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:762:33: required from 'Real ncx2_ppf_wrap(Real, Real, Real) [with Real = double]' 762 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 763 |  boost::math::non_central_chi_squared_distribution(k, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:775:25: required from here 775 | return ncx2_ppf_wrap(x, k, l); | ~~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp:789:81: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 789 | BOOST_MATH_GPU_ENABLED inline const boost::math::pair range(const non_central_chi_squared_distribution& /* dist */) | ^~~~~ In file included from ../subprojects/boost_math/math/include/boost/math/distributions.hpp:41: ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::detail::bracket_and_solve_root_01(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = nc_beta_quantile_functor, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > >; T = float; Tol = boost::math::tools::eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:516:43: required from 'RealType boost::math::detail::nc_beta_quantile(const boost::math::non_central_beta_distribution&, const RealType&, bool) [with RealType = float; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 516 | = bracket_and_solve_root_01( | ~~~~~~~~~~~~~~~~~~~~~~~~~^ 517 |  f, guess, value_type(2.5), true, tol, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 518 |  max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:959:41: required from 'RealType boost::math::quantile(const non_central_beta_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]' 959 | return detail::nc_beta_quantile(dist, p, false); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_f.hpp:385:31: required from 'RealType boost::math::quantile(const non_central_f_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]' 385 | RealType x = quantile(boost::math::non_central_beta_distribution(alpha, beta, dist.non_centrality()), p); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:902:48: required from 'Real ncf_ppf_wrap(Real, Real, Real, Real) [with Real = float]' 902 | y = boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 903 |  boost::math::non_central_f_distribution(v1, v2, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:923:24: required from here 923 | return ncf_ppf_wrap(v1, v2, l, x); | ~~~~~~~~~~~~^~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:313:57: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 313 | BOOST_MATH_GPU_ENABLED boost::math::pair bracket_and_solve_root_01(F f, const T& guess, T factor, bool rising, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::detail::bracket_and_solve_root_01(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = nc_beta_quantile_functor, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > >; T = double; Tol = boost::math::tools::eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:516:43: required from 'RealType boost::math::detail::nc_beta_quantile(const boost::math::non_central_beta_distribution&, const RealType&, bool) [with RealType = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 516 | = bracket_and_solve_root_01( | ~~~~~~~~~~~~~~~~~~~~~~~~~^ 517 |  f, guess, value_type(2.5), true, tol, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 518 |  max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:959:41: required from 'RealType boost::math::quantile(const non_central_beta_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]' 959 | return detail::nc_beta_quantile(dist, p, false); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_f.hpp:385:31: required from 'RealType boost::math::quantile(const non_central_f_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]' 385 | RealType x = quantile(boost::math::non_central_beta_distribution(alpha, beta, dist.non_centrality()), p); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:902:48: required from 'Real ncf_ppf_wrap(Real, Real, Real, Real) [with Real = double]' 902 | y = boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 903 |  boost::math::non_central_f_distribution(v1, v2, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:929:24: required from here 929 | return ncf_ppf_wrap(v1, v2, l, x); | ~~~~~~~~~~~~^~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:313:57: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 313 | BOOST_MATH_GPU_ENABLED boost::math::pair bracket_and_solve_root_01(F f, const T& guess, T factor, bool rising, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::detail::bracket_and_solve_root_01(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = nc_beta_quantile_functor, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; T = float; Tol = boost::math::tools::eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:516:43: required from 'RealType boost::math::detail::nc_beta_quantile(const boost::math::non_central_beta_distribution&, const RealType&, bool) [with RealType = float; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 516 | = bracket_and_solve_root_01( | ~~~~~~~~~~~~~~~~~~~~~~~~~^ 517 |  f, guess, value_type(2.5), true, tol, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 518 |  max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:965:41: required from 'RealType boost::math::quantile(const complemented2_type, RealType>&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 965 | return detail::nc_beta_quantile(c.dist, c.param, true); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_f.hpp:399:31: required from 'RealType boost::math::quantile(const complemented2_type, RealType>&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 399 | RealType x = quantile(complement(boost::math::non_central_beta_distribution(alpha, beta, c.dist.non_centrality()), c.param)); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:956:33: required from 'Real ncf_isf_wrap(Real, Real, Real, Real) [with Real = float]' 956 | return boost::math::quantile(boost::math::complement( | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ 957 |  boost::math::non_central_f_distribution(v1, v2, l), x)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:963:24: required from here 963 | return ncf_isf_wrap(x, v1, v2, l); | ~~~~~~~~~~~~^~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:313:57: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 313 | BOOST_MATH_GPU_ENABLED boost::math::pair bracket_and_solve_root_01(F f, const T& guess, T factor, bool rising, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::detail::bracket_and_solve_root_01(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = nc_beta_quantile_functor, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; T = double; Tol = boost::math::tools::eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:516:43: required from 'RealType boost::math::detail::nc_beta_quantile(const boost::math::non_central_beta_distribution&, const RealType&, bool) [with RealType = double; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 516 | = bracket_and_solve_root_01( | ~~~~~~~~~~~~~~~~~~~~~~~~~^ 517 |  f, guess, value_type(2.5), true, tol, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 518 |  max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:965:41: required from 'RealType boost::math::quantile(const complemented2_type, RealType>&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 965 | return detail::nc_beta_quantile(c.dist, c.param, true); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_f.hpp:399:31: required from 'RealType boost::math::quantile(const complemented2_type, RealType>&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 399 | RealType x = quantile(complement(boost::math::non_central_beta_distribution(alpha, beta, c.dist.non_centrality()), c.param)); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:956:33: required from 'Real ncf_isf_wrap(Real, Real, Real, Real) [with Real = double]' 956 | return boost::math::quantile(boost::math::complement( | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ 957 |  boost::math::non_central_f_distribution(v1, v2, l), x)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:969:24: required from here 969 | return ncf_isf_wrap(x, v1, v2, l); | ~~~~~~~~~~~~^~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:313:57: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 313 | BOOST_MATH_GPU_ENABLED boost::math::pair bracket_and_solve_root_01(F f, const T& guess, T factor, bool rising, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~~~~~~~~~~~~~ In file included from ../subprojects/boost_math/math/include/boost/math/distributions.hpp:43: ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp: In instantiation of 'const std::pair<_FIter, _FIter> boost::math::range(const non_central_t_distribution&) [with RealType = float; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:73:33: required from 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_t_distribution, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > >; typename Dist::value_type = float]' 73 | ? check_range_result(range(dist).second, forwarding_policy(), function) | ~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:384:57: required from 'T boost::math::detail::non_central_t_quantile(const char*, T, T, T, T, const Policy&) [with T = float; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 384 | value_type result = detail::generic_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~^ 385 |  non_central_t_distribution(v, delta), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 386 |  (p < q ? p : q), | ~~~~~~~~~~~~~~~~ 387 |  guess, | ~~~~~~ 388 |  (p >= q), | ~~~~~~~~~ 389 |  function); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:1302:47: required from 'RealType boost::math::quantile(const non_central_t_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]' 1302 | return detail::non_central_t_quantile(function, v, l, p, RealType(1-p), Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1112:27: required from 'Real nct_ppf_wrap(Real, Real, Real) [with Real = float]' 1112 | y = boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1113 |  boost::math::non_central_t_distribution(v, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1135:24: required from here 1135 | return nct_ppf_wrap(v, l, x); | ~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:967:50: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 967 | inline const std::pair range(const non_central_t_distribution& /* dist */) | ^~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp: In instantiation of 'const std::pair<_FIter, _FIter> boost::math::range(const non_central_t_distribution&) [with RealType = double; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:73:33: required from 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_t_distribution, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > >; typename Dist::value_type = double]' 73 | ? check_range_result(range(dist).second, forwarding_policy(), function) | ~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:384:57: required from 'T boost::math::detail::non_central_t_quantile(const char*, T, T, T, T, const Policy&) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 384 | value_type result = detail::generic_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~^ 385 |  non_central_t_distribution(v, delta), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 386 |  (p < q ? p : q), | ~~~~~~~~~~~~~~~~ 387 |  guess, | ~~~~~~ 388 |  (p >= q), | ~~~~~~~~~ 389 |  function); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:1302:47: required from 'RealType boost::math::quantile(const non_central_t_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]' 1302 | return detail::non_central_t_quantile(function, v, l, p, RealType(1-p), Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1112:27: required from 'Real nct_ppf_wrap(Real, Real, Real) [with Real = double]' 1112 | y = boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1113 |  boost::math::non_central_t_distribution(v, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1141:24: required from here 1141 | return nct_ppf_wrap(v, l, x); | ~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:967:50: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 967 | inline const std::pair range(const non_central_t_distribution& /* dist */) | ^~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp: In instantiation of 'const std::pair<_FIter, _FIter> boost::math::range(const non_central_t_distribution&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy>]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:73:33: required from 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_t_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >; typename Dist::value_type = float]' 73 | ? check_range_result(range(dist).second, forwarding_policy(), function) | ~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:384:57: required from 'T boost::math::detail::non_central_t_quantile(const char*, T, T, T, T, const Policy&) [with T = float; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 384 | value_type result = detail::generic_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~^ 385 |  non_central_t_distribution(v, delta), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 386 |  (p < q ? p : q), | ~~~~~~~~~~~~~~~~ 387 |  guess, | ~~~~~~ 388 |  (p >= q), | ~~~~~~~~~ 389 |  function); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:1313:47: required from 'RealType boost::math::quantile(const complemented2_type, RealType>&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 1313 | return detail::non_central_t_quantile(function, v, l, RealType(1-q), q, Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1168:33: required from 'Real nct_isf_wrap(Real, Real, Real) [with Real = float]' 1168 | return boost::math::quantile(boost::math::complement( | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ 1169 |  boost::math::non_central_t_distribution(v, l), x)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1175:24: required from here 1175 | return nct_isf_wrap(x, v, l); | ~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:967:50: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 967 | inline const std::pair range(const non_central_t_distribution& /* dist */) | ^~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp: In instantiation of 'const std::pair<_FIter, _FIter> boost::math::range(const non_central_t_distribution&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy, policies::default_policy>]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:73:33: required from 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_t_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >; typename Dist::value_type = double]' 73 | ? check_range_result(range(dist).second, forwarding_policy(), function) | ~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:384:57: required from 'T boost::math::detail::non_central_t_quantile(const char*, T, T, T, T, const Policy&) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 384 | value_type result = detail::generic_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~^ 385 |  non_central_t_distribution(v, delta), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 386 |  (p < q ? p : q), | ~~~~~~~~~~~~~~~~ 387 |  guess, | ~~~~~~ 388 |  (p >= q), | ~~~~~~~~~ 389 |  function); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:1313:47: required from 'RealType boost::math::quantile(const complemented2_type, RealType>&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 1313 | return detail::non_central_t_quantile(function, v, l, RealType(1-q), q, Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1168:33: required from 'Real nct_isf_wrap(Real, Real, Real) [with Real = double]' 1168 | return boost::math::quantile(boost::math::complement( | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ 1169 |  boost::math::non_central_t_distribution(v, l), x)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1181:24: required from here 1181 | return nct_isf_wrap(x, v, l); | ~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:967:50: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 967 | inline const std::pair range(const non_central_t_distribution& /* dist */) | ^~~~~ In file included from /usr/include/c++/15.2.0/bits/stl_algobase.h:64, from /usr/include/c++/15.2.0/bits/specfun.h:43, from /usr/include/c++/15.2.0/cmath:3913, from /usr/include/c++/15.2.0/math.h:36, from /usr/include/python3.12/pyport.h:195, from /usr/include/python3.12/Python.h:38, from scipy/special/_ufuncs_cxx.cpython-312-powerpc64le-linux-musl.so.p/_ufuncs_cxx.cpp:19: /usr/include/c++/15.2.0/bits/stl_pair.h: In instantiation of 'constexpr std::pair::type>::__type, typename std::__strip_reference_wrapper::type>::__type> std::make_pair(_T1&&, _T2&&) [with _T1 = const float&; _T2 = const float&; typename __strip_reference_wrapper::type>::__type = float; typename decay<_Tp>::type = float; typename __strip_reference_wrapper::type>::__type = float; typename decay<_Tp2>::type = float]': ../subprojects/boost_math/math/include/boost/math/policies/error_handling.hpp:1040:33: required from 'std::pair<_FIter, _FIter> boost::math::detail::pair_from_single(const T&) [with T = float]' 1040 | return boost::math::make_pair(val, val); | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:543:57: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::bracket_and_solve_root(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = boost::math::quantile, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >(const skew_normal_distribution, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >&, const float&)::; T = float; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >; uintmax_t = long unsigned int]' 543 | return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/skew_normal.hpp:694:50: required from 'RealType boost::math::quantile(const skew_normal_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 694 | auto p_result = tools::bracket_and_solve_root(fun, result, scaling_factor, true, tools::eps_tolerance(get_digits), max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1268:33: required from 'Real skewnorm_ppf_wrap(Real, Real, Real, Real) [with Real = float]' 1268 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1269 |  boost::math::skew_normal_distribution(l, sc, sh), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1275:29: required from here 1275 | return skewnorm_ppf_wrap(x, l, sc, sh); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/include/c++/15.2.0/bits/stl_pair.h:1164:5: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 1164 | make_pair(_T1&& __x, _T2&& __y) | ^~~~~~~~~ /usr/include/c++/15.2.0/bits/stl_pair.h: In instantiation of 'constexpr std::pair::type>::__type, typename std::__strip_reference_wrapper::type>::__type> std::make_pair(_T1&&, _T2&&) [with _T1 = const double&; _T2 = const double&; typename __strip_reference_wrapper::type>::__type = double; typename decay<_Tp>::type = double; typename __strip_reference_wrapper::type>::__type = double; typename decay<_Tp2>::type = double]': ../subprojects/boost_math/math/include/boost/math/policies/error_handling.hpp:1040:33: required from 'std::pair<_FIter, _FIter> boost::math::detail::pair_from_single(const T&) [with T = double]' 1040 | return boost::math::make_pair(val, val); | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:543:57: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::bracket_and_solve_root(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = boost::math::quantile, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >(const skew_normal_distribution, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >&, const double&)::; T = double; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >; uintmax_t = long unsigned int]' 543 | return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/skew_normal.hpp:694:50: required from 'RealType boost::math::quantile(const skew_normal_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 694 | auto p_result = tools::bracket_and_solve_root(fun, result, scaling_factor, true, tools::eps_tolerance(get_digits), max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1268:33: required from 'Real skewnorm_ppf_wrap(Real, Real, Real, Real) [with Real = double]' 1268 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1269 |  boost::math::skew_normal_distribution(l, sc, sh), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1281:29: required from here 1281 | return skewnorm_ppf_wrap(x, l, sc, sh); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~ /usr/include/c++/15.2.0/bits/stl_pair.h:1164:5: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 1164 | make_pair(_T1&& __x, _T2&& __y) | ^~~~~~~~~ In file included from ../subprojects/boost_math/math/include/boost/math/distributions.hpp:39: ../subprojects/boost_math/math/include/boost/math/distributions/negative_binomial.hpp: In instantiation of 'const std::pair<_FIter, _FIter> boost::math::support(const negative_binomial_distribution&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:99:52: required from 'typename Dist::value_type boost::math::detail::do_inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, typename Dist::value_type, const typename Dist::value_type&, typename Dist::value_type, const Tolerance&, uintmax_t&) [with Dist = boost::math::negative_binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; Tolerance = boost::math::tools::equal_ceil; typename Dist::value_type = float; uintmax_t = long unsigned int]' 99 | boost::math::tie(min_bound, max_bound) = support(dist); | ~~~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:536:59: required from 'typename Dist::value_type boost::math::detail::inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, const typename Dist::value_type&, const typename Dist::value_type&, const typename Dist::value_type&, const boost::math::policies::discrete_quantile&, uintmax_t&) [with Dist = boost::math::negative_binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; typename Dist::value_type = float; uintmax_t = long unsigned int]' 536 | return round_to_ceil(dist, do_inverse_discrete_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 537 |  dist, | ~~~~~ 538 |  p, | ~~ 539 |  c, | ~~ 540 |  ceil(guess), | ~~~~~~~~~~~~ 541 |  multiplier, | ~~~~~~~~~~~ 542 |  adder, | ~~~~~~ 543 |  tools::equal_ceil(), | ~~~~~~~~~~~~~~~~~~~~ 544 |  max_iter), p, c); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/negative_binomial.hpp:499:47: required from 'RealType boost::math::quantile(const negative_binomial_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 499 | return detail::inverse_discrete_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 500 |  dist, | ~~~~~ 501 |  P, | ~~ 502 |  false, | ~~~~~~ 503 |  guess, | ~~~~~~ 504 |  factor, | ~~~~~~~ 505 |  RealType(1), | ~~~~~~~~~~~~ 506 |  discrete_type(), | ~~~~~~~~~~~~~~~~ 507 |  max_iter); | ~~~~~~~~~ ../scipy/special/boost_special_functions.h:1465:33: required from 'Real nbinom_ppf_wrap(Real, Real, Real) [with Real = float]' 1465 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1466 |  boost::math::negative_binomial_distribution(r, p), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1472:27: required from here 1472 | return nbinom_ppf_wrap(x, r, p); | ~~~~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/negative_binomial.hpp:269:79: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 269 | BOOST_MATH_GPU_ENABLED inline const boost::math::pair support(const negative_binomial_distribution& /* dist */) | ^~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/negative_binomial.hpp: In instantiation of 'const std::pair<_FIter, _FIter> boost::math::support(const negative_binomial_distribution&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:99:52: required from 'typename Dist::value_type boost::math::detail::do_inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, typename Dist::value_type, const typename Dist::value_type&, typename Dist::value_type, const Tolerance&, uintmax_t&) [with Dist = boost::math::negative_binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; Tolerance = boost::math::tools::equal_ceil; typename Dist::value_type = double; uintmax_t = long unsigned int]' 99 | boost::math::tie(min_bound, max_bound) = support(dist); | ~~~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:536:59: required from 'typename Dist::value_type boost::math::detail::inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, const typename Dist::value_type&, const typename Dist::value_type&, const typename Dist::value_type&, const boost::math::policies::discrete_quantile&, uintmax_t&) [with Dist = boost::math::negative_binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; typename Dist::value_type = double; uintmax_t = long unsigned int]' 536 | return round_to_ceil(dist, do_inverse_discrete_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 537 |  dist, | ~~~~~ 538 |  p, | ~~ 539 |  c, | ~~ 540 |  ceil(guess), | ~~~~~~~~~~~~ 541 |  multiplier, | ~~~~~~~~~~~ 542 |  adder, | ~~~~~~ 543 |  tools::equal_ceil(), | ~~~~~~~~~~~~~~~~~~~~ 544 |  max_iter), p, c); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/negative_binomial.hpp:499:47: required from 'RealType boost::math::quantile(const negative_binomial_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 499 | return detail::inverse_discrete_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 500 |  dist, | ~~~~~ 501 |  P, | ~~ 502 |  false, | ~~~~~~ 503 |  guess, | ~~~~~~ 504 |  factor, | ~~~~~~~ 505 |  RealType(1), | ~~~~~~~~~~~~ 506 |  discrete_type(), | ~~~~~~~~~~~~~~~~ 507 |  max_iter); | ~~~~~~~~~ ../scipy/special/boost_special_functions.h:1465:33: required from 'Real nbinom_ppf_wrap(Real, Real, Real) [with Real = double]' 1465 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1466 |  boost::math::negative_binomial_distribution(r, p), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1478:27: required from here 1478 | return nbinom_ppf_wrap(x, r, p); | ~~~~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/negative_binomial.hpp:269:79: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 269 | BOOST_MATH_GPU_ENABLED inline const boost::math::pair support(const negative_binomial_distribution& /* dist */) | ^~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::toms748_solve(F, const T&, const T&, const T&, const T&, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::generic_quantile_finder, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> > >; T = float; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:609:45: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::bracket_and_solve_root(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::generic_quantile_finder, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> > >; T = float; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>; uintmax_t = long unsigned int]' 609 | boost::math::pair r = toms748_solve( | ~~~~~~~~~~~~~^ 610 |  f, | ~~ 611 |  (a < 0 ? b : a), | ~~~~~~~~~~~~~~~~ 612 |  (a < 0 ? a : b), | ~~~~~~~~~~~~~~~~ 613 |  (a < 0 ? fb : fa), | ~~~~~~~~~~~~~~~~~~ 614 |  (a < 0 ? fa : fb), | ~~~~~~~~~~~~~~~~~~ 615 |  tol, | ~~~~ 616 |  count, | ~~~~~~ 617 |  pol); | ~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:86:80: required from 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_chi_squared_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >; typename Dist::value_type = float]' 86 | boost::math::pair ir = tools::bracket_and_solve_root( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 87 |  f, guess, value_type(2), true, tol, max_iter, forwarding_policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp:476:57: required from 'RealType boost::math::detail::nccs_quantile(const boost::math::non_central_chi_squared_distribution&, const RealType&, bool) [with RealType = float; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 476 | value_type result = detail::generic_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~^ 477 |  non_central_chi_squared_distribution(k, l), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 478 |  p, | ~~ 479 |  guess, | ~~~~~~ 480 |  comp, | ~~~~~ 481 |  function); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp:981:38: required from 'RealType boost::math::quantile(const non_central_chi_squared_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 981 | return detail::nccs_quantile(dist, p, false); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:762:33: required from 'Real ncx2_ppf_wrap(Real, Real, Real) [with Real = float]' 762 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 763 |  boost::math::non_central_chi_squared_distribution(k, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:769:25: required from here 769 | return ncx2_ppf_wrap(x, k, l); | ~~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:310:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 310 | BOOST_MATH_GPU_ENABLED boost::math::pair toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::toms748_solve(F, const T&, const T&, const T&, const T&, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::generic_quantile_finder, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> > >; T = double; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:609:45: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::bracket_and_solve_root(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::generic_quantile_finder, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> > >; T = double; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>; uintmax_t = long unsigned int]' 609 | boost::math::pair r = toms748_solve( | ~~~~~~~~~~~~~^ 610 |  f, | ~~ 611 |  (a < 0 ? b : a), | ~~~~~~~~~~~~~~~~ 612 |  (a < 0 ? a : b), | ~~~~~~~~~~~~~~~~ 613 |  (a < 0 ? fb : fa), | ~~~~~~~~~~~~~~~~~~ 614 |  (a < 0 ? fa : fb), | ~~~~~~~~~~~~~~~~~~ 615 |  tol, | ~~~~ 616 |  count, | ~~~~~~ 617 |  pol); | ~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:86:80: required from 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_chi_squared_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >; typename Dist::value_type = double]' 86 | boost::math::pair ir = tools::bracket_and_solve_root( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 87 |  f, guess, value_type(2), true, tol, max_iter, forwarding_policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp:476:57: required from 'RealType boost::math::detail::nccs_quantile(const boost::math::non_central_chi_squared_distribution&, const RealType&, bool) [with RealType = double; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 476 | value_type result = detail::generic_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~^ 477 |  non_central_chi_squared_distribution(k, l), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 478 |  p, | ~~ 479 |  guess, | ~~~~~~ 480 |  comp, | ~~~~~ 481 |  function); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp:981:38: required from 'RealType boost::math::quantile(const non_central_chi_squared_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 981 | return detail::nccs_quantile(dist, p, false); | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:762:33: required from 'Real ncx2_ppf_wrap(Real, Real, Real) [with Real = double]' 762 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 763 |  boost::math::non_central_chi_squared_distribution(k, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:775:25: required from here 775 | return ncx2_ppf_wrap(x, k, l); | ~~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:310:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 310 | BOOST_MATH_GPU_ENABLED boost::math::pair toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::toms748_solve(F, const T&, const T&, const T&, const T&, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::nc_beta_quantile_functor, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > >; T = float; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:399:54: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::detail::bracket_and_solve_root_01(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = nc_beta_quantile_functor, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > >; T = float; Tol = boost::math::tools::eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >; uintmax_t = long unsigned int]' 399 | boost::math::pair r = toms748_solve( | ~~~~~~~~~~~~~^ 400 |  f, | ~~ 401 |  (a < 0 ? b : a), | ~~~~~~~~~~~~~~~~ 402 |  (a < 0 ? a : b), | ~~~~~~~~~~~~~~~~ 403 |  (a < 0 ? fb : fa), | ~~~~~~~~~~~~~~~~~~ 404 |  (a < 0 ? fa : fb), | ~~~~~~~~~~~~~~~~~~ 405 |  tol, | ~~~~ 406 |  count, | ~~~~~~ 407 |  pol); | ~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:516:43: required from 'RealType boost::math::detail::nc_beta_quantile(const boost::math::non_central_beta_distribution&, const RealType&, bool) [with RealType = float; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 516 | = bracket_and_solve_root_01( | ~~~~~~~~~~~~~~~~~~~~~~~~~^ 517 |  f, guess, value_type(2.5), true, tol, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 518 |  max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:959:41: required from 'RealType boost::math::quantile(const non_central_beta_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]' 959 | return detail::nc_beta_quantile(dist, p, false); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_f.hpp:385:31: required from 'RealType boost::math::quantile(const non_central_f_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]' 385 | RealType x = quantile(boost::math::non_central_beta_distribution(alpha, beta, dist.non_centrality()), p); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:902:48: required from 'Real ncf_ppf_wrap(Real, Real, Real, Real) [with Real = float]' 902 | y = boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 903 |  boost::math::non_central_f_distribution(v1, v2, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:923:24: required from here 923 | return ncf_ppf_wrap(v1, v2, l, x); | ~~~~~~~~~~~~^~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:310:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 310 | BOOST_MATH_GPU_ENABLED boost::math::pair toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::toms748_solve(F, const T&, const T&, const T&, const T&, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::nc_beta_quantile_functor, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > >; T = double; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:399:54: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::detail::bracket_and_solve_root_01(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = nc_beta_quantile_functor, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > >; T = double; Tol = boost::math::tools::eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >; uintmax_t = long unsigned int]' 399 | boost::math::pair r = toms748_solve( | ~~~~~~~~~~~~~^ 400 |  f, | ~~ 401 |  (a < 0 ? b : a), | ~~~~~~~~~~~~~~~~ 402 |  (a < 0 ? a : b), | ~~~~~~~~~~~~~~~~ 403 |  (a < 0 ? fb : fa), | ~~~~~~~~~~~~~~~~~~ 404 |  (a < 0 ? fa : fb), | ~~~~~~~~~~~~~~~~~~ 405 |  tol, | ~~~~ 406 |  count, | ~~~~~~ 407 |  pol); | ~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:516:43: required from 'RealType boost::math::detail::nc_beta_quantile(const boost::math::non_central_beta_distribution&, const RealType&, bool) [with RealType = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 516 | = bracket_and_solve_root_01( | ~~~~~~~~~~~~~~~~~~~~~~~~~^ 517 |  f, guess, value_type(2.5), true, tol, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 518 |  max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:959:41: required from 'RealType boost::math::quantile(const non_central_beta_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]' 959 | return detail::nc_beta_quantile(dist, p, false); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_f.hpp:385:31: required from 'RealType boost::math::quantile(const non_central_f_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]' 385 | RealType x = quantile(boost::math::non_central_beta_distribution(alpha, beta, dist.non_centrality()), p); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:902:48: required from 'Real ncf_ppf_wrap(Real, Real, Real, Real) [with Real = double]' 902 | y = boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 903 |  boost::math::non_central_f_distribution(v1, v2, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:929:24: required from here 929 | return ncf_ppf_wrap(v1, v2, l, x); | ~~~~~~~~~~~~^~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:310:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 310 | BOOST_MATH_GPU_ENABLED boost::math::pair toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::toms748_solve(F, const T&, const T&, const T&, const T&, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::nc_beta_quantile_functor, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; T = float; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:399:54: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::detail::bracket_and_solve_root_01(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = nc_beta_quantile_functor, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; T = float; Tol = boost::math::tools::eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >; uintmax_t = long unsigned int]' 399 | boost::math::pair r = toms748_solve( | ~~~~~~~~~~~~~^ 400 |  f, | ~~ 401 |  (a < 0 ? b : a), | ~~~~~~~~~~~~~~~~ 402 |  (a < 0 ? a : b), | ~~~~~~~~~~~~~~~~ 403 |  (a < 0 ? fb : fa), | ~~~~~~~~~~~~~~~~~~ 404 |  (a < 0 ? fa : fb), | ~~~~~~~~~~~~~~~~~~ 405 |  tol, | ~~~~ 406 |  count, | ~~~~~~ 407 |  pol); | ~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:516:43: required from 'RealType boost::math::detail::nc_beta_quantile(const boost::math::non_central_beta_distribution&, const RealType&, bool) [with RealType = float; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 516 | = bracket_and_solve_root_01( | ~~~~~~~~~~~~~~~~~~~~~~~~~^ 517 |  f, guess, value_type(2.5), true, tol, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 518 |  max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:965:41: required from 'RealType boost::math::quantile(const complemented2_type, RealType>&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 965 | return detail::nc_beta_quantile(c.dist, c.param, true); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_f.hpp:399:31: required from 'RealType boost::math::quantile(const complemented2_type, RealType>&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 399 | RealType x = quantile(complement(boost::math::non_central_beta_distribution(alpha, beta, c.dist.non_centrality()), c.param)); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:956:33: required from 'Real ncf_isf_wrap(Real, Real, Real, Real) [with Real = float]' 956 | return boost::math::quantile(boost::math::complement( | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ 957 |  boost::math::non_central_f_distribution(v1, v2, l), x)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:963:24: required from here 963 | return ncf_isf_wrap(x, v1, v2, l); | ~~~~~~~~~~~~^~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:310:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 310 | BOOST_MATH_GPU_ENABLED boost::math::pair toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::toms748_solve(F, const T&, const T&, const T&, const T&, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::nc_beta_quantile_functor, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; T = double; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:399:54: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::detail::bracket_and_solve_root_01(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = nc_beta_quantile_functor, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; T = double; Tol = boost::math::tools::eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >; uintmax_t = long unsigned int]' 399 | boost::math::pair r = toms748_solve( | ~~~~~~~~~~~~~^ 400 |  f, | ~~ 401 |  (a < 0 ? b : a), | ~~~~~~~~~~~~~~~~ 402 |  (a < 0 ? a : b), | ~~~~~~~~~~~~~~~~ 403 |  (a < 0 ? fb : fa), | ~~~~~~~~~~~~~~~~~~ 404 |  (a < 0 ? fa : fb), | ~~~~~~~~~~~~~~~~~~ 405 |  tol, | ~~~~ 406 |  count, | ~~~~~~ 407 |  pol); | ~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:516:43: required from 'RealType boost::math::detail::nc_beta_quantile(const boost::math::non_central_beta_distribution&, const RealType&, bool) [with RealType = double; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 516 | = bracket_and_solve_root_01( | ~~~~~~~~~~~~~~~~~~~~~~~~~^ 517 |  f, guess, value_type(2.5), true, tol, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 518 |  max_iter, Policy()); | ~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:965:41: required from 'RealType boost::math::quantile(const complemented2_type, RealType>&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 965 | return detail::nc_beta_quantile(c.dist, c.param, true); | ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_f.hpp:399:31: required from 'RealType boost::math::quantile(const complemented2_type, RealType>&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 399 | RealType x = quantile(complement(boost::math::non_central_beta_distribution(alpha, beta, c.dist.non_centrality()), c.param)); | ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:956:33: required from 'Real ncf_isf_wrap(Real, Real, Real, Real) [with Real = double]' 956 | return boost::math::quantile(boost::math::complement( | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ 957 |  boost::math::non_central_f_distribution(v1, v2, l), x)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:969:24: required from here 969 | return ncf_isf_wrap(x, v1, v2, l); | ~~~~~~~~~~~~^~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:310:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 310 | BOOST_MATH_GPU_ENABLED boost::math::pair toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::toms748_solve(F, const T&, const T&, const T&, const T&, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::generic_quantile_finder, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > > >; T = float; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:609:45: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::bracket_and_solve_root(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::generic_quantile_finder, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > > >; T = float; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >; uintmax_t = long unsigned int]' 609 | boost::math::pair r = toms748_solve( | ~~~~~~~~~~~~~^ 610 |  f, | ~~ 611 |  (a < 0 ? b : a), | ~~~~~~~~~~~~~~~~ 612 |  (a < 0 ? a : b), | ~~~~~~~~~~~~~~~~ 613 |  (a < 0 ? fb : fa), | ~~~~~~~~~~~~~~~~~~ 614 |  (a < 0 ? fa : fb), | ~~~~~~~~~~~~~~~~~~ 615 |  tol, | ~~~~ 616 |  count, | ~~~~~~ 617 |  pol); | ~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:86:80: required from 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_t_distribution, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > >; typename Dist::value_type = float]' 86 | boost::math::pair ir = tools::bracket_and_solve_root( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 87 |  f, guess, value_type(2), true, tol, max_iter, forwarding_policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:384:57: required from 'T boost::math::detail::non_central_t_quantile(const char*, T, T, T, T, const Policy&) [with T = float; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 384 | value_type result = detail::generic_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~^ 385 |  non_central_t_distribution(v, delta), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 386 |  (p < q ? p : q), | ~~~~~~~~~~~~~~~~ 387 |  guess, | ~~~~~~ 388 |  (p >= q), | ~~~~~~~~~ 389 |  function); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:1302:47: required from 'RealType boost::math::quantile(const non_central_t_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]' 1302 | return detail::non_central_t_quantile(function, v, l, p, RealType(1-p), Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1112:27: required from 'Real nct_ppf_wrap(Real, Real, Real) [with Real = float]' 1112 | y = boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1113 |  boost::math::non_central_t_distribution(v, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1135:24: required from here 1135 | return nct_ppf_wrap(v, l, x); | ~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:310:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 310 | BOOST_MATH_GPU_ENABLED boost::math::pair toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::toms748_solve(F, const T&, const T&, const T&, const T&, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::generic_quantile_finder, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > > >; T = double; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:609:45: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::bracket_and_solve_root(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::generic_quantile_finder, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > > >; T = double; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >; uintmax_t = long unsigned int]' 609 | boost::math::pair r = toms748_solve( | ~~~~~~~~~~~~~^ 610 |  f, | ~~ 611 |  (a < 0 ? b : a), | ~~~~~~~~~~~~~~~~ 612 |  (a < 0 ? a : b), | ~~~~~~~~~~~~~~~~ 613 |  (a < 0 ? fb : fa), | ~~~~~~~~~~~~~~~~~~ 614 |  (a < 0 ? fa : fb), | ~~~~~~~~~~~~~~~~~~ 615 |  tol, | ~~~~ 616 |  count, | ~~~~~~ 617 |  pol); | ~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:86:80: required from 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_t_distribution, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > >; typename Dist::value_type = double]' 86 | boost::math::pair ir = tools::bracket_and_solve_root( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 87 |  f, guess, value_type(2), true, tol, max_iter, forwarding_policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:384:57: required from 'T boost::math::detail::non_central_t_quantile(const char*, T, T, T, T, const Policy&) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 384 | value_type result = detail::generic_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~^ 385 |  non_central_t_distribution(v, delta), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 386 |  (p < q ? p : q), | ~~~~~~~~~~~~~~~~ 387 |  guess, | ~~~~~~ 388 |  (p >= q), | ~~~~~~~~~ 389 |  function); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:1302:47: required from 'RealType boost::math::quantile(const non_central_t_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]' 1302 | return detail::non_central_t_quantile(function, v, l, p, RealType(1-p), Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1112:27: required from 'Real nct_ppf_wrap(Real, Real, Real) [with Real = double]' 1112 | y = boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1113 |  boost::math::non_central_t_distribution(v, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1141:24: required from here 1141 | return nct_ppf_wrap(v, l, x); | ~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:310:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 310 | BOOST_MATH_GPU_ENABLED boost::math::pair toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::toms748_solve(F, const T&, const T&, const T&, const T&, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::generic_quantile_finder, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> > >; T = float; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:609:45: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::bracket_and_solve_root(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::generic_quantile_finder, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> > >; T = float; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>; uintmax_t = long unsigned int]' 609 | boost::math::pair r = toms748_solve( | ~~~~~~~~~~~~~^ 610 |  f, | ~~ 611 |  (a < 0 ? b : a), | ~~~~~~~~~~~~~~~~ 612 |  (a < 0 ? a : b), | ~~~~~~~~~~~~~~~~ 613 |  (a < 0 ? fb : fa), | ~~~~~~~~~~~~~~~~~~ 614 |  (a < 0 ? fa : fb), | ~~~~~~~~~~~~~~~~~~ 615 |  tol, | ~~~~ 616 |  count, | ~~~~~~ 617 |  pol); | ~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:86:80: required from 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_t_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >; typename Dist::value_type = float]' 86 | boost::math::pair ir = tools::bracket_and_solve_root( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 87 |  f, guess, value_type(2), true, tol, max_iter, forwarding_policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:384:57: required from 'T boost::math::detail::non_central_t_quantile(const char*, T, T, T, T, const Policy&) [with T = float; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 384 | value_type result = detail::generic_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~^ 385 |  non_central_t_distribution(v, delta), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 386 |  (p < q ? p : q), | ~~~~~~~~~~~~~~~~ 387 |  guess, | ~~~~~~ 388 |  (p >= q), | ~~~~~~~~~ 389 |  function); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:1313:47: required from 'RealType boost::math::quantile(const complemented2_type, RealType>&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 1313 | return detail::non_central_t_quantile(function, v, l, RealType(1-q), q, Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1168:33: required from 'Real nct_isf_wrap(Real, Real, Real) [with Real = float]' 1168 | return boost::math::quantile(boost::math::complement( | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ 1169 |  boost::math::non_central_t_distribution(v, l), x)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1175:24: required from here 1175 | return nct_isf_wrap(x, v, l); | ~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:310:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 310 | BOOST_MATH_GPU_ENABLED boost::math::pair toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In instantiation of 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::toms748_solve(F, const T&, const T&, const T&, const T&, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::generic_quantile_finder, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> > >; T = double; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>; uintmax_t = long unsigned int]': ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:609:45: required from 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::bracket_and_solve_root(F, const T&, T, bool, Tol, uintmax_t&, const Policy&) [with F = boost::math::detail::generic_quantile_finder, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> > >; T = double; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>; uintmax_t = long unsigned int]' 609 | boost::math::pair r = toms748_solve( | ~~~~~~~~~~~~~^ 610 |  f, | ~~ 611 |  (a < 0 ? b : a), | ~~~~~~~~~~~~~~~~ 612 |  (a < 0 ? a : b), | ~~~~~~~~~~~~~~~~ 613 |  (a < 0 ? fb : fa), | ~~~~~~~~~~~~~~~~~~ 614 |  (a < 0 ? fa : fb), | ~~~~~~~~~~~~~~~~~~ 615 |  tol, | ~~~~ 616 |  count, | ~~~~~~ 617 |  pol); | ~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:86:80: required from 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_t_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >; typename Dist::value_type = double]' 86 | boost::math::pair ir = tools::bracket_and_solve_root( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 87 |  f, guess, value_type(2), true, tol, max_iter, forwarding_policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:384:57: required from 'T boost::math::detail::non_central_t_quantile(const char*, T, T, T, T, const Policy&) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 384 | value_type result = detail::generic_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~^ 385 |  non_central_t_distribution(v, delta), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 386 |  (p < q ? p : q), | ~~~~~~~~~~~~~~~~ 387 |  guess, | ~~~~~~ 388 |  (p >= q), | ~~~~~~~~~ 389 |  function); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_t.hpp:1313:47: required from 'RealType boost::math::quantile(const complemented2_type, RealType>&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 1313 | return detail::non_central_t_quantile(function, v, l, RealType(1-q), q, Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1168:33: required from 'Real nct_isf_wrap(Real, Real, Real) [with Real = double]' 1168 | return boost::math::quantile(boost::math::complement( | ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~ 1169 |  boost::math::non_central_t_distribution(v, l), x)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1181:24: required from here 1181 | return nct_isf_wrap(x, v, l); | ~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:310:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 310 | BOOST_MATH_GPU_ENABLED boost::math::pair toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~ In file included from ../subprojects/boost_math/math/include/boost/math/distributions.hpp:18: ../subprojects/boost_math/math/include/boost/math/distributions/binomial.hpp: In instantiation of 'const std::pair<_FIter, _FIter> boost::math::support(const binomial_distribution&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:99:52: required from 'typename Dist::value_type boost::math::detail::do_inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, typename Dist::value_type, const typename Dist::value_type&, typename Dist::value_type, const Tolerance&, uintmax_t&) [with Dist = boost::math::binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; Tolerance = boost::math::tools::equal_ceil; typename Dist::value_type = float; uintmax_t = long unsigned int]' 99 | boost::math::tie(min_bound, max_bound) = support(dist); | ~~~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:536:59: required from 'typename Dist::value_type boost::math::detail::inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, const typename Dist::value_type&, const typename Dist::value_type&, const typename Dist::value_type&, const boost::math::policies::discrete_quantile&, uintmax_t&) [with Dist = boost::math::binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; typename Dist::value_type = float; uintmax_t = long unsigned int]' 536 | return round_to_ceil(dist, do_inverse_discrete_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 537 |  dist, | ~~~~~ 538 |  p, | ~~ 539 |  c, | ~~ 540 |  ceil(guess), | ~~~~~~~~~~~~ 541 |  multiplier, | ~~~~~~~~~~~ 542 |  adder, | ~~~~~~ 543 |  tools::equal_ceil(), | ~~~~~~~~~~~~~~~~~~~~ 544 |  max_iter), p, c); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/binomial.hpp:263:51: required from 'RealType boost::math::binomial_detail::quantile_imp(const boost::math::binomial_distribution&, const RealType&, const RealType&, bool) [with RealType = float; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 263 | result = detail::inverse_discrete_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 264 |  dist, | ~~~~~ 265 |  comp ? q : p, | ~~~~~~~~~~~~~ 266 |  comp, | ~~~~~ 267 |  guess, | ~~~~~~ 268 |  factor, | ~~~~~~~ 269 |  RealType(1), | ~~~~~~~~~~~~ 270 |  discrete_quantile_type(), | ~~~~~~~~~~~~~~~~~~~~~~~~~ 271 |  max_iter); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/binomial.hpp:657:46: required from 'RealType boost::math::quantile(const binomial_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 657 | return binomial_detail::quantile_imp(dist, p, RealType(1-p), false); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1358:33: required from 'Real binom_ppf_wrap(Real, Real, Real) [with Real = float]' 1358 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1359 |  boost::math::binomial_distribution(n, p), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1365:26: required from here 1365 | return binom_ppf_wrap(x, n, p); | ~~~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/binomial.hpp:431:75: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 431 | BOOST_MATH_CUDA_ENABLED const boost::math::pair support(const binomial_distribution& dist) | ^~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/binomial.hpp: In instantiation of 'const std::pair<_FIter, _FIter> boost::math::support(const binomial_distribution&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:99:52: required from 'typename Dist::value_type boost::math::detail::do_inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, typename Dist::value_type, const typename Dist::value_type&, typename Dist::value_type, const Tolerance&, uintmax_t&) [with Dist = boost::math::binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; Tolerance = boost::math::tools::equal_ceil; typename Dist::value_type = double; uintmax_t = long unsigned int]' 99 | boost::math::tie(min_bound, max_bound) = support(dist); | ~~~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:536:59: required from 'typename Dist::value_type boost::math::detail::inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, const typename Dist::value_type&, const typename Dist::value_type&, const typename Dist::value_type&, const boost::math::policies::discrete_quantile&, uintmax_t&) [with Dist = boost::math::binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; typename Dist::value_type = double; uintmax_t = long unsigned int]' 536 | return round_to_ceil(dist, do_inverse_discrete_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 537 |  dist, | ~~~~~ 538 |  p, | ~~ 539 |  c, | ~~ 540 |  ceil(guess), | ~~~~~~~~~~~~ 541 |  multiplier, | ~~~~~~~~~~~ 542 |  adder, | ~~~~~~ 543 |  tools::equal_ceil(), | ~~~~~~~~~~~~~~~~~~~~ 544 |  max_iter), p, c); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/binomial.hpp:263:51: required from 'RealType boost::math::binomial_detail::quantile_imp(const boost::math::binomial_distribution&, const RealType&, const RealType&, bool) [with RealType = double; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 263 | result = detail::inverse_discrete_quantile( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 264 |  dist, | ~~~~~ 265 |  comp ? q : p, | ~~~~~~~~~~~~~ 266 |  comp, | ~~~~~ 267 |  guess, | ~~~~~~ 268 |  factor, | ~~~~~~~ 269 |  RealType(1), | ~~~~~~~~~~~~ 270 |  discrete_quantile_type(), | ~~~~~~~~~~~~~~~~~~~~~~~~~ 271 |  max_iter); | ~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/binomial.hpp:657:46: required from 'RealType boost::math::quantile(const binomial_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 657 | return binomial_detail::quantile_imp(dist, p, RealType(1-p), false); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1358:33: required from 'Real binom_ppf_wrap(Real, Real, Real) [with Real = double]' 1358 | return boost::math::quantile( | ~~~~~~~~~~~~~~~~~~~~~^ 1359 |  boost::math::binomial_distribution(n, p), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:1371:26: required from here 1371 | return binom_ppf_wrap(x, n, p); | ~~~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/binomial.hpp:431:75: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 431 | BOOST_MATH_CUDA_ENABLED const boost::math::pair support(const binomial_distribution& dist) | ^~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp: In instantiation of 'boost::math::detail::ibeta_fraction2_t::result_type boost::math::detail::ibeta_fraction2_t::operator()() [with T = float; result_type = std::pair]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:134:20: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_b_impl(Gen&, const U&, uintmax_t&) [with Gen = boost::math::detail::ibeta_fraction2_t; U = float; typename fraction_traits::result_type = float; uintmax_t = long unsigned int]' 134 | value_type v = g(); | ~^~ ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:184:44: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::continued_fraction_b(Gen&, const U&) [with Gen = boost::math::detail::ibeta_fraction2_t; U = float; typename detail::fraction_traits::result_type = float]' 184 | return detail::continued_fraction_b_impl(g, factor, max_terms); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:847:54: required from 'T boost::math::detail::ibeta_fraction2(T, T, T, T, const Policy&, bool, T*) [with T = float; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 847 | T fract = boost::math::tools::continued_fraction_b(f, boost::math::policies::get_epsilon()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1499:36: required from 'T boost::math::detail::ibeta_imp(T, T, T, const Policy&, bool, bool, T*) [with T = float; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 1499 | fract = ibeta_fraction2(a, b, x, y, pol, normalised, p_derivative); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1536:20: required from 'T boost::math::detail::ibeta_imp(T, T, T, const Policy&, bool, bool) [with T = float; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 1536 | return ibeta_imp(a, b, x, pol, inv, normalised, static_cast(nullptr)); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1690:93: required from 'boost::math::tools::promote_args_t boost::math::ibeta(RT1, RT2, RT3, const Policy&) [with RT1 = float; RT2 = float; RT3 = float; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >; tools::promote_args_t = float]' 1690 | return policies::checked_narrowing_cast(detail::ibeta_imp(static_cast(a), static_cast(b), static_cast(x), forwarding_policy(), false, true), "boost::math::ibeta<%1%>(%1%,%1%,%1%)"); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:117:31: required from 'Real ibeta_wrap(Real, Real, Real) [with Real = float]' 117 | y = boost::math::ibeta(a, b, x, SpecialPolicy()); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:137:22: required from here 137 | return ibeta_wrap(a, b, x); | ~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:810:39: note: parameter passing for argument of type 'boost::math::detail::ibeta_fraction2_t::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 810 | BOOST_MATH_GPU_ENABLED result_type operator()() | ^~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp: In instantiation of 'boost::math::detail::ibeta_fraction2_t::result_type boost::math::detail::ibeta_fraction2_t::operator()() [with T = double; result_type = std::pair]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:134:20: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_b_impl(Gen&, const U&, uintmax_t&) [with Gen = boost::math::detail::ibeta_fraction2_t; U = double; typename fraction_traits::result_type = double; uintmax_t = long unsigned int]' 134 | value_type v = g(); | ~^~ ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:184:44: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::continued_fraction_b(Gen&, const U&) [with Gen = boost::math::detail::ibeta_fraction2_t; U = double; typename detail::fraction_traits::result_type = double]' 184 | return detail::continued_fraction_b_impl(g, factor, max_terms); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:847:54: required from 'T boost::math::detail::ibeta_fraction2(T, T, T, T, const Policy&, bool, T*) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 847 | T fract = boost::math::tools::continued_fraction_b(f, boost::math::policies::get_epsilon()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1499:36: required from 'T boost::math::detail::ibeta_imp(T, T, T, const Policy&, bool, bool, T*) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 1499 | fract = ibeta_fraction2(a, b, x, y, pol, normalised, p_derivative); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1536:20: required from 'T boost::math::detail::ibeta_imp(T, T, T, const Policy&, bool, bool) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 1536 | return ibeta_imp(a, b, x, pol, inv, normalised, static_cast(nullptr)); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1690:93: required from 'boost::math::tools::promote_args_t boost::math::ibeta(RT1, RT2, RT3, const Policy&) [with RT1 = double; RT2 = double; RT3 = double; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >; tools::promote_args_t = double]' 1690 | return policies::checked_narrowing_cast(detail::ibeta_imp(static_cast(a), static_cast(b), static_cast(x), forwarding_policy(), false, true), "boost::math::ibeta<%1%>(%1%,%1%,%1%)"); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:117:31: required from 'Real ibeta_wrap(Real, Real, Real) [with Real = double]' 117 | y = boost::math::ibeta(a, b, x, SpecialPolicy()); | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:143:22: required from here 143 | return ibeta_wrap(a, b, x); | ~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:810:39: note: parameter passing for argument of type 'boost::math::detail::ibeta_fraction2_t::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 810 | BOOST_MATH_GPU_ENABLED result_type operator()() | ^~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp: In instantiation of 'boost::math::detail::ibeta_fraction2_t::result_type boost::math::detail::ibeta_fraction2_t::operator()() [with T = long double; result_type = std::pair]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:134:20: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_b_impl(Gen&, const U&, uintmax_t&) [with Gen = boost::math::detail::ibeta_fraction2_t; U = long double; typename fraction_traits::result_type = long double; uintmax_t = long unsigned int]' 134 | value_type v = g(); | ~^~ ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:184:44: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::continued_fraction_b(Gen&, const U&) [with Gen = boost::math::detail::ibeta_fraction2_t; U = long double; typename detail::fraction_traits::result_type = long double]' 184 | return detail::continued_fraction_b_impl(g, factor, max_terms); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:847:54: required from 'T boost::math::detail::ibeta_fraction2(T, T, T, T, const Policy&, bool, T*) [with T = long double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>]' 847 | T fract = boost::math::tools::continued_fraction_b(f, boost::math::policies::get_epsilon()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1499:36: required from 'T boost::math::detail::ibeta_imp(T, T, T, const Policy&, bool, bool, T*) [with T = long double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>]' 1499 | fract = ibeta_fraction2(a, b, x, y, pol, normalised, p_derivative); | ~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1536:20: required from 'T boost::math::detail::ibeta_imp(T, T, T, const Policy&, bool, bool) [with T = long double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>]' 1536 | return ibeta_imp(a, b, x, pol, inv, normalised, static_cast(nullptr)); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1713:93: required from 'boost::math::tools::promote_args_t boost::math::ibetac(RT1, RT2, RT3, const Policy&) [with RT1 = double; RT2 = double; RT3 = double; Policy = policies::policy; tools::promote_args_t = double]' 1713 | return policies::checked_narrowing_cast(detail::ibeta_imp(static_cast(a), static_cast(b), static_cast(x), forwarding_policy(), true, true), "boost::math::ibetac<%1%>(%1%,%1%,%1%)"); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1719:30: required from 'boost::math::tools::promote_args_t boost::math::ibetac(RT1, RT2, RT3) [with RT1 = double; RT2 = double; RT3 = double; tools::promote_args_t = double]' 1719 | return boost::math::ibetac(a, b, x, policies::policy<>()); | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:194:32: required from 'Real ibetac_wrap(Real, Real, Real) [with Real = double]' 194 | y = boost::math::ibetac(a, b, x); | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~ ../scipy/special/boost_special_functions.h:220:23: required from here 220 | return ibetac_wrap(a, b, x); | ~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:810:39: note: parameter passing for argument of type 'boost::math::detail::ibeta_fraction2_t::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 810 | BOOST_MATH_GPU_ENABLED result_type operator()() | ^~~~~~~~ In file included from ../subprojects/boost_math/math/include/boost/math/special_functions/detail/hypergeometric_1F1_recurrence.hpp:17, from ../subprojects/boost_math/math/include/boost/math/special_functions/hypergeometric_1F1.hpp:19, from ../scipy/special/boost_special_functions.h:12: ../subprojects/boost_math/math/include/boost/math/tools/recurrence.hpp: In instantiation of 'boost::math::tools::detail::function_ratio_from_backwards_recurrence_fraction::result_type boost::math::tools::detail::function_ratio_from_backwards_recurrence_fraction::operator()() [with Recurrence = boost::math::tools::detail::recurrence_reverser, double>; result_type = std::pair]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:259:20: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_a_impl(Gen&, const U&, uintmax_t&) [with Gen = function_ratio_from_backwards_recurrence_fraction, double> >; U = double; typename fraction_traits::result_type = double; uintmax_t = long unsigned int]' 259 | value_type v = g(); | ~^~ ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:299:44: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::continued_fraction_a(Gen&, const U&, uintmax_t&) [with Gen = detail::function_ratio_from_backwards_recurrence_fraction, double> >; U = double; typename detail::fraction_traits::result_type = double; uintmax_t = long unsigned int]' 299 | return detail::continued_fraction_a_impl(g, factor, max_terms); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/recurrence.hpp:127:60: required from 'T boost::math::tools::function_ratio_from_forwards_recurrence(const Recurrence&, const T&, uintmax_t&) [with Recurrence = boost::math::detail::hypergeometric_1F1_recurrence_b_coefficients; T = double; uintmax_t = long unsigned int]' 127 | return boost::math::tools::continued_fraction_a(f, factor, max_iter); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/detail/hypergeometric_1F1_small_a_negative_b_by_ratio.hpp:51:79: required from 'T boost::math::detail::hypergeometric_1F1_small_a_negative_b_by_ratio(const T&, const T&, const T&, const Policy&, long long int&) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 51 | T ratio = boost::math::tools::function_ratio_from_forwards_recurrence(boost::math::detail::hypergeometric_1F1_recurrence_b_coefficients(a, b, z), boost::math::tools::epsilon(), max_iter); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/hypergeometric_1F1.hpp:397:69: required from 'T boost::math::detail::hypergeometric_1F1_imp(const T&, const T&, const T&, const Policy&, long long int&) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 397 | return hypergeometric_1F1_small_a_negative_b_by_ratio(a, b, z, pol, log_scaling); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/hypergeometric_1F1.hpp:625:40: required from 'T boost::math::detail::hypergeometric_1F1_imp(const T&, const T&, const T&, const Policy&) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 625 | T result = hypergeometric_1F1_imp(a, b, z, pol, log_scaling); | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/hypergeometric_1F1.hpp:704:49: required from 'boost::math::tools::promote_args_t boost::math::hypergeometric_1F1(T1, T2, T3, const Policy&) [with T1 = double; T2 = double; T3 = double; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >; tools::promote_args_t = double]' 704 | detail::hypergeometric_1F1_imp( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 705 |  static_cast(a), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 706 |  static_cast(b), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 707 |  static_cast(z), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 708 |  forwarding_policy()), | ~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:528:44: required from 'Real hyp1f1_wrap(Real, Real, Real) [with Real = double]' 528 | y = boost::math::hypergeometric_1F1(a, b, x, SpecialPolicy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:548:23: required from here 548 | return hyp1f1_wrap(a, b, x); | ~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/recurrence.hpp:42:28: note: parameter passing for argument of type 'boost::math::tools::detail::function_ratio_from_backwards_recurrence_fraction, double> >::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 42 | result_type operator()() | ^~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp: In instantiation of 'boost::math::detail::upper_incomplete_gamma_fract::result_type boost::math::detail::upper_incomplete_gamma_fract::operator()() [with T = float; result_type = std::pair]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:259:20: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_a_impl(Gen&, const U&, uintmax_t&) [with Gen = boost::math::detail::upper_incomplete_gamma_fract; U = float; typename fraction_traits::result_type = float; uintmax_t = long unsigned int]' 259 | value_type v = g(); | ~^~ ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:311:44: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::continued_fraction_a(Gen&, const U&) [with Gen = boost::math::detail::upper_incomplete_gamma_fract; U = float; typename detail::fraction_traits::result_type = float]' 311 | return detail::continued_fraction_a_impl(g, factor, max_iter); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp:380:68: required from 'T boost::math::detail::upper_gamma_fraction(T, T, T) [with T = float]' 380 | return 1 / (z - a + 1 + boost::math::tools::continued_fraction_a(f, eps)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp:1681:44: required from 'T boost::math::detail::gamma_incomplete_imp(T, T, bool, bool, const Policy&, T*) [with T = float; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>]' 1681 | result += log(upper_gamma_fraction(a, x, policies::get_epsilon())); | ~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp:2463:35: required from 'boost::math::tools::promote_args_t boost::math::gamma_p(RT1, RT2, const Policy&) [with RT1 = float; RT2 = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >; tools::promote_args_t = float]' 2463 | detail::gamma_incomplete_imp(static_cast(a), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2464 |  static_cast(z), true, false, | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2465 |  forwarding_policy(), static_cast(nullptr)), "gamma_p<%1%>(%1%, %1%)"); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/chi_squared.hpp:155:31: required from 'RealType boost::math::cdf(const chi_squared_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 155 | return boost::math::gamma_p(degrees_of_freedom / 2, chi_square / 2, Policy()); | ~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp:334:43: required from 'RealType boost::math::detail::non_central_chi_squared_cdf(RealType, RealType, RealType, bool, const Policy&) [with RealType = float; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]' 334 | return invert == false ? cdf(boost::math::chi_squared_distribution(k), x) : cdf(complement(boost::math::chi_squared_distribution(k), x)); | ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_chi_squared.hpp:946:52: required from 'RealType boost::math::cdf(const non_central_chi_squared_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]' 946 | return detail::non_central_chi_squared_cdf(x, k, l, false, Policy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:739:32: required from 'Real ncx2_cdf_wrap(Real, Real, Real) [with Real = float]' 739 | return boost::math::cdf( | ~~~~~~~~~~~~~~~~^ 740 |  boost::math::non_central_chi_squared_distribution(k, l), x); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:749:25: required from here 749 | return ncx2_cdf_wrap(x, k, l); | ~~~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp:365:39: note: parameter passing for argument of type 'boost::math::detail::upper_incomplete_gamma_fract::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 365 | BOOST_MATH_GPU_ENABLED result_type operator()() | ^~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp: In instantiation of 'boost::math::detail::upper_incomplete_gamma_fract::result_type boost::math::detail::upper_incomplete_gamma_fract::operator()() [with T = long double; result_type = std::pair]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:259:20: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_a_impl(Gen&, const U&, uintmax_t&) [with Gen = boost::math::detail::upper_incomplete_gamma_fract; U = long double; typename fraction_traits::result_type = long double; uintmax_t = long unsigned int]' 259 | value_type v = g(); | ~^~ ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:311:44: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::continued_fraction_a(Gen&, const U&) [with Gen = boost::math::detail::upper_incomplete_gamma_fract; U = long double; typename detail::fraction_traits::result_type = long double]' 311 | return detail::continued_fraction_a_impl(g, factor, max_iter); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp:380:68: required from 'T boost::math::detail::upper_gamma_fraction(T, T, T) [with T = long double]' 380 | return 1 / (z - a + 1 + boost::math::tools::continued_fraction_a(f, eps)); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp:1681:44: required from 'T boost::math::detail::gamma_incomplete_imp(T, T, bool, bool, const Policy&, T*) [with T = long double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>]' 1681 | result += log(upper_gamma_fraction(a, x, policies::get_epsilon())); | ~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp:2432:35: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1308:54: required from 'T boost::math::detail::ibeta_imp(T, T, T, const Policy&, bool, bool, T*) [with T = long double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>]' 1308 | fract = beta_small_b_large_a_series(T(a + 20), b, x, y, fract, prefix, pol, normalised); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1536:20: required from 'T boost::math::detail::ibeta_imp(T, T, T, const Policy&, bool, bool) [with T = long double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>]' 1536 | return ibeta_imp(a, b, x, pol, inv, normalised, static_cast(nullptr)); | ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1713:93: required from 'boost::math::tools::promote_args_t boost::math::ibetac(RT1, RT2, RT3, const Policy&) [with RT1 = double; RT2 = double; RT3 = double; Policy = policies::policy; tools::promote_args_t = double]' 1713 | return policies::checked_narrowing_cast(detail::ibeta_imp(static_cast(a), static_cast(b), static_cast(x), forwarding_policy(), true, true), "boost::math::ibetac<%1%>(%1%,%1%,%1%)"); | ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/beta.hpp:1719:30: required from 'boost::math::tools::promote_args_t boost::math::ibetac(RT1, RT2, RT3) [with RT1 = double; RT2 = double; RT3 = double; tools::promote_args_t = double]' 1719 | return boost::math::ibetac(a, b, x, policies::policy<>()); | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:194:32: required from 'Real ibetac_wrap(Real, Real, Real) [with Real = double]' 194 | y = boost::math::ibetac(a, b, x); | ~~~~~~~~~~~~~~~~~~~^~~~~~~~~ ../scipy/special/boost_special_functions.h:220:23: required from here 220 | return ibetac_wrap(a, b, x); | ~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp:365:39: note: parameter passing for argument of type 'boost::math::detail::upper_incomplete_gamma_fract::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 365 | BOOST_MATH_GPU_ENABLED result_type operator()() | ^~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/recurrence.hpp: In instantiation of 'boost::math::tools::detail::function_ratio_from_backwards_recurrence_fraction::result_type boost::math::tools::detail::function_ratio_from_backwards_recurrence_fraction::operator()() [with Recurrence = boost::math::tools::detail::recurrence_offsetter >; result_type = std::pair]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:259:20: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_a_impl(Gen&, const U&, uintmax_t&) [with Gen = function_ratio_from_backwards_recurrence_fraction > >; U = double; typename fraction_traits::result_type = double; uintmax_t = long unsigned int]' 259 | value_type v = g(); | ~^~ ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:299:44: required from 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::continued_fraction_a(Gen&, const U&, uintmax_t&) [with Gen = detail::function_ratio_from_backwards_recurrence_fraction > >; U = double; typename detail::fraction_traits::result_type = double; uintmax_t = long unsigned int]' 299 | return detail::continued_fraction_a_impl(g, factor, max_terms); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/recurrence.hpp:106:60: required from 'T boost::math::tools::function_ratio_from_backwards_recurrence(const Recurrence&, const T&, uintmax_t&) [with Recurrence = detail::recurrence_offsetter >; T = double; uintmax_t = long unsigned int]' 106 | return boost::math::tools::continued_fraction_a(f, factor, max_iter); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/recurrence.hpp:296:95: required from 'boost::math::tools::backward_recurrence_iterator::backward_recurrence_iterator(const Recurrence&, value_type) [with Recurrence = boost::math::detail::bessel_ik_recurrence; value_type = double]' 296 | f_n_plus_1 = f_n * boost::math::tools::function_ratio_from_backwards_recurrence(detail::recurrence_offsetter(r, 1), value_type(boost::math::tools::epsilon() * 2), max_iter); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/bessel_iterators.hpp:106:15: required from 'boost::math::bessel_i_backwards_iterator::bessel_i_backwards_iterator(const T&, const T&, const T&) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 106 | : it(detail::bessel_ik_recurrence(v, x), I_v) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/detail/hypergeometric_1F1_bessel.hpp:547:51: [ skipping 2 instantiation contexts, use -ftemplate-backtrace-limit=0 to disable ] ../subprojects/boost_math/math/include/boost/math/special_functions/detail/hypergeometric_1F1_bessel.hpp:590:56: required from 'T boost::math::detail::hypergeometric_1F1_AS_13_3_6(const T&, const T&, const T&, const T&, const Policy&, long long int&) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 590 | hypergeometric_1F1_AS_13_3_6_series s(a, b, z, b_minus_a, pol); | ^ ../subprojects/boost_math/math/include/boost/math/special_functions/hypergeometric_1F1.hpp:377:68: required from 'T boost::math::detail::hypergeometric_1F1_imp(const T&, const T&, const T&, const Policy&, long long int&) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 377 | T r = boost::math::detail::hypergeometric_1F1_AS_13_3_6(b_minus_a, b, T(-z), a, pol, log_scaling); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/hypergeometric_1F1.hpp:625:40: required from 'T boost::math::detail::hypergeometric_1F1_imp(const T&, const T&, const T&, const Policy&) [with T = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]' 625 | T result = hypergeometric_1F1_imp(a, b, z, pol, log_scaling); | ~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/hypergeometric_1F1.hpp:704:49: required from 'boost::math::tools::promote_args_t boost::math::hypergeometric_1F1(T1, T2, T3, const Policy&) [with T1 = double; T2 = double; T3 = double; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >; tools::promote_args_t = double]' 704 | detail::hypergeometric_1F1_imp( | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ 705 |  static_cast(a), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 706 |  static_cast(b), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 707 |  static_cast(z), | ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 708 |  forwarding_policy()), | ~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:528:44: required from 'Real hyp1f1_wrap(Real, Real, Real) [with Real = double]' 528 | y = boost::math::hypergeometric_1F1(a, b, x, SpecialPolicy()); | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ ../scipy/special/boost_special_functions.h:548:23: required from here 548 | return hyp1f1_wrap(a, b, x); | ~~~~~~~~~~~^~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/recurrence.hpp:42:28: note: parameter passing for argument of type 'boost::math::tools::detail::function_ratio_from_backwards_recurrence_fraction > >::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 42 | result_type operator()() | ^~~~~~~~ In file included from ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp:19: ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp: In function 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_a_impl(Gen&, const U&, uintmax_t&) [with Gen = boost::math::detail::upper_incomplete_gamma_fract; U = float]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:259:15: note: parameter passing for argument of type 'boost::math::detail::upper_incomplete_gamma_fract::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 259 | value_type v = g(); | ^ ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp: In function 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_a_impl(Gen&, const U&, uintmax_t&) [with Gen = boost::math::detail::upper_incomplete_gamma_fract; U = double]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:259:15: note: parameter passing for argument of type 'boost::math::detail::upper_incomplete_gamma_fract::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp: In function 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_a_impl(Gen&, const U&, uintmax_t&) [with Gen = boost::math::detail::upper_incomplete_gamma_fract; U = long double]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:259:15: note: parameter passing for argument of type 'boost::math::detail::upper_incomplete_gamma_fract::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 In file included from ../scipy/special/boost_special_functions.h:13: ../subprojects/boost_math/math/include/boost/math/special_functions/hypergeometric_pFq.hpp: In function 'typename boost::math::tools::promote_args::type boost::math::hypergeometric_pFq(const Seq&, const Seq&, const Real&, Real*, const Policy&) [with Seq = std::initializer_list; Real = double; Policy = policies::policy, policies::promote_double, policies::max_root_iterations<400> >]': ../subprojects/boost_math/math/include/boost/math/special_functions/hypergeometric_pFq.hpp:61:44: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 61 | std::pair r = boost::math::detail::hypergeometric_pFq_checked_series_impl(aj, bj, value_type(z), pol, boost::math::detail::iteration_terminator(boost::math::policies::get_max_series_iterations()), scale); | ^ In file included from ../subprojects/boost_math/math/include/boost/math/distributions/hyperexponential.hpp:639, from ../subprojects/boost_math/math/include/boost/math/distributions.hpp:28: ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp: In function 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_chi_squared_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:73:33: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 73 | ? check_range_result(range(dist).second, forwarding_policy(), function) | ~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp: In function 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_chi_squared_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:73:33: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp: In function 'RealType boost::math::detail::nc_beta_quantile(const boost::math::non_central_beta_distribution&, const RealType&, bool) [with RealType = float; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]': ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:515:55: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 515 | boost::math::pair ir | ^~ ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp: In function 'RealType boost::math::detail::nc_beta_quantile(const boost::math::non_central_beta_distribution&, const RealType&, bool) [with RealType = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >]': ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:515:55: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp: In function 'RealType boost::math::detail::nc_beta_quantile(const boost::math::non_central_beta_distribution&, const RealType&, bool) [with RealType = float; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]': ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:515:55: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp: In function 'RealType boost::math::detail::nc_beta_quantile(const boost::math::non_central_beta_distribution&, const RealType&, bool) [with RealType = double; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]': ../subprojects/boost_math/math/include/boost/math/distributions/non_central_beta.hpp:515:55: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp: In function 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_t_distribution, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > >]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:73:33: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 73 | ? check_range_result(range(dist).second, forwarding_policy(), function) | ~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp: In function 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_t_distribution, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> > >]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:73:33: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp: In function 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_t_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:73:33: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp: In function 'typename Dist::value_type boost::math::detail::generic_quantile(const Dist&, const typename Dist::value_type&, const typename Dist::value_type&, bool, const char*) [with Dist = boost::math::non_central_t_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/generic_quantile.hpp:73:33: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 In file included from ../subprojects/boost_math/math/include/boost/math/distributions.hpp:49: ../subprojects/boost_math/math/include/boost/math/distributions/skew_normal.hpp: In function 'RealType boost::math::quantile(const skew_normal_distribution&, const RealType&) [with RealType = float; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]': ../subprojects/boost_math/math/include/boost/math/distributions/skew_normal.hpp:694:10: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 694 | auto p_result = tools::bracket_and_solve_root(fun, result, scaling_factor, true, tools::eps_tolerance(get_digits), max_iter, Policy()); | ^~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/skew_normal.hpp: In function 'RealType boost::math::quantile(const skew_normal_distribution&, const RealType&) [with RealType = double; Policy = policies::policy, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile >]': ../subprojects/boost_math/math/include/boost/math/distributions/skew_normal.hpp:694:10: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 In file included from ../subprojects/boost_math/math/include/boost/math/distributions/binomial.hpp:88: ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp: In function 'typename Dist::value_type boost::math::detail::do_inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, typename Dist::value_type, const typename Dist::value_type&, typename Dist::value_type, const Tolerance&, uintmax_t&) [with Dist = boost::math::binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; Tolerance = boost::math::tools::equal_ceil]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:99:52: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 99 | boost::math::tie(min_bound, max_bound) = support(dist); | ~~~~~~~^~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp: In function 'typename Dist::value_type boost::math::detail::do_inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, typename Dist::value_type, const typename Dist::value_type&, typename Dist::value_type, const Tolerance&, uintmax_t&) [with Dist = boost::math::binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; Tolerance = boost::math::tools::equal_ceil]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:99:52: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp: In function 'typename Dist::value_type boost::math::detail::do_inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, typename Dist::value_type, const typename Dist::value_type&, typename Dist::value_type, const Tolerance&, uintmax_t&) [with Dist = boost::math::negative_binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; Tolerance = boost::math::tools::equal_ceil]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:99:52: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp: In function 'typename Dist::value_type boost::math::detail::do_inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, typename Dist::value_type, const typename Dist::value_type&, typename Dist::value_type, const Tolerance&, uintmax_t&) [with Dist = boost::math::negative_binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; Tolerance = boost::math::tools::equal_ceil]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:99:52: note: parameter passing for argument of type 'const std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp: In function 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_a_impl(Gen&, const U&, uintmax_t&) [with Gen = boost::math::detail::upper_incomplete_gamma_fract; U = float]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:259:20: note: parameter passing for argument of type 'boost::math::detail::upper_incomplete_gamma_fract::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 259 | value_type v = g(); | ~^~ ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp: In function 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_a_impl(Gen&, const U&, uintmax_t&) [with Gen = boost::math::detail::upper_incomplete_gamma_fract; U = long double]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:259:20: note: parameter passing for argument of type 'boost::math::detail::upper_incomplete_gamma_fract::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 259 | value_type v = g(); | ~^~ ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp: In function 'typename boost::math::tools::detail::fraction_traits::result_type boost::math::tools::detail::continued_fraction_a_impl(Gen&, const U&, uintmax_t&) [with Gen = function_ratio_from_backwards_recurrence_fraction > >; U = double]': ../subprojects/boost_math/math/include/boost/math/tools/fraction.hpp:259:20: note: parameter passing for argument of type 'boost::math::tools::detail::function_ratio_from_backwards_recurrence_fraction > >::result_type' {aka 'std::pair'} when C++17 is enabled changed to match C++14 in GCC 10.1 259 | value_type v = g(); | ~^~ In file included from ../subprojects/boost_math/math/include/boost/math/special_functions/gamma.hpp:2549: In member function 'std::tuple boost::math::detail::gamma_p_inverse_func::operator()(const T&) const [with T = float; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>]', inlined from 'T boost::math::tools::detail::second_order_root_finder(F, T, T, T, int, uintmax_t&) [with Stepper = halley_step; F = boost::math::detail::gamma_p_inverse_func, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >; T = float]' at ../subprojects/boost_math/math/include/boost/math/tools/roots.hpp:581:35: ../subprojects/boost_math/math/include/boost/math/special_functions/detail/igamma_inverse.hpp:364:10: warning: 'ft' may be used uninitialized [-Wmaybe-uninitialized] 364 | f1 = static_cast(ft); | ~~~^~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/detail/igamma_inverse.hpp: In function 'T boost::math::tools::detail::second_order_root_finder(F, T, T, T, int, uintmax_t&) [with Stepper = halley_step; F = boost::math::detail::gamma_p_inverse_func, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >; T = float]': ../subprojects/boost_math/math/include/boost/math/special_functions/detail/igamma_inverse.hpp:358:18: note: 'ft' declared here 358 | value_type ft; | ^~ In member function 'std::tuple boost::math::detail::gamma_p_inverse_func::operator()(const T&) const [with T = double; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy>]', inlined from 'T boost::math::tools::detail::second_order_root_finder(F, T, T, T, int, uintmax_t&) [with Stepper = halley_step; F = boost::math::detail::gamma_p_inverse_func, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >; T = double]' at ../subprojects/boost_math/math/include/boost/math/tools/roots.hpp:581:35: ../subprojects/boost_math/math/include/boost/math/special_functions/detail/igamma_inverse.hpp:364:10: warning: 'ft' may be used uninitialized [-Wmaybe-uninitialized] 364 | f1 = static_cast(ft); | ~~~^~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/special_functions/detail/igamma_inverse.hpp: In function 'T boost::math::tools::detail::second_order_root_finder(F, T, T, T, int, uintmax_t&) [with Stepper = halley_step; F = boost::math::detail::gamma_p_inverse_func, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy, boost::math::policies::default_policy> >; T = double]': ../subprojects/boost_math/math/include/boost/math/special_functions/detail/igamma_inverse.hpp:358:18: note: 'ft' declared here 358 | value_type ft; | ^~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In function 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::toms748_solve(F, const T&, const T&, const T&, const T&, Tol, uintmax_t&, const Policy&) [with F = boost::math::quantile, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >(const skew_normal_distribution, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >&, const float&)::; T = float; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]': ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:310:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 310 | BOOST_MATH_GPU_ENABLED boost::math::pair toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~ In file included from ../subprojects/boost_math/math/include/boost/math/special_functions/detail/hypergeometric_1F1_recurrence.hpp:18: ../subprojects/boost_math/math/include/boost/math/special_functions/detail/hypergeometric_pFq_checked_series.hpp: In function 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::detail::hypergeometric_pFq_checked_series_impl(const Seq&, const Seq&, const Real&, const Policy&, const Terminal&, long long int&) [with Seq = std::array; Real = double; Policy = boost::math::policies::policy, boost::math::policies::promote_double, boost::math::policies::max_root_iterations<400> >; Terminal = iteration_terminator]': ../subprojects/boost_math/math/include/boost/math/special_functions/detail/hypergeometric_pFq_checked_series.hpp:122:28: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 122 | std::pair hypergeometric_pFq_checked_series_impl(const Seq& aj, const Seq& bj, const Real& z, const Policy& pol, const Terminal& termination, long long& log_scale) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp: In function 'typename Dist::value_type boost::math::detail::do_inverse_discrete_quantile(const Dist&, const typename Dist::value_type&, bool, typename Dist::value_type, const typename Dist::value_type&, typename Dist::value_type, const Tolerance&, uintmax_t&) [with Dist = boost::math::negative_binomial_distribution, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile > >; Tolerance = boost::math::tools::equal_ceil]': ../subprojects/boost_math/math/include/boost/math/distributions/detail/inv_discrete_quantile.hpp:280:63: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 280 | boost::math::pair r = toms748_solve(f, a, b, fa, fb, tol, count, policy_type()); | ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp: In function 'std::pair<_ForwardIterator, _ForwardIterator> boost::math::tools::toms748_solve(F, const T&, const T&, const T&, const T&, Tol, uintmax_t&, const Policy&) [with F = boost::math::quantile, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >(const skew_normal_distribution, policies::overflow_error, policies::evaluation_error, policies::promote_float, policies::promote_double, policies::discrete_quantile > >&, const double&)::; T = double; Tol = eps_tolerance; Policy = boost::math::policies::policy, boost::math::policies::overflow_error, boost::math::policies::evaluation_error, boost::math::policies::promote_float, boost::math::policies::promote_double, boost::math::policies::discrete_quantile >]': ../subprojects/boost_math/math/include/boost/math/tools/toms748_solve.hpp:310:48: note: parameter passing for argument of type 'std::pair' when C++17 is enabled changed to match C++14 in GCC 10.1 310 | BOOST_MATH_GPU_ENABLED boost::math::pair toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::math::uintmax_t& max_iter, const Policy& pol) | ^~~~~~~~~~~~~ [1421/1424] Linking target scipy/special/_ufuncs_cxx.cpython-312-powerpc64le-linux-musl.so [1422/1424] Linking target scipy/linalg/_flapack.cpython-312-powerpc64le-linux-musl.so [1423/1424] Linking target scipy/special/cython_special.cpython-312-powerpc64le-linux-musl.so In file included from ../scipy/sparse/sparsetools/csr.h:10, from ../scipy/sparse/sparsetools/csr.cxx:5: In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:814:30, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]': ../scipy/sparse/sparsetools/csr.h:814:41: note: '' declared here 814 | T result = op(Ax[A_pos],0); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:823:30, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]': ../scipy/sparse/sparsetools/csr.h:823:31: note: '' declared here 823 | T result = op(0,Bx[B_pos]); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:823:30, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[1]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]': ../scipy/sparse/sparsetools/csr.h:823:31: note: '' declared here 823 | T result = op(0,Bx[B_pos]); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:835:26, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]': ../scipy/sparse/sparsetools/csr.h:835:37: note: '' declared here 835 | T result = op(Ax[A_pos],0); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:844:26, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]': ../scipy/sparse/sparsetools/csr.h:844:27: note: '' declared here 844 | T result = op(0,Bx[B_pos]); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:844:26, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[1]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]': ../scipy/sparse/sparsetools/csr.h:844:27: note: '' declared here 844 | T result = op(0,Bx[B_pos]); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:814:30, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]': ../scipy/sparse/sparsetools/csr.h:814:41: note: '' declared here 814 | T result = op(Ax[A_pos],0); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:823:30, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]': ../scipy/sparse/sparsetools/csr.h:823:31: note: '' declared here 823 | T result = op(0,Bx[B_pos]); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:823:30, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[1]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]': ../scipy/sparse/sparsetools/csr.h:823:31: note: '' declared here 823 | T result = op(0,Bx[B_pos]); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:835:26, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]': ../scipy/sparse/sparsetools/csr.h:835:37: note: '' declared here 835 | T result = op(Ax[A_pos],0); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:844:26, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]': ../scipy/sparse/sparsetools/csr.h:844:27: note: '' declared here 844 | T result = op(0,Bx[B_pos]); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:844:26, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[1]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]': ../scipy/sparse/sparsetools/csr.h:844:27: note: '' declared here 844 | T result = op(0,Bx[B_pos]); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:814:30, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]': ../scipy/sparse/sparsetools/csr.h:814:41: note: '' declared here 814 | T result = op(Ax[A_pos],0); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:823:30, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]': ../scipy/sparse/sparsetools/csr.h:823:31: note: '' declared here 823 | T result = op(0,Bx[B_pos]); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:823:30, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[1]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]': ../scipy/sparse/sparsetools/csr.h:823:31: note: '' declared here 823 | T result = op(0,Bx[B_pos]); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:835:26, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]': ../scipy/sparse/sparsetools/csr.h:835:37: note: '' declared here 835 | T result = op(Ax[A_pos],0); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:844:26, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]': ../scipy/sparse/sparsetools/csr.h:844:27: note: '' declared here 844 | T result = op(0,Bx[B_pos]); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:844:26, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[1]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = maximum >]': ../scipy/sparse/sparsetools/csr.h:844:27: note: '' declared here 844 | T result = op(0,Bx[B_pos]); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:814:30, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]': ../scipy/sparse/sparsetools/csr.h:814:41: note: '' declared here 814 | T result = op(Ax[A_pos],0); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:823:30, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]': ../scipy/sparse/sparsetools/csr.h:823:31: note: '' declared here 823 | T result = op(0,Bx[B_pos]); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:823:30, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[1]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]': ../scipy/sparse/sparsetools/csr.h:823:31: note: '' declared here 823 | T result = op(0,Bx[B_pos]); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:835:26, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]': ../scipy/sparse/sparsetools/csr.h:835:37: note: '' declared here 835 | T result = op(Ax[A_pos],0); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:844:26, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]': ../scipy/sparse/sparsetools/csr.h:844:27: note: '' declared here 844 | T result = op(0,Bx[B_pos]); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void csr_binop_csr_canonical(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:844:26, inlined from 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]' at ../scipy/sparse/sparsetools/csr.h:904:32: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[1]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/csr.h: In function 'void csr_binop_csr(I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const binary_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; binary_op = minimum >]': ../scipy/sparse/sparsetools/csr.h:844:27: note: '' declared here 844 | T result = op(0,Bx[B_pos]); | ^ In file included from ../scipy/sparse/sparsetools/csr.h:10, from ../scipy/sparse/sparsetools/bsr.h:8, from ../scipy/sparse/sparsetools/bsr.cxx:5: In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]' at ../scipy/sparse/sparsetools/bsr.h:480:35: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]': ../scipy/sparse/sparsetools/bsr.h:480:54: note: '' declared here 480 | result[n] = op(Ax[RC*A_pos + n], 0); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]' at ../scipy/sparse/sparsetools/bsr.h:493:35: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]': ../scipy/sparse/sparsetools/bsr.h:493:36: note: '' declared here 493 | result[n] = op(0, Bx[RC*B_pos + n]); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]' at ../scipy/sparse/sparsetools/bsr.h:508:31: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]': ../scipy/sparse/sparsetools/bsr.h:508:50: note: '' declared here 508 | result[n] = op(Ax[RC*A_pos + n], 0); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]' at ../scipy/sparse/sparsetools/bsr.h:521:31: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]': ../scipy/sparse/sparsetools/bsr.h:521:32: note: '' declared here 521 | result[n] = op(0,Bx[RC*B_pos + n]); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]' at ../scipy/sparse/sparsetools/bsr.h:480:35: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]': ../scipy/sparse/sparsetools/bsr.h:480:54: note: '' declared here 480 | result[n] = op(Ax[RC*A_pos + n], 0); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]' at ../scipy/sparse/sparsetools/bsr.h:493:35: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]': ../scipy/sparse/sparsetools/bsr.h:493:36: note: '' declared here 493 | result[n] = op(0, Bx[RC*B_pos + n]); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]' at ../scipy/sparse/sparsetools/bsr.h:508:31: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]': ../scipy/sparse/sparsetools/bsr.h:508:50: note: '' declared here 508 | result[n] = op(Ax[RC*A_pos + n], 0); | ^ In member function 'T minimum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]' at ../scipy/sparse/sparsetools/bsr.h:521:31: ../scipy/sparse/sparsetools/util.h:46:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 46 | return std::min(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = minimum >]': ../scipy/sparse/sparsetools/bsr.h:521:32: note: '' declared here 521 | result[n] = op(0,Bx[RC*B_pos + n]); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]' at ../scipy/sparse/sparsetools/bsr.h:480:35: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]': ../scipy/sparse/sparsetools/bsr.h:480:54: note: '' declared here 480 | result[n] = op(Ax[RC*A_pos + n], 0); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]' at ../scipy/sparse/sparsetools/bsr.h:493:35: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]': ../scipy/sparse/sparsetools/bsr.h:493:36: note: '' declared here 493 | result[n] = op(0, Bx[RC*B_pos + n]); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]' at ../scipy/sparse/sparsetools/bsr.h:508:31: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]': ../scipy/sparse/sparsetools/bsr.h:508:50: note: '' declared here 508 | result[n] = op(Ax[RC*A_pos + n], 0); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]' at ../scipy/sparse/sparsetools/bsr.h:521:31: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = long int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]': ../scipy/sparse/sparsetools/bsr.h:521:32: note: '' declared here 521 | result[n] = op(0,Bx[RC*B_pos + n]); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]' at ../scipy/sparse/sparsetools/bsr.h:480:35: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]': ../scipy/sparse/sparsetools/bsr.h:480:54: note: '' declared here 480 | result[n] = op(Ax[RC*A_pos + n], 0); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]' at ../scipy/sparse/sparsetools/bsr.h:493:35: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]': ../scipy/sparse/sparsetools/bsr.h:493:36: note: '' declared here 493 | result[n] = op(0, Bx[RC*B_pos + n]); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]' at ../scipy/sparse/sparsetools/bsr.h:508:31: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]': ../scipy/sparse/sparsetools/bsr.h:508:50: note: '' declared here 508 | result[n] = op(Ax[RC*A_pos + n], 0); | ^ In member function 'T maximum::operator()(const T&, const T&) const [with T = complex_wrapper]', inlined from 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]' at ../scipy/sparse/sparsetools/bsr.h:521:31: ../scipy/sparse/sparsetools/util.h:39:29: warning: '*(const long double*)((char*)& + offsetof(const complex_wrapper,complex_wrapper::complex.npy_clongdouble::_Val[0]))' may be used uninitialized [-Wmaybe-uninitialized] 39 | return std::max(x, y); | ^ ../scipy/sparse/sparsetools/bsr.h: In function 'void bsr_binop_bsr_canonical(I, I, I, I, const I*, const I*, const T*, const I*, const I*, const T*, I*, I*, T2*, const bin_op&) [with I = int; T = complex_wrapper; T2 = complex_wrapper; bin_op = maximum >]': ../scipy/sparse/sparsetools/bsr.h:521:32: note: '' declared here 521 | result[n] = op(0,Bx[RC*B_pos + n]); | ^ [1424/1424] Linking target scipy/sparse/sparsetools/_sparsetools.cpython-312-powerpc64le-linux-musl.so [1/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/_cyutility.cpython-312-powerpc64le-linux-musl.so [2/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/_lib/_ccallback_c.cpython-312-powerpc64le-linux-musl.so [3/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/_lib/_test_ccallback.cpython-312-powerpc64le-linux-musl.so [4/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/_lib/_fpumode.cpython-312-powerpc64le-linux-musl.so [5/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/_lib/_test_deprecation_call.cpython-312-powerpc64le-linux-musl.so [6/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/_lib/_test_deprecation_def.cpython-312-powerpc64le-linux-musl.so [7/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/_lib/messagestream.cpython-312-powerpc64le-linux-musl.so [8/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/_lib/_uarray/_uarray.cpython-312-powerpc64le-linux-musl.so [9/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_special_ufuncs.cpython-312-powerpc64le-linux-musl.so [10/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_gufuncs.cpython-312-powerpc64le-linux-musl.so [11/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_specfun.cpython-312-powerpc64le-linux-musl.so [12/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_ufuncs.pyx [13/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_ufuncs_defs.h [14/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_ufuncs_cxx.pyx [15/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_ufuncs_cxx.pxd [16/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_ufuncs_cxx_defs.h [17/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_ufuncs.cpython-312-powerpc64le-linux-musl.so [18/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_ufuncs_cxx.cpython-312-powerpc64le-linux-musl.so [19/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_ellip_harm_2.cpython-312-powerpc64le-linux-musl.so [20/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/cython_special.cpython-312-powerpc64le-linux-musl.so [21/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_comb.cpython-312-powerpc64le-linux-musl.so [22/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/_test_internal.cpython-312-powerpc64le-linux-musl.so [23/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/boost.npz [24/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/gsl.npz [25/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/special/local.npz [26/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/cython_blas.pyx [27/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/cython_lapack.pyx [28/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/cython_blas.pxd [29/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/cython_lapack.pxd [30/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_blas_subroutines.h [31/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_lapack_subroutines.h [32/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_fblas.cpython-312-powerpc64le-linux-musl.so [33/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_flapack.cpython-312-powerpc64le-linux-musl.so [34/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_decomp_interpolative.cpython-312-powerpc64le-linux-musl.so [35/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_solve_toeplitz.cpython-312-powerpc64le-linux-musl.so [36/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_matfuncs_sqrtm_triu.cpython-312-powerpc64le-linux-musl.so [37/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/cython_blas.cpython-312-powerpc64le-linux-musl.so [38/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/cython_lapack.cpython-312-powerpc64le-linux-musl.so [39/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_decomp_lu_cython.cpython-312-powerpc64le-linux-musl.so [40/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_decomp_update.cpython-312-powerpc64le-linux-musl.so [41/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_matfuncs_expm.cpython-312-powerpc64le-linux-musl.so [42/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_matfuncs_schur_sqrtm.cpython-312-powerpc64le-linux-musl.so [43/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_cythonized_array_utils.cpython-312-powerpc64le-linux-musl.so [44/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/linalg/_linalg_pythran.cpython-312-powerpc64le-linux-musl.so [45/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/_csparsetools.cpython-312-powerpc64le-linux-musl.so [46/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/sparsetools/_sparsetools.cpython-312-powerpc64le-linux-musl.so [47/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/csgraph/_flow.cpython-312-powerpc64le-linux-musl.so [48/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/csgraph/_matching.cpython-312-powerpc64le-linux-musl.so [49/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/csgraph/_min_spanning_tree.cpython-312-powerpc64le-linux-musl.so [50/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/csgraph/_reordering.cpython-312-powerpc64le-linux-musl.so [51/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/csgraph/_tools.cpython-312-powerpc64le-linux-musl.so [52/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/csgraph/_traversal.cpython-312-powerpc64le-linux-musl.so [53/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/csgraph/_shortest_path.cpython-312-powerpc64le-linux-musl.so [54/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/linalg/_propack/_spropack.cpython-312-powerpc64le-linux-musl.so [55/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/linalg/_propack/_dpropack.cpython-312-powerpc64le-linux-musl.so [56/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/linalg/_propack/_cpropack.cpython-312-powerpc64le-linux-musl.so [57/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/linalg/_propack/_zpropack.cpython-312-powerpc64le-linux-musl.so [58/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/linalg/_dsolve/_superlu.cpython-312-powerpc64le-linux-musl.so [59/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/sparse/linalg/_eigen/arpack/_arpack.cpython-312-powerpc64le-linux-musl.so [60/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/stats/_stats.cpython-312-powerpc64le-linux-musl.so [61/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/stats/_ansari_swilk_statistics.cpython-312-powerpc64le-linux-musl.so [62/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/stats/_sobol.cpython-312-powerpc64le-linux-musl.so [63/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/stats/_qmc_cy.cpython-312-powerpc64le-linux-musl.so [64/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/stats/_biasedurn.cpython-312-powerpc64le-linux-musl.so [65/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/stats/_stats_pythran.cpython-312-powerpc64le-linux-musl.so [66/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/stats/_qmvnt_cy.cpython-312-powerpc64le-linux-musl.so [67/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/stats/_levy_stable/levyst.cpython-312-powerpc64le-linux-musl.so [68/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/stats/_unuran/unuran_wrapper.cpython-312-powerpc64le-linux-musl.so [69/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/stats/_rcont/rcont.cpython-312-powerpc64le-linux-musl.so [70/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/fft/_pocketfft/pypocketfft.cpython-312-powerpc64le-linux-musl.so [71/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/io/_test_fortran.cpython-312-powerpc64le-linux-musl.so [72/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/io/matlab/_streams.cpython-312-powerpc64le-linux-musl.so [73/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/io/matlab/_mio_utils.cpython-312-powerpc64le-linux-musl.so [74/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/io/matlab/_mio5_utils.cpython-312-powerpc64le-linux-musl.so [75/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/io/_fast_matrix_market/_fmm_core.cpython-312-powerpc64le-linux-musl.so [76/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_direct.cpython-312-powerpc64le-linux-musl.so [77/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_minpack.cpython-312-powerpc64le-linux-musl.so [78/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_lsap.cpython-312-powerpc64le-linux-musl.so [79/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_zeros.cpython-312-powerpc64le-linux-musl.so [80/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_lbfgsb.cpython-312-powerpc64le-linux-musl.so [81/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_moduleTNC.cpython-312-powerpc64le-linux-musl.so [82/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_pava_pybind.cpython-312-powerpc64le-linux-musl.so [83/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_group_columns.cpython-312-powerpc64le-linux-musl.so [84/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_bglu_dense.cpython-312-powerpc64le-linux-musl.so [85/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_slsqplib.cpython-312-powerpc64le-linux-musl.so [86/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_lsq/givens_elimination.cpython-312-powerpc64le-linux-musl.so [87/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_trlib/_trlib.cpython-312-powerpc64le-linux-musl.so [88/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/cython_optimize/_zeros.cpython-312-powerpc64le-linux-musl.so [89/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_highspy/_core.cpython-312-powerpc64le-linux-musl.so [90/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/optimize/_highspy/_highs_options.cpython-312-powerpc64le-linux-musl.so [91/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/spatial/_qhull.cpython-312-powerpc64le-linux-musl.so [92/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/spatial/_ckdtree.cpython-312-powerpc64le-linux-musl.so [93/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/spatial/_distance_wrap.cpython-312-powerpc64le-linux-musl.so [94/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/spatial/_distance_pybind.cpython-312-powerpc64le-linux-musl.so [95/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/spatial/_voronoi.cpython-312-powerpc64le-linux-musl.so [96/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/spatial/_hausdorff.cpython-312-powerpc64le-linux-musl.so [97/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/spatial/transform/_rotation.cpython-312-powerpc64le-linux-musl.so [98/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/spatial/transform/_rigid_transform.cpython-312-powerpc64le-linux-musl.so [99/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/cluster/_hierarchy.cpython-312-powerpc64le-linux-musl.so [100/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/cluster/_optimal_leaf_ordering.cpython-312-powerpc64le-linux-musl.so [101/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/cluster/_vq.cpython-312-powerpc64le-linux-musl.so [102/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/fftpack/convolve.cpython-312-powerpc64le-linux-musl.so [103/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/integrate/_quadpack.cpython-312-powerpc64le-linux-musl.so [104/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/integrate/_odepack.cpython-312-powerpc64le-linux-musl.so [105/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/integrate/_vode.cpython-312-powerpc64le-linux-musl.so [106/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/integrate/_lsoda.cpython-312-powerpc64le-linux-musl.so [107/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/integrate/_dop.cpython-312-powerpc64le-linux-musl.so [108/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/integrate/_test_multivariate.cpython-312-powerpc64le-linux-musl.so [109/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/integrate/_test_odeint_banded.cpython-312-powerpc64le-linux-musl.so [110/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/signal/_sigtools.cpython-312-powerpc64le-linux-musl.so [111/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/signal/_max_len_seq_inner.cpython-312-powerpc64le-linux-musl.so [112/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/signal/_peak_finding_utils.cpython-312-powerpc64le-linux-musl.so [113/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/signal/_sosfilt.cpython-312-powerpc64le-linux-musl.so [114/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/signal/_upfirdn_apply.cpython-312-powerpc64le-linux-musl.so [115/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/signal/_spline.cpython-312-powerpc64le-linux-musl.so [116/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/interpolate/_interpnd.cpython-312-powerpc64le-linux-musl.so [117/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/interpolate/_ppoly.cpython-312-powerpc64le-linux-musl.so [118/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/interpolate/_rgi_cython.cpython-312-powerpc64le-linux-musl.so [119/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/interpolate/_dierckx.cpython-312-powerpc64le-linux-musl.so [120/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/interpolate/_fitpack.cpython-312-powerpc64le-linux-musl.so [121/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/interpolate/_dfitpack.cpython-312-powerpc64le-linux-musl.so [122/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/interpolate/_rbfinterp_pythran.cpython-312-powerpc64le-linux-musl.so [123/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/ndimage/_nd_image.cpython-312-powerpc64le-linux-musl.so [124/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/ndimage/_ni_label.cpython-312-powerpc64le-linux-musl.so [125/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/ndimage/_rank_filter_1d.cpython-312-powerpc64le-linux-musl.so [126/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/ndimage/_ctest.cpython-312-powerpc64le-linux-musl.so [127/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/ndimage/_cytest.cpython-312-powerpc64le-linux-musl.so [128/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/odr/__odrpack.cpython-312-powerpc64le-linux-musl.so [129/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/version.py [130/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/__init__.py [131/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_distributor_init.py [132/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/conftest.py [133/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/__init__.py [134/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_array_api.py [135/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_array_api_compat_vendor.py [136/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_array_api_no_0d.py [137/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_bunch.py [138/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_ccallback.py [139/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_disjoint_set.py [140/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_docscrape.py [141/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_elementwise_iterative_method.py [142/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_gcutils.py [143/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_pep440.py [144/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_sparse.py [145/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_testutils.py [146/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_threadsafety.py [147/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_tmpdirs.py [148/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_util.py [149/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/decorator.py [150/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/deprecation.py [151/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/doccer.py [152/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/uarray.py [153/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/__init__.py [154/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/_internal.py [155/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/common/__init__.py [156/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/common/_aliases.py [157/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/common/_fft.py [158/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/common/_helpers.py [159/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/common/_linalg.py [160/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/common/_typing.py [161/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/cupy/__init__.py [162/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/cupy/_aliases.py [163/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/cupy/_info.py [164/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/cupy/_typing.py [165/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/cupy/fft.py [166/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/cupy/linalg.py [167/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/dask/__init__.py [168/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/dask/array/__init__.py [169/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/dask/array/_aliases.py [170/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/dask/array/_info.py [171/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/dask/array/fft.py [172/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/dask/array/linalg.py [173/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/numpy/__init__.py [174/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/numpy/_aliases.py [175/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/numpy/_info.py [176/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/numpy/_typing.py [177/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/numpy/fft.py [178/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/numpy/linalg.py [179/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/torch/__init__.py [180/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/torch/_aliases.py [181/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/torch/_info.py [182/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/torch/_typing.py [183/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/torch/fft.py [184/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_compat/array_api_compat/torch/linalg.py [185/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_lib/_utils/__init__.py [186/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_lib/_utils/_compat.py [187/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_lib/_utils/_compat.pyi [188/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_lib/_utils/_helpers.py [189/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_lib/_utils/_typing.py [190/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_lib/_utils/_typing.pyi [191/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_lib/__init__.py [192/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_lib/_at.py [193/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_lib/_backends.py [194/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_lib/_funcs.py [195/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_lib/_lazy.py [196/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_lib/_testing.py [197/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/__init__.py [198/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/_delegation.py [199/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/array_api_extra/src/array_api_extra/testing.py [200/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/__init__.py [201/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/framework.py [202/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/main.py [203/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/models.py [204/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/problem.py [205/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/settings.py [206/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/subsolvers/__init__.py [207/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/subsolvers/geometry.py [208/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/subsolvers/optim.py [209/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/utils/__init__.py [210/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/utils/exceptions.py [211/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/utils/math.py [212/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/cobyqa/cobyqa/utils/versions.py [213/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/__init__.py [214/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/__init__.py [215/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/_bounds.py [216/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/_linear_constraints.py [217/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/_nonlinear_constraints.py [218/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/_project.py [219/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/checkbreak.py [220/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/consts.py [221/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/evaluate.py [222/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/history.py [223/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/infos.py [224/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/linalg.py [225/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/message.py [226/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/powalg.py [227/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/preproc.py [228/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/present.py [229/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/ratio.py [230/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/redrho.py [231/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/common/selectx.py [232/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/cobyla/__init__.py [233/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/cobyla/cobyla.py [234/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/cobyla/cobylb.py [235/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/cobyla/geometry.py [236/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/cobyla/initialize.py [237/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/cobyla/trustregion.py [238/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/pyprima/pyprima/src/pyprima/cobyla/update.py [239/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_uarray/__init__.py [240/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_uarray/_backend.py [241/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/_uarray/LICENSE [242/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/__init__.py [243/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test__gcutils.py [244/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test__pep440.py [245/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test__testutils.py [246/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test__threadsafety.py [247/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test__util.py [248/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test_bunch.py [249/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test_ccallback.py [250/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test_config.py [251/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test_deprecation.py [252/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test_doccer.py [253/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test_import_cycles.py [254/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test_public_api.py [255/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test_scipy_version.py [256/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test_tmpdirs.py [257/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test_warnings.py [258/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/_lib/tests/test_array_api.py [259/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_test_internal.pyi [260/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/__init__.py [261/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/__init__.pxd [262/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_add_newdocs.py [263/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_basic.py [264/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_ellip_harm.py [265/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_input_validation.py [266/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_lambertw.py [267/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_logsumexp.py [268/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_mptestutils.py [269/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_multiufuncs.py [270/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_orthogonal.py [271/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_orthogonal.pyi [272/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_sf_error.py [273/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_spfun_stats.py [274/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_spherical_bessel.py [275/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_support_alternative_backends.py [276/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_testutils.py [277/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_ufuncs.pyi [278/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/add_newdocs.py [279/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/basic.py [280/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/cython_special.pxd [281/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/cython_special.pyi [282/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/orthogonal.py [283/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/sf_error.py [284/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/specfun.py [285/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/spfun_stats.py [286/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/__init__.py [287/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_basic.py [288/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_bdtr.py [289/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_boxcox.py [290/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_cdflib.py [291/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_cdft_asymptotic.py [292/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_cephes_intp_cast.py [293/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_cosine_distr.py [294/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_cython_special.py [295/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_data.py [296/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_dd.py [297/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_digamma.py [298/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_ellip_harm.py [299/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_erfinv.py [300/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_exponential_integrals.py [301/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_extending.py [302/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_faddeeva.py [303/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_gamma.py [304/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_gammainc.py [305/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_hyp2f1.py [306/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_hypergeometric.py [307/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_iv_ratio.py [308/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_kolmogorov.py [309/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_lambertw.py [310/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_legendre.py [311/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_log1mexp.py [312/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_loggamma.py [313/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_logit.py [314/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_logsumexp.py [315/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_mpmath.py [316/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_nan_inputs.py [317/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_ndtr.py [318/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_ndtri_exp.py [319/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_orthogonal.py [320/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_orthogonal_eval.py [321/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_owens_t.py [322/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_pcf.py [323/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_pdtr.py [324/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_powm1.py [325/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_precompute_expn_asy.py [326/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_precompute_gammainc.py [327/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_precompute_utils.py [328/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_round.py [329/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_sf_error.py [330/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_sici.py [331/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_specfun.py [332/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_spence.py [333/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_spfun_stats.py [334/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_sph_harm.py [335/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_spherical_bessel.py [336/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_support_alternative_backends.py [337/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_trig.py [338/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_ufunc_signatures.py [339/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_wright_bessel.py [340/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_wrightomega.py [341/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_zeta.py [342/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/test_boost_ufuncs.py [343/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/data/__init__.py [344/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/_cython_examples/extending.pyx [345/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/tests/_cython_examples/meson.build [346/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/__init__.py [347/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/cosine_cdf.py [348/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/expn_asy.py [349/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/gammainc_asy.py [350/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/gammainc_data.py [351/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/hyp2f1_data.py [352/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/lambertw.py [353/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/loggamma.py [354/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/struve_convergence.py [355/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/utils.py [356/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/wright_bessel.py [357/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/wright_bessel_data.py [358/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/wrightomega.py [359/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/special/_precompute/zetac.py [360/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/__init__.py [361/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/__init__.pxd [362/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_basic.py [363/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_cythonized_array_utils.pxd [364/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_cythonized_array_utils.pyi [365/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_decomp.py [366/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_decomp_cholesky.py [367/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_decomp_cossin.py [368/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_decomp_ldl.py [369/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_decomp_lu.py [370/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_decomp_lu_cython.pyi [371/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_decomp_polar.py [372/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_decomp_qr.py [373/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_decomp_qz.py [374/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_decomp_schur.py [375/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_decomp_svd.py [376/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_expm_frechet.py [377/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_matfuncs.py [378/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_matfuncs_expm.pyi [379/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_matfuncs_inv_ssq.py [380/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_matfuncs_sqrtm.py [381/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_misc.py [382/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_procrustes.py [383/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_sketches.py [384/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_solvers.py [385/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_special_matrices.py [386/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/_testutils.py [387/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/basic.py [388/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/blas.py [389/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/decomp.py [390/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/decomp_cholesky.py [391/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/decomp_lu.py [392/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/decomp_qr.py [393/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/decomp_schur.py [394/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/decomp_svd.py [395/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/interpolative.py [396/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/lapack.py [397/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/matfuncs.py [398/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/misc.py [399/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/special_matrices.py [400/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/__init__.py [401/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_basic.py [402/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_batch.py [403/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_blas.py [404/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_cython_blas.py [405/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_cython_lapack.py [406/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_cythonized_array_utils.py [407/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_decomp.py [408/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_decomp_cholesky.py [409/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_decomp_cossin.py [410/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_decomp_ldl.py [411/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_decomp_lu.py [412/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_decomp_polar.py [413/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_decomp_update.py [414/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_extending.py [415/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_fblas.py [416/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_interpolative.py [417/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_lapack.py [418/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_matfuncs.py [419/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_matmul_toeplitz.py [420/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_procrustes.py [421/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_sketches.py [422/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_solve_toeplitz.py [423/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_solvers.py [424/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/test_special_matrices.py [425/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/_cython_examples/extending.pyx [426/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/_cython_examples/meson.build [427/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/data/carex_15_data.npz [428/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/data/carex_18_data.npz [429/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/data/carex_19_data.npz [430/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/data/carex_20_data.npz [431/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/data/carex_6_data.npz [432/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/linalg/tests/data/gendare_20170120_data.npz [433/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/__init__.py [434/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_base.py [435/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_bsr.py [436/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_compressed.py [437/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_construct.py [438/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_coo.py [439/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_csc.py [440/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_csr.py [441/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_data.py [442/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_dia.py [443/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_dok.py [444/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_extract.py [445/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_index.py [446/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_lil.py [447/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_matrix_io.py [448/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_matrix.py [449/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_spfuncs.py [450/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/_sputils.py [451/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/base.py [452/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/bsr.py [453/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/compressed.py [454/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/construct.py [455/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/coo.py [456/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csc.py [457/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csr.py [458/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/data.py [459/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/dia.py [460/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/dok.py [461/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/extract.py [462/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/lil.py [463/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/sparsetools.py [464/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/spfuncs.py [465/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/sputils.py [466/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/__init__.py [467/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/_laplacian.py [468/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/_validation.py [469/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/tests/__init__.py [470/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/tests/test_connected_components.py [471/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/tests/test_conversions.py [472/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/tests/test_flow.py [473/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/tests/test_graph_laplacian.py [474/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/tests/test_matching.py [475/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/tests/test_pydata_sparse.py [476/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/tests/test_reordering.py [477/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/tests/test_shortest_path.py [478/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/tests/test_spanning_tree.py [479/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/csgraph/tests/test_traversal.py [480/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/__init__.py [481/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_expm_multiply.py [482/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_interface.py [483/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_matfuncs.py [484/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_norm.py [485/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_onenormest.py [486/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_svdp.py [487/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_special_sparse_arrays.py [488/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/dsolve.py [489/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/eigen.py [490/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/interface.py [491/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/isolve.py [492/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/matfuncs.py [493/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/__init__.py [494/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/_gcrotmk.py [495/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/iterative.py [496/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/lgmres.py [497/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/lsmr.py [498/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/lsqr.py [499/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/minres.py [500/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/tfqmr.py [501/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/utils.py [502/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/tests/__init__.py [503/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py [504/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/tests/test_iterative.py [505/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/tests/test_lgmres.py [506/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/tests/test_lsmr.py [507/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/tests/test_lsqr.py [508/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/tests/test_minres.py [509/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_isolve/tests/test_utils.py [510/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_dsolve/__init__.py [511/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_dsolve/_add_newdocs.py [512/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_dsolve/linsolve.py [513/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_dsolve/tests/__init__.py [514/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_dsolve/tests/test_linsolve.py [515/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/__init__.py [516/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/_svds.py [517/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/_svds_doc.py [518/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/arpack/__init__.py [519/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/arpack/arpack.py [520/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/arpack/ARPACK/COPYING [521/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/arpack/tests/__init__.py [522/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py [523/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/lobpcg/__init__.py [524/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py [525/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py [526/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py [527/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/tests/__init__.py [528/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/_eigen/tests/test_svds.py [529/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/tests/__init__.py [530/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/tests/propack_test_data.npz [531/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/tests/test_expm_multiply.py [532/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/tests/test_interface.py [533/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/tests/test_matfuncs.py [534/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/tests/test_norm.py [535/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/tests/test_onenormest.py [536/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/tests/test_propack.py [537/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/tests/test_pydata_sparse.py [538/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/linalg/tests/test_special_sparse_arrays.py [539/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/__init__.py [540/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_arithmetic1d.py [541/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_array_api.py [542/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_base.py [543/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_coo.py [544/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_common1d.py [545/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_construct.py [546/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_csc.py [547/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_csr.py [548/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_dok.py [549/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_extract.py [550/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_indexing1d.py [551/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_matrix_io.py [552/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_minmax1d.py [553/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_sparsetools.py [554/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_spfuncs.py [555/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/test_sputils.py [556/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/data/csc_py2.npz [557/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/sparse/tests/data/csc_py3.npz [558/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_sobol_direction_numbers.npz [559/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/__init__.py [560/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_axis_nan_policy.py [561/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_binned_statistic.py [562/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_binomtest.py [563/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_bws_test.py [564/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_censored_data.py [565/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_common.py [566/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_constants.py [567/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_continued_fraction.py [568/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_continuous_distns.py [569/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_correlation.py [570/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_covariance.py [571/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_crosstab.py [572/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_discrete_distns.py [573/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_distn_infrastructure.py [574/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_distribution_infrastructure.py [575/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_distr_params.py [576/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_entropy.py [577/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_finite_differences.py [578/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_fit.py [579/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_hypotests.py [580/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_kde.py [581/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_ksstats.py [582/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_mannwhitneyu.py [583/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_mgc.py [584/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_morestats.py [585/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_mstats_basic.py [586/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_mstats_extras.py [587/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_multicomp.py [588/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_multivariate.py [589/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_new_distributions.py [590/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_odds_ratio.py [591/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_page_trend_test.py [592/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_probability_distribution.py [593/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_qmc.py [594/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_qmvnt.py [595/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_quantile.py [596/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_relative_risk.py [597/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_resampling.py [598/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_result_classes.py [599/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_sampling.py [600/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_sensitivity_analysis.py [601/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_stats_mstats_common.py [602/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_stats_py.py [603/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_survival.py [604/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_tukeylambda_stats.py [605/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_variation.py [606/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_warnings_errors.py [607/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_wilcoxon.py [608/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/biasedurn.py [609/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/contingency.py [610/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/distributions.py [611/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/kde.py [612/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/morestats.py [613/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/mstats.py [614/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/mstats_basic.py [615/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/mstats_extras.py [616/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/mvn.py [617/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/qmc.py [618/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/sampling.py [619/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/stats.py [620/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_biasedurn.pxd [621/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_stats.pxd [622/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_qmc_cy.pyi [623/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_sobol.pyi [624/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_levy_stable/__init__.py [625/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_unuran/__init__.py [626/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_unuran/unuran_wrapper.pyi [627/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/_rcont/__init__.py [628/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/__init__.py [629/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/common_tests.py [630/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_axis_nan_policy.py [631/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_binned_statistic.py [632/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_censored_data.py [633/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_contingency.py [634/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_continued_fraction.py [635/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_continuous.py [636/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_continuous_basic.py [637/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_continuous_fit_censored.py [638/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_correlation.py [639/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_crosstab.py [640/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_discrete_basic.py [641/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_discrete_distns.py [642/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_distributions.py [643/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_entropy.py [644/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_fast_gen_inversion.py [645/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_fit.py [646/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_hypotests.py [647/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_kdeoth.py [648/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_marray.py [649/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_mgc.py [650/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_morestats.py [651/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_mstats_basic.py [652/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_mstats_extras.py [653/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_multicomp.py [654/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_multivariate.py [655/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_odds_ratio.py [656/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_qmc.py [657/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_quantile.py [658/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_rank.py [659/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_relative_risk.py [660/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_resampling.py [661/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_sampling.py [662/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_sensitivity_analysis.py [663/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_stats.py [664/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_survival.py [665/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_tukeylambda_stats.py [666/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/test_variation.py [667/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/_mvt.py [668/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/fisher_exact_results_from_r.py [669/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy [670/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy [671/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/studentized_range_mpmath_ref.json [672/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy [673/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy [674/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy [675/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/nist_anova/AtmWtAg.dat [676/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/nist_anova/SiRstv.dat [677/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/nist_anova/SmLs01.dat [678/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/nist_anova/SmLs02.dat [679/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/nist_anova/SmLs03.dat [680/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/nist_anova/SmLs04.dat [681/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/nist_anova/SmLs05.dat [682/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/nist_anova/SmLs06.dat [683/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/nist_anova/SmLs07.dat [684/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/nist_anova/SmLs08.dat [685/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/nist_anova/SmLs09.dat [686/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/stats/tests/data/nist_linregress/Norris.dat [687/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/__init__.py [688/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_backend.py [689/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_basic.py [690/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_basic_backend.py [691/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_debug_backends.py [692/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_fftlog.py [693/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_fftlog_backend.py [694/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_helper.py [695/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_realtransforms.py [696/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_realtransforms_backend.py [697/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_pocketfft/__init__.py [698/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_pocketfft/basic.py [699/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_pocketfft/helper.py [700/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_pocketfft/LICENSE.md [701/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_pocketfft/realtransforms.py [702/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_pocketfft/tests/__init__.py [703/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_pocketfft/tests/test_basic.py [704/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/_pocketfft/tests/test_real_transforms.py [705/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/tests/__init__.py [706/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/tests/test_backend.py [707/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/tests/test_basic.py [708/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/tests/test_helper.py [709/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/tests/mock_backend.py [710/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/tests/test_fftlog.py [711/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/tests/test_multithreading.py [712/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fft/tests/test_real_transforms.py [713/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/__init__.py [714/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/_fortran.py [715/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/_idl.py [716/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/_mmio.py [717/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/_netcdf.py [718/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/harwell_boeing.py [719/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/idl.py [720/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/mmio.py [721/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/netcdf.py [722/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/wavfile.py [723/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/__init__.py [724/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/test_fortran.py [725/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/test_idl.py [726/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/test_mmio.py [727/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/test_netcdf.py [728/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/test_paths.py [729/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/test_wavfile.py [730/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/Transparent Busy.ani [731/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_1d.sav [732/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_2d.sav [733/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_3d.sav [734/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_4d.sav [735/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_5d.sav [736/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_6d.sav [737/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_7d.sav [738/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_8d.sav [739/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_pointer_1d.sav [740/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_pointer_2d.sav [741/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_pointer_3d.sav [742/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_pointer_4d.sav [743/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_pointer_5d.sav [744/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_pointer_6d.sav [745/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_pointer_7d.sav [746/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/array_float32_pointer_8d.sav [747/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/example_1.nc [748/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/example_2.nc [749/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/example_3_maskedvals.nc [750/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-3x3d-2i.dat [751/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-mixed.dat [752/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-sf8-11x1x10.dat [753/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-sf8-15x10x22.dat [754/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-sf8-1x1x1.dat [755/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-sf8-1x1x5.dat [756/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-sf8-1x1x7.dat [757/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-sf8-1x3x5.dat [758/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-si4-11x1x10.dat [759/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-si4-15x10x22.dat [760/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-si4-1x1x1.dat [761/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-si4-1x1x5.dat [762/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-si4-1x1x7.dat [763/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/fortran-si4-1x3x5.dat [764/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/invalid_pointer.sav [765/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/null_pointer.sav [766/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_byte.sav [767/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_byte_descr.sav [768/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_complex32.sav [769/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_complex64.sav [770/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_float32.sav [771/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_float64.sav [772/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_heap_pointer.sav [773/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_int16.sav [774/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_int32.sav [775/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_int64.sav [776/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_string.sav [777/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_uint16.sav [778/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_uint32.sav [779/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/scalar_uint64.sav [780/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_arrays.sav [781/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_arrays_byte_idl80.sav [782/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_arrays_replicated.sav [783/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_arrays_replicated_3d.sav [784/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_inherit.sav [785/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_pointer_arrays.sav [786/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_pointer_arrays_replicated.sav [787/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav [788/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_pointers.sav [789/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_pointers_replicated.sav [790/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_pointers_replicated_3d.sav [791/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_scalars.sav [792/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_scalars_replicated.sav [793/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/struct_scalars_replicated_3d.sav [794/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav [795/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav [796/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav [797/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav [798/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav [799/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav [800/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav [801/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav [802/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav [803/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav [804/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav [805/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav [806/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav [807/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav [808/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav [809/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav [810/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav [811/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav [812/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav [813/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav [814/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav [815/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav [816/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/tests/data/various_compressed.sav [817/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/__init__.py [818/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/_byteordercodes.py [819/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/_mio.py [820/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/_mio4.py [821/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/_mio5.py [822/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/_mio5_params.py [823/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/_miobase.py [824/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/byteordercodes.py [825/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/mio.py [826/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/mio4.py [827/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/mio5.py [828/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/mio5_params.py [829/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/mio5_utils.py [830/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/mio_utils.py [831/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/miobase.py [832/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/streams.py [833/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/__init__.py [834/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/test_byteordercodes.py [835/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/test_mio.py [836/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/test_mio5_utils.py [837/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/test_mio_funcs.py [838/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/test_mio_utils.py [839/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/test_miobase.py [840/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/test_pathological.py [841/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/test_streams.py [842/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/bad_miuint32.mat [843/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/bad_miutf8_array_name.mat [844/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/big_endian.mat [845/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/broken_utf8.mat [846/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat [847/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/corrupted_zlib_data.mat [848/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/japanese_utf8.txt [849/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/little_endian.mat [850/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/logical_sparse.mat [851/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/malformed1.mat [852/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/miuint32_for_miint32.mat [853/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/miutf8_array_name.mat [854/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat [855/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/one_by_zero_char.mat [856/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/parabola.mat [857/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/single_empty_string.mat [858/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/some_functions.mat [859/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/sqr.mat [860/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat [861/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat [862/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat [863/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat [864/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/test_empty_struct.mat [865/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/test_mat4_le_floats.mat [866/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/test_skip_variable.mat [867/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testbool_8_WIN64.mat [868/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat [869/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat [870/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat [871/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat [872/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat [873/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat [874/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat [875/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat [876/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat [877/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat [878/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat [879/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat [880/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat [881/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat [882/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat [883/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat [884/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat [885/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat [886/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat [887/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat [888/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat [889/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat [890/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat [891/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat [892/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat [893/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat [894/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat [895/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat [896/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat [897/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat [898/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat [899/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat [900/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat [901/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat [902/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat [903/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat [904/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat [905/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat [906/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat [907/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat [908/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat [909/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat [910/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat [911/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat [912/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat [913/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat [914/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat [915/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testsimplecell.mat [916/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat [917/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat [918/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat [919/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat [920/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat [921/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat [922/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat [923/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat [924/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat [925/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat [926/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat [927/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat [928/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat [929/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat [930/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat [931/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat [932/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat [933/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat [934/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat [935/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat [936/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat [937/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat [938/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat [939/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat [940/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat [941/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat [942/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat [943/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat [944/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat [945/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat [946/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat [947/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat [948/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat [949/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat [950/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat [951/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/testvec_4_GLNX86.mat [952/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/matlab/tests/data/debigged_m4.mat [953/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/__init__.py [954/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/_arffread.py [955/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/arffread.py [956/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/__init__.py [957/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/test_arffread.py [958/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/iris.arff [959/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/missing.arff [960/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/nodata.arff [961/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/quoted_nominal.arff [962/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/quoted_nominal_spaces.arff [963/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/test1.arff [964/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/test10.arff [965/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/test11.arff [966/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/test2.arff [967/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/test3.arff [968/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/test4.arff [969/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/test5.arff [970/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/test6.arff [971/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/test7.arff [972/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/test8.arff [973/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/arff/tests/data/test9.arff [974/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/_harwell_boeing/__init__.py [975/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/_harwell_boeing/_fortran_format_parser.py [976/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/_harwell_boeing/hb.py [977/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/_harwell_boeing/tests/__init__.py [978/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/_harwell_boeing/tests/test_fortran_format.py [979/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/_harwell_boeing/tests/test_hb.py [980/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/io/_fast_matrix_market/__init__.py [981/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_lsq/__init__.py [982/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_lsq/bvls.py [983/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_lsq/common.py [984/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_lsq/dogbox.py [985/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_lsq/least_squares.py [986/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_lsq/lsq_linear.py [987/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_lsq/trf.py [988/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_lsq/trf_linear.py [989/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trlib/__init__.py [990/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/tests/__init__.py [991/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py [992/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/tests/test_projections.py [993/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py [994/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/tests/test_report.py [995/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py [996/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/__init__.py [997/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/canonical_constraint.py [998/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/equality_constrained_sqp.py [999/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py [1000/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/projections.py [1001/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/qp_subproblem.py [1002/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/report.py [1003/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_constr/tr_interior_point.py [1004/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/cython_optimize/__init__.py [1005/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/cython_optimize/_zeros.pxd [1006/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/cython_optimize/c_zeros.pxd [1007/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_shgo_lib/__init__.py [1008/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_shgo_lib/_complex.py [1009/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_shgo_lib/_vertex.py [1010/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_highspy/__init__.py [1011/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_highspy/_highs_wrapper.py [1012/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/__init__.py [1013/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test__basinhopping.py [1014/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test__differential_evolution.py [1015/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test__dual_annealing.py [1016/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test__linprog_clean_inputs.py [1017/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test__numdiff.py [1018/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test__remove_redundancy.py [1019/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test__root.py [1020/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test__shgo.py [1021/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test__spectral.py [1022/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_bracket.py [1023/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_chandrupatla.py [1024/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_cobyla.py [1025/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_cobyqa.py [1026/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_constraint_conversion.py [1027/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_constraints.py [1028/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_cython_optimize.py [1029/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_differentiable_functions.py [1030/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_direct.py [1031/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_extending.py [1032/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_hessian_update_strategy.py [1033/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_isotonic_regression.py [1034/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_lbfgsb_hessinv.py [1035/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_lbfgsb_setulb.py [1036/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_least_squares.py [1037/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_linear_assignment.py [1038/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_linesearch.py [1039/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_linprog.py [1040/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_lsq_common.py [1041/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_lsq_linear.py [1042/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_milp.py [1043/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_minimize_constrained.py [1044/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_minpack.py [1045/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_nnls.py [1046/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_nonlin.py [1047/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_optimize.py [1048/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_quadratic_assignment.py [1049/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_regression.py [1050/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_slsqp.py [1051/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_tnc.py [1052/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_trustregion.py [1053/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_trustregion_exact.py [1054/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_trustregion_krylov.py [1055/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/test_zeros.py [1056/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/_cython_examples/extending.pyx [1057/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tests/_cython_examples/meson.build [1058/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/__init__.py [1059/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/__init__.pxd [1060/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_basinhopping.py [1061/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_bracket.py [1062/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_chandrupatla.py [1063/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_cobyla_py.py [1064/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_cobyqa_py.py [1065/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_constraints.py [1066/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_differentiable_functions.py [1067/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_differentialevolution.py [1068/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_direct_py.py [1069/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_dcsrch.py [1070/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_dual_annealing.py [1071/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_elementwise.py [1072/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_hessian_update_strategy.py [1073/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_isotonic.py [1074/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_lbfgsb_py.py [1075/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_linesearch.py [1076/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_linprog.py [1077/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_linprog_doc.py [1078/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_linprog_highs.py [1079/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_linprog_ip.py [1080/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_linprog_rs.py [1081/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_linprog_simplex.py [1082/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_linprog_util.py [1083/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_milp.py [1084/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_minimize.py [1085/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_minpack_py.py [1086/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_nnls.py [1087/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_nonlin.py [1088/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_numdiff.py [1089/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_optimize.py [1090/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_qap.py [1091/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_remove_redundancy.py [1092/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_root.py [1093/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_root_scalar.py [1094/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_shgo.py [1095/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_slsqp_py.py [1096/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_spectral.py [1097/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_tnc.py [1098/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion.py [1099/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_dogleg.py [1100/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_exact.py [1101/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_krylov.py [1102/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_trustregion_ncg.py [1103/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_tstutils.py [1104/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/_zeros_py.py [1105/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/cobyla.py [1106/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/cython_optimize.pxd [1107/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/elementwise.py [1108/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/lbfgsb.py [1109/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/linesearch.py [1110/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/minpack.py [1111/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/minpack2.py [1112/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/moduleTNC.py [1113/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/nonlin.py [1114/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/optimize.py [1115/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/slsqp.py [1116/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/tnc.py [1117/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/optimize/zeros.py [1118/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/COPYING_QHULL.txt [1119/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/_qhull.pyi [1120/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/_voronoi.pyi [1121/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/distance.pyi [1122/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/__init__.py [1123/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/_geometric_slerp.py [1124/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/_kdtree.py [1125/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/_plotutils.py [1126/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/_procrustes.py [1127/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/_spherical_voronoi.py [1128/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/ckdtree.py [1129/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/distance.py [1130/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/kdtree.py [1131/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/qhull.py [1132/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/__init__.py [1133/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/test__plotutils.py [1134/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/test__procrustes.py [1135/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/test_distance.py [1136/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/test_hausdorff.py [1137/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/test_kdtree.py [1138/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/test_qhull.py [1139/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/test_slerp.py [1140/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/test_spherical_voronoi.py [1141/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/cdist-X1.txt [1142/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/cdist-X2.txt [1143/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/degenerate_pointset.npz [1144/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/iris.txt [1145/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-boolean-inp.txt [1146/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt [1147/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-chebyshev-ml.txt [1148/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt [1149/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-cityblock-ml.txt [1150/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-correlation-ml-iris.txt [1151/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-correlation-ml.txt [1152/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-cosine-ml-iris.txt [1153/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-cosine-ml.txt [1154/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-double-inp.txt [1155/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt [1156/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-euclidean-ml.txt [1157/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-hamming-ml.txt [1158/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-jaccard-ml.txt [1159/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt [1160/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-jensenshannon-ml.txt [1161/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt [1162/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt [1163/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt [1164/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt [1165/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-seuclidean-ml.txt [1166/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/pdist-spearman-ml.txt [1167/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/random-bool-data.txt [1168/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/random-double-data.txt [1169/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/random-int-data.txt [1170/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/random-uint-data.txt [1171/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/tests/data/selfdual-4d-polytope.txt [1172/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/transform/__init__.py [1173/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/transform/_rotation_groups.py [1174/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/transform/_rotation_spline.py [1175/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/transform/rotation.py [1176/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/transform/tests/__init__.py [1177/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/transform/tests/test_rigid_transform.py [1178/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/transform/tests/test_rotation.py [1179/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/transform/tests/test_rotation_groups.py [1180/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/spatial/transform/tests/test_rotation_spline.py [1181/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/cluster/__init__.py [1182/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/cluster/hierarchy.py [1183/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/cluster/vq.py [1184/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/cluster/tests/__init__.py [1185/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/cluster/tests/hierarchy_test_data.py [1186/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/cluster/tests/test_disjoint_set.py [1187/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/cluster/tests/test_hierarchy.py [1188/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/cluster/tests/test_vq.py [1189/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/constants/__init__.py [1190/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/constants/_codata.py [1191/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/constants/_constants.py [1192/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/constants/codata.py [1193/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/constants/constants.py [1194/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/constants/tests/__init__.py [1195/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/constants/tests/test_codata.py [1196/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/constants/tests/test_constants.py [1197/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/__init__.py [1198/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/_basic.py [1199/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/_helper.py [1200/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/_pseudo_diffs.py [1201/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/_realtransforms.py [1202/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/basic.py [1203/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/helper.py [1204/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/pseudo_diffs.py [1205/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/realtransforms.py [1206/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/tests/__init__.py [1207/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/tests/test_basic.py [1208/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/tests/test_helper.py [1209/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/tests/test_import.py [1210/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/tests/test_pseudo_diffs.py [1211/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/tests/test_real_transforms.py [1212/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/tests/fftw_double_ref.npz [1213/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/tests/fftw_longdouble_ref.npz [1214/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/tests/fftw_single_ref.npz [1215/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/fftpack/tests/test.npz [1216/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ivp/__init__.py [1217/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ivp/base.py [1218/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ivp/bdf.py [1219/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ivp/common.py [1220/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ivp/dop853_coefficients.py [1221/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ivp/ivp.py [1222/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ivp/lsoda.py [1223/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ivp/radau.py [1224/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ivp/rk.py [1225/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ivp/tests/__init__.py [1226/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ivp/tests/test_ivp.py [1227/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ivp/tests/test_rk.py [1228/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_rules/__init__.py [1229/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_rules/_base.py [1230/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_rules/_gauss_kronrod.py [1231/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_rules/_gauss_legendre.py [1232/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_rules/_genz_malik.py [1233/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/tests/__init__.py [1234/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/tests/test__quad_vec.py [1235/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/tests/test_banded_ode_solvers.py [1236/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/tests/test_bvp.py [1237/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/tests/test_integrate.py [1238/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/tests/test_odeint_jac.py [1239/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/tests/test_quadpack.py [1240/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/tests/test_quadrature.py [1241/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/tests/test_tanhsinh.py [1242/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/tests/test_cubature.py [1243/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/__init__.py [1244/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_bvp.py [1245/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_lebedev.py [1246/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_ode.py [1247/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_quad_vec.py [1248/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_quadrature.py [1249/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_odepack_py.py [1250/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_quadpack_py.py [1251/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_tanhsinh.py [1252/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/_cubature.py [1253/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/dop.py [1254/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/lsoda.py [1255/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/odepack.py [1256/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/quadpack.py [1257/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/integrate/vode.py [1258/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/differentiate/__init__.py [1259/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/differentiate/_differentiate.py [1260/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/differentiate/tests/__init__.py [1261/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/differentiate/tests/test_differentiate.py [1262/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/__init__.py [1263/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_support_alternative_backends.py [1264/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_signal_api.py [1265/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_delegators.py [1266/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_arraytools.py [1267/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_spline_filters.py [1268/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_czt.py [1269/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_filter_design.py [1270/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_fir_filter_design.py [1271/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_lti_conversion.py [1272/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_ltisys.py [1273/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_max_len_seq.py [1274/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_peak_finding.py [1275/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_polyutils.py [1276/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_savitzky_golay.py [1277/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_short_time_fft.py [1278/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_signaltools.py [1279/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_spectral_py.py [1280/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_spline.pyi [1281/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_upfirdn.py [1282/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_waveforms.py [1283/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/_wavelets.py [1284/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/bsplines.py [1285/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/filter_design.py [1286/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/fir_filter_design.py [1287/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/lti_conversion.py [1288/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/ltisys.py [1289/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/signaltools.py [1290/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/spectral.py [1291/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/spline.py [1292/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/waveforms.py [1293/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/wavelets.py [1294/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/windows/__init__.py [1295/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/windows/_windows.py [1296/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/windows/windows.py [1297/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/__init__.py [1298/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/_scipy_spectral_test_shim.py [1299/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/mpsig.py [1300/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_array_tools.py [1301/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_bsplines.py [1302/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_splines.py [1303/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_cont2discrete.py [1304/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_czt.py [1305/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_dltisys.py [1306/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_filter_design.py [1307/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_fir_filter_design.py [1308/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_ltisys.py [1309/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_max_len_seq.py [1310/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_peak_finding.py [1311/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_result_type.py [1312/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_savitzky_golay.py [1313/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_short_time_fft.py [1314/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_signaltools.py [1315/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_spectral.py [1316/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_upfirdn.py [1317/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_waveforms.py [1318/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_wavelets.py [1319/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/signal/tests/test_windows.py [1320/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/__init__.py [1321/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_bsplines.py [1322/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_bary_rational.py [1323/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_cubic.py [1324/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_fitpack_impl.py [1325/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_fitpack_py.py [1326/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_fitpack2.py [1327/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_fitpack_repro.py [1328/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_interpolate.py [1329/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_ndgriddata.py [1330/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_pade.py [1331/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_polyint.py [1332/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_rbf.py [1333/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_rbfinterp.py [1334/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_rgi.py [1335/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/_ndbspline.py [1336/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/dfitpack.py [1337/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/fitpack.py [1338/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/fitpack2.py [1339/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/interpolate.py [1340/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/ndgriddata.py [1341/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/interpnd.py [1342/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/polyint.py [1343/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/rbf.py [1344/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/__init__.py [1345/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_bary_rational.py [1346/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_bsplines.py [1347/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_fitpack.py [1348/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_fitpack2.py [1349/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_gil.py [1350/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_interpnd.py [1351/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_interpolate.py [1352/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_ndgriddata.py [1353/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_pade.py [1354/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_polyint.py [1355/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_rbf.py [1356/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_rbfinterp.py [1357/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/test_rgi.py [1358/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/data/bug-1310.npz [1359/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/data/estimate_gradients_hang.npy [1360/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/interpolate/tests/data/gcvspl.npz [1361/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/__init__.py [1362/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/_ndimage_api.py [1363/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/_delegators.py [1364/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/_support_alternative_backends.py [1365/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/_filters.py [1366/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/_fourier.py [1367/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/_interpolation.py [1368/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/_measurements.py [1369/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/_morphology.py [1370/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/_ni_docstrings.py [1371/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/_ni_support.py [1372/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/filters.py [1373/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/fourier.py [1374/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/interpolation.py [1375/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/measurements.py [1376/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/morphology.py [1377/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/__init__.py2025-11-15 09:30:12,988 gpep517 INFO The backend produced .dist/scipy-1.16.3-cp312-cp312-linux_ppc64le.whl scipy-1.16.3-cp312-cp312-linux_ppc64le.whl [1378/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/dots.png [1379/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/test_c_api.py [1380/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/test_datatypes.py [1381/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/test_filters.py [1382/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/test_fourier.py [1383/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/test_interpolation.py [1384/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/test_measurements.py [1385/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/test_morphology.py [1386/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/test_ni_support.py [1387/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/test_splines.py [1388/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/data/label_inputs.txt [1389/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/data/label_results.txt [1390/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/ndimage/tests/data/label_strels.txt [1391/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/odr/__init__.py [1392/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/odr/_add_newdocs.py [1393/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/odr/_models.py [1394/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/odr/_odrpack.py [1395/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/odr/models.py [1396/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/odr/odrpack.py [1397/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/odr/tests/__init__.py [1398/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/odr/tests/test_odr.py [1399/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/datasets/__init__.py [1400/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/datasets/_fetchers.py [1401/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/datasets/_registry.py [1402/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/datasets/_download_all.py [1403/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/datasets/_utils.py [1404/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/datasets/tests/__init__.py [1405/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/datasets/tests/test_data.py [1406/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/misc/__init__.py [1407/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/misc/common.py [1408/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/scipy/misc/doccer.py [1409/1409] /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.mesonpy-lzyuluxy/scipy/__config__.py ============================= test session starts ============================== platform linux -- Python 3.12.12, pytest-8.4.2, pluggy-1.6.0 rootdir: /home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3 configfile: pytest.ini plugins: hypothesis-6.146.0 collected 84039 items / 1 skipped lib/python3.12/site-packages/scipy/_lib/tests/test__gcutils.py ...... [ 0%] lib/python3.12/site-packages/scipy/_lib/tests/test__pep440.py ......... [ 0%] lib/python3.12/site-packages/scipy/_lib/tests/test__testutils.py .. [ 0%] lib/python3.12/site-packages/scipy/_lib/tests/test__threadsafety.py .. [ 0%] lib/python3.12/site-packages/scipy/_lib/tests/test__util.py ............ [ 0%] ............s........................... [ 0%] lib/python3.12/site-packages/scipy/_lib/tests/test_array_api.py ssssssss [ 0%] ssssssssss.............................................................. [ 0%] ........................................................................ [ 0%] ........................................................................ [ 0%] ........................................................................ [ 0%] ........................................................................ [ 0%] ........................................................................ [ 0%] ........................................................................ [ 0%] ........................................................................ [ 0%] ........................................................................ [ 0%] ........................................................................ [ 0%] ........................................................................ [ 1%] ........................................................................ [ 1%] ........................................................................ [ 1%] ........................................................................ [ 1%] ........................................................................ [ 1%] ........................................................................ [ 1%] ........................................................................ [ 1%] ........................................................................ [ 1%] ........................................................................ [ 1%] ........................................................................ [ 1%] ........................................................................ [ 1%] ........................................................................ [ 1%] ........................................................................ [ 2%] ........................................................................ [ 2%] ........................................................................ [ 2%] .......... [ 2%] lib/python3.12/site-packages/scipy/_lib/tests/test_bunch.py ............ [ 2%] ................. [ 2%] lib/python3.12/site-packages/scipy/_lib/tests/test_ccallback.py ss.. [ 2%] lib/python3.12/site-packages/scipy/_lib/tests/test_config.py .... [ 2%] lib/python3.12/site-packages/scipy/_lib/tests/test_deprecation.py . [ 2%] lib/python3.12/site-packages/scipy/_lib/tests/test_doccer.py ..... [ 2%] lib/python3.12/site-packages/scipy/_lib/tests/test_import_cycles.py . [ 2%] lib/python3.12/site-packages/scipy/_lib/tests/test_public_api.py ....... [ 2%] ........................................................................ [ 2%] ................................. [ 2%] lib/python3.12/site-packages/scipy/_lib/tests/test_scipy_version.py .. [ 2%] lib/python3.12/site-packages/scipy/_lib/tests/test_tmpdirs.py ... [ 2%] lib/python3.12/site-packages/scipy/_lib/tests/test_warnings.py . [ 2%] lib/python3.12/site-packages/scipy/cluster/tests/test_disjoint_set.py .. [ 2%] ................... [ 2%] lib/python3.12/site-packages/scipy/cluster/tests/test_hierarchy.py ..... [ 2%] ........................................................................ [ 2%] ........................................................................ [ 2%] .ssssss....... [ 2%] lib/python3.12/site-packages/scipy/cluster/tests/test_vq.py ............ [ 2%] ...........F.F....... [ 2%] lib/python3.12/site-packages/scipy/constants/tests/test_codata.py ...... [ 2%] ... [ 2%] lib/python3.12/site-packages/scipy/constants/tests/test_constants.py ... [ 2%] .... [ 2%] lib/python3.12/site-packages/scipy/datasets/tests/test_data.py ..... [ 2%] lib/python3.12/site-packages/scipy/differentiate/tests/test_differentiate.py . [ 2%] ........................................................................ [ 2%] ........................................................................ [ 2%] ............xx.............................................. [ 2%] lib/python3.12/site-packages/scipy/fft/_pocketfft/tests/test_basic.py .. [ 2%] ........................................................................ [ 3%] ........................................................................ [ 3%] ........................................................................ [ 3%] ........................................................................ [ 3%] ........................................................................ [ 3%] ........................................................................ [ 3%] ......................... [ 3%] lib/python3.12/site-packages/scipy/fft/_pocketfft/tests/test_real_transforms.py . [ 3%] ........................................................................ [ 3%] ........................................................................ [ 3%] ........................................................................ [ 3%] ........................................................................ [ 3%] ........................................................................ [ 3%] ........................................................................ [ 4%] ........................................................................ [ 4%] ........................................................................ [ 4%] ........................................................................ [ 4%] ........................................................................ [ 4%] ........................................................................ [ 4%] ........................................................................ [ 4%] ........................................................................ [ 4%] ........................................................................ [ 4%] ........................................................................ [ 4%] ........................................................................ [ 4%] ........................................................................ [ 4%] ........................................................................ [ 5%] ........................................................................ [ 5%] ........................................................................ [ 5%] ........................................................................ [ 5%] ........................................................................ [ 5%] ........................................................................ [ 5%] ........................................................................ [ 5%] ........................................................................ [ 5%] ........................................................................ [ 5%] ........................................................................ [ 5%] ... [ 5%] lib/python3.12/site-packages/scipy/fft/tests/test_backend.py ........... [ 5%] ................................... [ 5%] lib/python3.12/site-packages/scipy/fft/tests/test_basic.py ............. [ 5%] ........................................................................ [ 5%] ........................................................................ [ 6%] .............. [ 6%] lib/python3.12/site-packages/scipy/fft/tests/test_fftlog.py ............ [ 6%] ................................ [ 6%] lib/python3.12/site-packages/scipy/fft/tests/test_helper.py ............ [ 6%] ................... [ 6%] lib/python3.12/site-packages/scipy/fft/tests/test_multithreading.py .... [ 6%] .................................................... [ 6%] lib/python3.12/site-packages/scipy/fft/tests/test_real_transforms.py ... [ 6%] ........................................................................ [ 6%] ........................................................................ [ 6%] ........................................................................ [ 6%] ........................................................................ [ 6%] ........................................................................ [ 6%] ........................................................................ [ 6%] ........................................................................ [ 6%] ........................................................................ [ 6%] ........................................................................ [ 7%] ........................................................................ [ 7%] ........................................................................ [ 7%] ........................................................................ [ 7%] ........................................................................ [ 7%] ........................................................................ [ 7%] ........................................................................ [ 7%] ........................................................................ [ 7%] ........................................................................ [ 7%] ........................................................................ [ 7%] ........................................................................ [ 7%] ........................................................................ [ 7%] ........................................................................ [ 8%] ........................................................................ [ 8%] ........................................................................ [ 8%] ........................................................................ [ 8%] ........................................................................ [ 8%] ........................................................................ [ 8%] ........................................................................ [ 8%] ........................................................................ [ 8%] ........................................................................ [ 8%] ........................................................................ [ 8%] ........................................................................ [ 8%] ........................................................................ [ 8%] ........................................................................ [ 9%] ........................................................................ [ 9%] ........................................................................ [ 9%] ........................................................................ [ 9%] ........................................................................ [ 9%] ........................................................................ [ 9%] ........................................................................ [ 9%] ........................................................................ [ 9%] ........................................................................ [ 9%] ........................................................................ [ 9%] ............................. [ 9%] lib/python3.12/site-packages/scipy/fftpack/tests/test_basic.py ......x.. [ 9%] ........................................................................ [ 9%] ........................................................................ [ 10%] ........................................................................ [ 10%] ....................................................................... [ 10%] lib/python3.12/site-packages/scipy/fftpack/tests/test_helper.py .... [ 10%] lib/python3.12/site-packages/scipy/fftpack/tests/test_import.py . [ 10%] lib/python3.12/site-packages/scipy/fftpack/tests/test_pseudo_diffs.py .. [ 10%] ........................... [ 10%] lib/python3.12/site-packages/scipy/fftpack/tests/test_real_transforms.py . [ 10%] ........................................................................ [ 10%] ........................................................................ [ 10%] ........................................................................ [ 10%] ....... [ 10%] lib/python3.12/site-packages/scipy/integrate/_ivp/tests/test_ivp.py .... [ 10%] ...................................................... [ 10%] lib/python3.12/site-packages/scipy/integrate/_ivp/tests/test_rk.py ..... [ 10%] ..... [ 10%] lib/python3.12/site-packages/scipy/integrate/tests/test__quad_vec.py ... [ 10%] ...................... [ 10%] lib/python3.12/site-packages/scipy/integrate/tests/test_banded_ode_solvers.py . [ 10%] . [ 10%] lib/python3.12/site-packages/scipy/integrate/tests/test_bvp.py ......... [ 10%] ....... [ 10%] lib/python3.12/site-packages/scipy/integrate/tests/test_cubature.py .... [ 10%] .........s...........s.................s........s........s.............. [ 10%] ........................................................................ [ 10%] ............................................................s..s........ [ 10%] ...s.....s..s...............sss..s........................ [ 11%] lib/python3.12/site-packages/scipy/integrate/tests/test_integrate.py ... [ 11%] ............................................ [ 11%] lib/python3.12/site-packages/scipy/integrate/tests/test_odeint_jac.py .. [ 11%] [ 11%] lib/python3.12/site-packages/scipy/integrate/tests/test_quadpack.py .... [ 11%] .....................................sssssssssssssssssssssssssssssssssss [ 11%] ssssssss........... [ 11%] lib/python3.12/site-packages/scipy/integrate/tests/test_quadrature.py .. [ 11%] ........................................................................ [ 11%] ........................................................................ [ 11%] ........................................................................ [ 11%] ........................................................................ [ 11%] ........ [ 11%] lib/python3.12/site-packages/scipy/integrate/tests/test_tanhsinh.py .... [ 11%] ............................................ss..ss...................... [ 11%] ..................................................................ss.... [ 11%] ss......ss.............................................................. [ 11%] ss...................................................................... [ 11%] ............... [ 11%] lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py . [ 11%] .F.............FF...FFFFFFFFFFF..................................... [ 11%] lib/python3.12/site-packages/scipy/interpolate/tests/test_bsplines.py .. [ 11%] ........................................................................ [ 12%] ..............................................................x......... [ 12%] ........FF.............................................................. [ 12%] ........................................................................ [ 12%] ............................................. [ 12%] lib/python3.12/site-packages/scipy/interpolate/tests/test_fitpack.py ... [ 12%] ..................................s....s.. [ 12%] lib/python3.12/site-packages/scipy/interpolate/tests/test_fitpack2.py .. [ 12%] ........................................................................ [ 12%] ... [ 12%] lib/python3.12/site-packages/scipy/interpolate/tests/test_gil.py s [ 12%] lib/python3.12/site-packages/scipy/interpolate/tests/test_interpnd.py .. [ 12%] .................... [ 12%] lib/python3.12/site-packages/scipy/interpolate/tests/test_interpolate.py . [ 12%] ........................................................................ [ 12%] .............................................................. [ 12%] lib/python3.12/site-packages/scipy/interpolate/tests/test_ndgriddata.py . [ 12%] ................................................ [ 12%] lib/python3.12/site-packages/scipy/interpolate/tests/test_pade.py .... [ 12%] lib/python3.12/site-packages/scipy/interpolate/tests/test_polyint.py ... [ 12%] ........................................................................ [ 12%] ...................................................... [ 12%] lib/python3.12/site-packages/scipy/interpolate/tests/test_rbf.py ....... [ 12%] .... [ 12%] lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py . [ 12%] FFFFF.............................................................F..... [ 13%] ........................................................................ [ 13%] ..........................................F. [ 13%] lib/python3.12/site-packages/scipy/interpolate/tests/test_rgi.py ....... [ 13%] .............s.......................................................ss. [ 13%] ......ss.................Fs.......ss.......ss........................... [ 13%] .................Fs.......ss..........s...........F............. [ 13%] lib/python3.12/site-packages/scipy/io/_harwell_boeing/tests/test_fortran_format.py . [ 13%] .......... [ 13%] lib/python3.12/site-packages/scipy/io/_harwell_boeing/tests/test_hb.py . [ 13%] . [ 13%] lib/python3.12/site-packages/scipy/io/arff/tests/test_arffread.py ...... [ 13%] ..................... [ 13%] lib/python3.12/site-packages/scipy/io/matlab/tests/test_byteordercodes.py . [ 13%] . [ 13%] lib/python3.12/site-packages/scipy/io/matlab/tests/test_mio.py ......... [ 13%] ................................................................... [ 13%] lib/python3.12/site-packages/scipy/io/matlab/tests/test_mio5_utils.py .. [ 13%] .... [ 13%] lib/python3.12/site-packages/scipy/io/matlab/tests/test_mio_funcs.py . [ 13%] lib/python3.12/site-packages/scipy/io/matlab/tests/test_mio_utils.py .. [ 13%] lib/python3.12/site-packages/scipy/io/matlab/tests/test_miobase.py . [ 13%] lib/python3.12/site-packages/scipy/io/matlab/tests/test_pathological.py . [ 13%] . [ 13%] lib/python3.12/site-packages/scipy/io/matlab/tests/test_streams.py ..... [ 13%] ...... [ 13%] lib/python3.12/site-packages/scipy/io/tests/test_fortran.py ........... [ 13%] lib/python3.12/site-packages/scipy/io/tests/test_idl.py ................ [ 13%] ................................................... [ 13%] lib/python3.12/site-packages/scipy/io/tests/test_mmio.py ............... [ 13%] .............................................................s.......... [ 13%] ...................................................................s. [ 13%] lib/python3.12/site-packages/scipy/io/tests/test_netcdf.py ............. [ 13%] ............ [ 13%] lib/python3.12/site-packages/scipy/io/tests/test_paths.py ........... [ 13%] lib/python3.12/site-packages/scipy/io/tests/test_wavfile.py ............ [ 13%] ....s................................................................... [ 14%] ........................................................................ [ 14%] ........................................................................ [ 14%] .............................................................. [ 14%] lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py .......... [ 14%] ........................................................................ [ 14%] ..............................................s......................... [ 14%] ........................................................................ [ 14%] ........................................................................ [ 14%] ........................................................................ [ 14%] ........................................................................ [ 14%] ........................................................................ [ 14%] ........................................................................ [ 14%] ................................FF.FF.FF.FF....FF.FF.FF.FF.FF.FF.FF....F [ 15%] F.FF.FFssssssssssssssssssssssssssssssssssssssssssssssssF................ [ 15%] ...................F..........................s......................... [ 15%] ................................. [ 15%] lib/python3.12/site-packages/scipy/linalg/tests/test_batch.py .......... [ 15%] ........................................................................ [ 15%] ........................................................................ [ 15%] ........................................................................ [ 15%] .............................F.............F......F.F................... [ 15%] ........................................................................ [ 15%] ....................................................... [ 15%] lib/python3.12/site-packages/scipy/linalg/tests/test_blas.py ........... [ 15%] ........................................x. [ 15%] lib/python3.12/site-packages/scipy/linalg/tests/test_cython_blas.py .... [ 15%] .. [ 15%] lib/python3.12/site-packages/scipy/linalg/tests/test_cython_lapack.py .. [ 15%] . [ 15%] lib/python3.12/site-packages/scipy/linalg/tests/test_cythonized_array_utils.py . [ 15%] ................................................. [ 15%] lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py ......... [ 15%] ........................................................................ [ 15%] ......................FFFFFFFFF...........F.....s....................... [ 16%] .................................F.....s................................ [ 16%] ........................................................................ [ 16%] ........................................................................ [ 16%] .....................F....FFF........................................... [ 16%] ................................................................F...s.x. [ 16%] ................F.....F.....FFFFFFFF............. [ 16%] lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cholesky.py . [ 16%] ..F.s................................................................. [ 16%] lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py .. [ 16%] ...................F...F...F...F...F.......................F...F...F...F [ 16%] ...F...................s....ss...sss..ssss.s....s....ss...sss..ssss.ss.. [ 16%] .ss...ss...sss..ssss.sss..sss..sss..sss..ssss.ssss.ssss.ssss.ssss.ssss.. [ 16%] ....s....ss...sss..ssss.s....s....ss...sss..ssss.ss...ss...ss...sss..sss [ 16%] s.sss..sss..sss..sss..ssss.ssss.ssss.ssss.ssss.ssss.. [ 17%] lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_ldl.py ..... [ 17%] ..F.... [ 17%] lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_lu.py ...... [ 17%] ........................................................................ [ 17%] .............. [ 17%] lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_polar.py ... [ 17%] ............................. [ 17%] lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py .. [ 17%] ........................................................................ [ 17%] ........................................................................ [ 17%] ........................................................................ [ 17%] ........................................................................ [ 17%] ........................................................................ [ 17%] ........................................................................ [ 17%] ........................................................................ [ 17%] ........................................................................ [ 17%] ....................F.......F........................................... [ 17%] ..............F [ 18%] lib/python3.12/site-packages/scipy/linalg/tests/test_extending.py F [ 18%] lib/python3.12/site-packages/scipy/linalg/tests/test_fblas.py .......... [ 18%] ........................................................................ [ 18%] ............................................... [ 18%] lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py FF [ 18%] F...........FFF...FFF...F.F...F.F............. [ 18%] lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py ......... [ 18%] ........................................................................ [ 18%] ........................................................................ [ 18%] ...................................F.F.F.F..FFF....FF..s...FF..FF..FF..F [ 18%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 18%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF............... [ 18%] ...................................FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 18%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 18%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 18%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 18%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 19%] F..FF..FF..................................................FF..FF..FF..F [ 19%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 19%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 19%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 19%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 19%] F..FF..FF..FF..FF..FF..FF..FF..FF....................................... [ 19%] ...........FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 19%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 19%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 19%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 19%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF............... [ 20%] ...................................FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 20%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 20%] F..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..FF..F [ 20%] F..FF..FF............................................................... [ 20%] ........................................................................ [ 20%] .....................F.................................................. [ 20%] ...............................................F........................ [ 20%] .......................s.s.....s.s.....s.s.....s.s...................... [ 20%] ........................................................................ [ 20%] ........................................................................ [ 20%] ........................................................................ [ 20%] ........................................................................ [ 21%] ........................................................................ [ 21%] .................................. [ 21%] lib/python3.12/site-packages/scipy/linalg/tests/test_matfuncs.py ....... [ 21%] .........xxxxx........................................X................. [ 21%] ................................................................s...F... [ 21%] ...... [ 21%] lib/python3.12/site-packages/scipy/linalg/tests/test_matmul_toeplitz.py . [ 21%] ... [ 21%] lib/python3.12/site-packages/scipy/linalg/tests/test_procrustes.py ..... [ 21%] F....... [ 21%] lib/python3.12/site-packages/scipy/linalg/tests/test_sketches.py ..... [ 21%] lib/python3.12/site-packages/scipy/linalg/tests/test_solve_toeplitz.py . [ 21%] .....x........................... [ 21%] lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py ........ [ 21%] ........................Fx....xF.FFxFxx.............F....F...FF......... [ 21%] ........................................................................ [ 21%] ........................................................................ [ 21%] ........................................................................ [ 21%] ........................................................................ [ 21%] ........................................................................ [ 21%] .........sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 22%] ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 22%] lib/python3.12/site-packages/scipy/linalg/tests/test_special_matrices.py . [ 22%] ...........................F............................................ [ 22%] ............................................. [ 22%] lib/python3.12/site-packages/scipy/ndimage/tests/test_c_api.py ... [ 22%] lib/python3.12/site-packages/scipy/ndimage/tests/test_datatypes.py .X [ 22%] lib/python3.12/site-packages/scipy/ndimage/tests/test_filters.py ....... [ 22%] ........................................................................ [ 22%] ........................................................................ [ 22%] ........................................................................ [ 22%] ........................................................................ [ 22%] ........................................................................ [ 22%] ........................................................................ [ 22%] ........................................................................ [ 22%] ........................................................................ [ 22%] ........................................................................ [ 23%] ........................................................................ [ 23%] ........................................................................ [ 23%] ........................................................................ [ 23%] ........................................................................ [ 23%] ........................................................................ [ 23%] ........................................................................ [ 23%] ........................................................................ [ 23%] ........................................................................ [ 23%] ........................................................................ [ 23%] ........................................................................ [ 23%] ........................................................................ [ 23%] ........................................................................ [ 24%] ........................................................................ [ 24%] ........................................................................ [ 24%] ........................................................................ [ 24%] ........................................................................ [ 24%] ........................................................................ [ 24%] ........................................................................ [ 24%] ........................................................................ [ 24%] ........................................................................ [ 24%] ........................................................................ [ 24%] ........................................................................ [ 24%] ........................................................................ [ 25%] ........................................................................ [ 25%] ........................................................................ [ 25%] ......... [ 25%] lib/python3.12/site-packages/scipy/ndimage/tests/test_fourier.py ....... [ 25%] ..................................................................... [ 25%] lib/python3.12/site-packages/scipy/ndimage/tests/test_interpolation.py . [ 25%] ........................................................................ [ 25%] ........................................................................ [ 25%] ........................................................................ [ 25%] ........................................................................ [ 25%] ........................................................................ [ 25%] ........................................................................ [ 25%] ........................................................................ [ 25%] ........................................................................ [ 25%] ........................................................................ [ 26%] ........................................................................ [ 26%] ........................................................................ [ 26%] ........................................................................ [ 26%] ........................................................................ [ 26%] ...................................................... [ 26%] lib/python3.12/site-packages/scipy/ndimage/tests/test_measurements.py .. [ 26%] ........................................................................ [ 26%] ................................................... [ 26%] lib/python3.12/site-packages/scipy/ndimage/tests/test_morphology.py .... [ 26%] ........................................................................ [ 26%] ........................................................................ [ 26%] ........................................................................ [ 26%] ........................................................................ [ 26%] ........................................................................ [ 27%] ........................................................................ [ 27%] ........................................................................ [ 27%] ........................................................................ [ 27%] ........................................................................ [ 27%] ........................................................................ [ 27%] ........................................................................ [ 27%] .........................................s.s.s.s.s.s.............s.s.s.s [ 27%] .s.s.................................................................... [ 27%] ........................................................................ [ 27%] ........................................................................ [ 27%] ........................................................................ [ 27%] ........................................................................ [ 28%] ........................................................................ [ 28%] ........................................................................ [ 28%] ........................................................................ [ 28%] ........................................................................ [ 28%] ........................................................................ [ 28%] ........................................................................ [ 28%] ............ [ 28%] lib/python3.12/site-packages/scipy/ndimage/tests/test_ni_support.py .... [ 28%] ...... [ 28%] lib/python3.12/site-packages/scipy/ndimage/tests/test_splines.py ....... [ 28%] ........... [ 28%] lib/python3.12/site-packages/scipy/odr/tests/test_odr.py ............... [ 28%] .s....... [ 28%] lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py . [ 28%] ..... [ 28%] lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py . [ 28%] [ 28%] lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/tests/test_projections.py . [ 28%] ......... [ 28%] lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py . [ 28%] ...................... [ 28%] lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/tests/test_report.py . [ 28%] s [ 28%] lib/python3.12/site-packages/scipy/optimize/tests/test__basinhopping.py . [ 28%] ................................ [ 28%] lib/python3.12/site-packages/scipy/optimize/tests/test__differential_evolution.py . [ 28%] .....................................................s....... [ 28%] lib/python3.12/site-packages/scipy/optimize/tests/test__dual_annealing.py . [ 28%] ............................................. [ 28%] lib/python3.12/site-packages/scipy/optimize/tests/test__linprog_clean_inputs.py . [ 28%] ............ [ 28%] lib/python3.12/site-packages/scipy/optimize/tests/test__numdiff.py ..... [ 28%] ............................. [ 28%] lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py . [ 28%] ..FFFF.FFFF.FFFF.........F...FF.FF..FFFF.F..F.FFFF.........F...FF.F [ 29%] lib/python3.12/site-packages/scipy/optimize/tests/test__root.py ........ [ 29%] ....... [ 29%] lib/python3.12/site-packages/scipy/optimize/tests/test__shgo.py ........ [ 29%] ............ss.....................s............................... [ 29%] lib/python3.12/site-packages/scipy/optimize/tests/test__spectral.py .... [ 29%] [ 29%] lib/python3.12/site-packages/scipy/optimize/tests/test_bracket.py ...... [ 29%] ........................................................................ [ 29%] ........................................................................ [ 29%] ........................................................................ [ 29%] ........................................................................ [ 29%] ........................................................................ [ 29%] ........................................................................ [ 29%] ............................... [ 29%] lib/python3.12/site-packages/scipy/optimize/tests/test_chandrupatla.py . [ 29%] ........................................................................ [ 29%] ................................................................ [ 29%] lib/python3.12/site-packages/scipy/optimize/tests/test_cobyla.py ......F [ 29%] . [ 29%] lib/python3.12/site-packages/scipy/optimize/tests/test_cobyqa.py ....... [ 29%] . [ 29%] lib/python3.12/site-packages/scipy/optimize/tests/test_constraint_conversion.py . [ 29%] .......F [ 29%] lib/python3.12/site-packages/scipy/optimize/tests/test_constraints.py .. [ 29%] .............. [ 29%] lib/python3.12/site-packages/scipy/optimize/tests/test_cython_optimize.py . [ 29%] .... [ 29%] lib/python3.12/site-packages/scipy/optimize/tests/test_differentiable_functions.py . [ 29%] ..................... [ 29%] lib/python3.12/site-packages/scipy/optimize/tests/test_direct.py ....... [ 29%] .............................ss......................... [ 30%] lib/python3.12/site-packages/scipy/optimize/tests/test_extending.py F [ 30%] lib/python3.12/site-packages/scipy/optimize/tests/test_hessian_update_strategy.py . [ 30%] ........ [ 30%] lib/python3.12/site-packages/scipy/optimize/tests/test_isotonic_regression.py . [ 30%] ............................................ [ 30%] lib/python3.12/site-packages/scipy/optimize/tests/test_lbfgsb_hessinv.py . [ 30%] .. [ 30%] lib/python3.12/site-packages/scipy/optimize/tests/test_lbfgsb_setulb.py . [ 30%] . [ 30%] lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py . [ 30%] ........FFF.............................F............FFF................ [ 30%] .............F....................................... [ 30%] lib/python3.12/site-packages/scipy/optimize/tests/test_linear_assignment.py . [ 30%] ..................... [ 30%] lib/python3.12/site-packages/scipy/optimize/tests/test_linesearch.py ... [ 30%] ........ [ 30%] lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py ...... [ 30%] ........................................................................ [ 30%] ...ss................................................................... [ 30%] ..........s............................................................. [ 30%] ................s.ss................................................F... [ 30%] .......................s................................................ [ 30%] .F.........................s.X.......................................... [ 30%] .................................s.sX................................... [ 30%] ...........................................ssss......................... [ 30%] .......................................................sss.............. [ 31%] ................x....................................................... [ 31%] ...x...............................x.................................... [ 31%] ......................x.....ss.............F.F..F....FFF.F [ 31%] lib/python3.12/site-packages/scipy/optimize/tests/test_lsq_common.py ... [ 31%] ....... [ 31%] lib/python3.12/site-packages/scipy/optimize/tests/test_lsq_linear.py ... [ 31%] .......s........s... [ 31%] lib/python3.12/site-packages/scipy/optimize/tests/test_milp.py .x....... [ 31%] s.Xx.sx. [ 31%] lib/python3.12/site-packages/scipy/optimize/tests/test_minimize_constrained.py . [ 31%] ....................s................s.............................sssss [ 31%] sssssssssssssssssssssssssssss.....................s................s.... [ 31%] .............................s.......x........s......................... [ 31%] ........s.......x........s................................X [ 31%] lib/python3.12/site-packages/scipy/optimize/tests/test_minpack.py ...... [ 31%] .....................................................................F.. [ 31%] ...F................ [ 31%] lib/python3.12/site-packages/scipy/optimize/tests/test_nnls.py ......... [ 31%] ..... [ 31%] lib/python3.12/site-packages/scipy/optimize/tests/test_nonlin.py ....... [ 31%] ............F........F............ [ 31%] lib/python3.12/site-packages/scipy/optimize/tests/test_optimize.py ..... [ 31%] ....................x.........................x......................... [ 31%] x.........................x............................................. [ 32%] ................x....................................................... [ 32%] ........................................................................ [ 32%] ........................................................................ [ 32%] ......................s.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss. [ 32%] ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss. [ 32%] ss.s....................................s.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss. [ 32%] ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss. [ 32%] ss.ss.ss.ss.ss.ss.ss.s.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ss.ssssssssssssssss [ 32%] ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 32%] ssssssssssssssssssssssssssssssssssssssss................................ [ 32%] ..................ss....ssss..ssss [ 32%] lib/python3.12/site-packages/scipy/optimize/tests/test_quadratic_assignment.py . [ 32%] ............... [ 32%] lib/python3.12/site-packages/scipy/optimize/tests/test_regression.py ... [ 32%] [ 32%] lib/python3.12/site-packages/scipy/optimize/tests/test_slsqp.py ........ [ 32%] .............................. [ 32%] lib/python3.12/site-packages/scipy/optimize/tests/test_tnc.py .......... [ 33%] .......... [ 33%] lib/python3.12/site-packages/scipy/optimize/tests/test_trustregion.py .. [ 33%] ...... [ 33%] lib/python3.12/site-packages/scipy/optimize/tests/test_trustregion_exact.py . [ 33%] ......... [ 33%] lib/python3.12/site-packages/scipy/optimize/tests/test_trustregion_krylov.py . [ 33%] .... [ 33%] lib/python3.12/site-packages/scipy/optimize/tests/test_zeros.py ........ [ 33%] ........................................................................ [ 33%] ........................................................................ [ 33%] ................ [ 33%] lib/python3.12/site-packages/scipy/signal/tests/test_array_tools.py .... [ 33%] .. [ 33%] lib/python3.12/site-packages/scipy/signal/tests/test_bsplines.py ....... [ 33%] ...............xxXxXxx.. [ 33%] lib/python3.12/site-packages/scipy/signal/tests/test_cont2discrete.py .. [ 33%] ...................... [ 33%] lib/python3.12/site-packages/scipy/signal/tests/test_czt.py ............ [ 33%] ........................................................................ [ 33%] ........................................................................ [ 33%] ...... [ 33%] lib/python3.12/site-packages/scipy/signal/tests/test_dltisys.py ........ [ 33%] ........................ [ 33%] lib/python3.12/site-packages/scipy/signal/tests/test_filter_design.py .. [ 33%] ........................................................................ [ 33%] ...............s........................................................ [ 33%] ........................................................................ [ 33%] ........................... [ 33%] lib/python3.12/site-packages/scipy/signal/tests/test_fir_filter_design.py . [ 33%] .................................F............ [ 33%] lib/python3.12/site-packages/scipy/signal/tests/test_ltisys.py .F....... [ 33%] ........................................................................ [ 33%] [ 33%] lib/python3.12/site-packages/scipy/signal/tests/test_max_len_seq.py .. [ 33%] lib/python3.12/site-packages/scipy/signal/tests/test_peak_finding.py ... [ 34%] .................................................. [ 34%] lib/python3.12/site-packages/scipy/signal/tests/test_result_type.py .... [ 34%] . [ 34%] lib/python3.12/site-packages/scipy/signal/tests/test_savitzky_golay.py . [ 34%] FFF..F....... [ 34%] lib/python3.12/site-packages/scipy/signal/tests/test_short_time_fft.py . [ 34%] ........................................................................ [ 34%] ........................................................................ [ 34%] ........................................................................ [ 34%] ...................... [ 34%] lib/python3.12/site-packages/scipy/signal/tests/test_signaltools.py .... [ 34%] ........................................................................ [ 34%] ........................................................................ [ 34%] ........................................................................ [ 34%] ........................................................................ [ 34%] ........................................................................ [ 34%] ........................................................................ [ 34%] ........................................................................ [ 34%] ........................................................................ [ 35%] ........................................................................ [ 35%] ........................................................................ [ 35%] ........................................................................ [ 35%] ........................................................................ [ 35%] ........................................................................ [ 35%] ........................................................................ [ 35%] ........................................................................ [ 35%] ........................................................................ [ 35%] ........................................................................ [ 35%] ........................................................................ [ 35%] ........................................................................ [ 35%] ........................................................................ [ 36%] ........................................................................ [ 36%] ........................................................................ [ 36%] ........................................................................ [ 36%] ........................................................................ [ 36%] ........................................................................ [ 36%] ........................................................................ [ 36%] ........................................................................ [ 36%] ........................................................................ [ 36%] ........................................................................ [ 36%] ........................................................................ [ 36%] ........................................................................ [ 37%] ........................................................................ [ 37%] ........................................................................ [ 37%] ........................................................................ [ 37%] ........................................................................ [ 37%] ........................................................................ [ 37%] ........................................................................ [ 37%] ........................................................................ [ 37%] ........................................................................ [ 37%] ........................................................................ [ 37%] ........................................................................ [ 37%] ........................................................................ [ 37%] ........................................................................ [ 38%] ........................................................................ [ 38%] ........................................................................ [ 38%] ........................................................................ [ 38%] ........................................................................ [ 38%] ........................................................................ [ 38%] ........................................................................ [ 38%] ........................................................................ [ 38%] ........................................................................ [ 38%] ........................................................................ [ 38%] ........................................................................ [ 38%] ........................................................................ [ 38%] ........................................................................ [ 39%] ........................................................................ [ 39%] ........................................................................ [ 39%] ........................................................................ [ 39%] ........................................................................ [ 39%] ........................................................................ [ 39%] ........................................................................ [ 39%] ........................................................................ [ 39%] ........................................................................ [ 39%] ........................................................................ [ 39%] ........................................................................ [ 39%] ........................................................................ [ 40%] ........................................................................ [ 40%] ........................................................................ [ 40%] ........................................................................ [ 40%] ........................................................................ [ 40%] ........................................................................ [ 40%] ........................................................................ [ 40%] ........................................................................ [ 40%] ........................................................................ [ 40%] ........................................................................ [ 40%] ........................................................................ [ 40%] ........................................................................ [ 40%] ........................................................................ [ 41%] ........................................................................ [ 41%] ........................................................................ [ 41%] ........................................................................ [ 41%] ........................................................................ [ 41%] ........................................................................ [ 41%] ........................................................................ [ 41%] ........................................................................ [ 41%] ........................................................................ [ 41%] ........................................................................ [ 41%] ........................................................................ [ 41%] ........................................................................ [ 41%] ........................................................................ [ 42%] ........................................................................ [ 42%] ........................................................................ [ 42%] ........................................................................ [ 42%] ........................................................................ [ 42%] ........................................................................ [ 42%] ........................................................................ [ 42%] ........................................................................ [ 42%] ........................................................................ [ 42%] ........................................................................ [ 42%] ........................................................................ [ 42%] ........................................................................ [ 43%] ........................................................................ [ 43%] ........................................................................ [ 43%] ........................................................................ [ 43%] ........................................................................ [ 43%] ........................................................................ [ 43%] ........................................................................ [ 43%] ........................................................................ [ 43%] ........................................................................ [ 43%] ........................................................................ [ 43%] ........................................................................ [ 43%] ........................................................................ [ 43%] ........................................................................ [ 44%] ........................................................................ [ 44%] ........................................................................ [ 44%] ........................................................................ [ 44%] ........................................................................ [ 44%] ........................................................................ [ 44%] ........................................................................ [ 44%] ........................................................................ [ 44%] ........................................................................ [ 44%] ........................................................................ [ 44%] ........................................................................ [ 44%] ........................................................................ [ 44%] ........................................................................ [ 45%] ........................................................................ [ 45%] ........................................................................ [ 45%] ........................................................................ [ 45%] ........................................................................ [ 45%] ........................................................................ [ 45%] ........................................................................ [ 45%] ........................................................................ [ 45%] ........................................................................ [ 45%] ........................................................................ [ 45%] ........................................................................ [ 45%] ........................................................................ [ 46%] ........................................................................ [ 46%] ........................................................................ [ 46%] ........................................................................ [ 46%] ........................................................................ [ 46%] ........................................................................ [ 46%] ........................................................................ [ 46%] ........................................................................ [ 46%] ........................................................................ [ 46%] ........................................................................ [ 46%] ........................................................................ [ 46%] ........................................................................ [ 46%] ........................................................................ [ 47%] ........................................................................ [ 47%] ........................................................................ [ 47%] ........................................................................ [ 47%] ........................................................................ [ 47%] ........................................................................ [ 47%] ........................................................................ [ 47%] ........................................................................ [ 47%] ........................................................................ [ 47%] ........................................................................ [ 47%] ........................................................................ [ 47%] ........................................................................ [ 47%] ........................................................................ [ 48%] ........................................................................ [ 48%] ............ss.......................................................... [ 48%] ........................................................................ [ 48%] ........................................................................ [ 48%] ........................................................................ [ 48%] ........................................................................ [ 48%] ........................................................................ [ 48%] ........................................................................ [ 48%] ........................................................................ [ 48%] ........................................................................ [ 48%] ...........................ss....F...................................... [ 49%] ........................................................................ [ 49%] ....................... [ 49%] lib/python3.12/site-packages/scipy/signal/tests/test_spectral.py ....... [ 49%] ........................................................................ [ 49%] .................................................... [ 49%] lib/python3.12/site-packages/scipy/signal/tests/test_splines.py ........ [ 49%] ..................................................................... [ 49%] lib/python3.12/site-packages/scipy/signal/tests/test_upfirdn.py ........ [ 49%] ........................................................................ [ 49%] ........................................................................ [ 49%] ........................................................................ [ 49%] ........................................................................ [ 49%] ......... [ 49%] lib/python3.12/site-packages/scipy/signal/tests/test_waveforms.py ...... [ 49%] ................................. [ 49%] lib/python3.12/site-packages/scipy/signal/tests/test_wavelets.py .. [ 49%] lib/python3.12/site-packages/scipy/signal/tests/test_windows.py ........ [ 49%] ............................................................. [ 49%] lib/python3.12/site-packages/scipy/sparse/csgraph/tests/test_connected_components.py . [ 49%] ....... [ 49%] lib/python3.12/site-packages/scipy/sparse/csgraph/tests/test_conversions.py . [ 49%] .. [ 49%] lib/python3.12/site-packages/scipy/sparse/csgraph/tests/test_flow.py ... [ 49%] .......................................... [ 49%] lib/python3.12/site-packages/scipy/sparse/csgraph/tests/test_graph_laplacian.py . [ 49%] ........................................................................ [ 50%] ........................................................................ [ 50%] ........................................................................ [ 50%] ........................................................................ [ 50%] ........................................................................ [ 50%] ........................................................................ [ 50%] ........................................................................ [ 50%] ........................................................................ [ 50%] ........................................................................ [ 50%] ........................................................................ [ 50%] ........................................................................ [ 50%] ........................................................................ [ 50%] ........................................................................ [ 51%] ........................................................................ [ 51%] ........................................................................ [ 51%] ............................................. [ 51%] lib/python3.12/site-packages/scipy/sparse/csgraph/tests/test_matching.py . [ 51%] .....................s [ 51%] lib/python3.12/site-packages/scipy/sparse/csgraph/tests/test_pydata_sparse.py s [ 51%] sssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 51%] lib/python3.12/site-packages/scipy/sparse/csgraph/tests/test_reordering.py . [ 51%] .. [ 51%] lib/python3.12/site-packages/scipy/sparse/csgraph/tests/test_shortest_path.py . [ 51%] ........................................................................ [ 51%] .............. [ 51%] lib/python3.12/site-packages/scipy/sparse/csgraph/tests/test_spanning_tree.py . [ 51%] [ 51%] lib/python3.12/site-packages/scipy/sparse/csgraph/tests/test_traversal.py . [ 51%] ........ [ 51%] lib/python3.12/site-packages/scipy/sparse/linalg/_dsolve/tests/test_linsolve.py . [ 51%] s.s.s.s.sss..........s....s............................................. [ 51%] ........................................................................ [ 51%] ........................................................................ [ 51%] ........................................................................ [ 51%] ....................................................................... [ 51%] lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py . [ 51%] .................. [ 51%] lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py . [ 51%] ........................................................................ [ 52%] ........................................................................ [ 52%] ........................................................................ [ 52%] ........................................................................ [ 52%] ........................................................................ [ 52%] ........................................................................ [ 52%] ........................................................................ [ 52%] ........................................................................ [ 52%] ........................................................................ [ 52%] ........................................................................ [ 52%] ........................................................................ [ 52%] ........................................................................ [ 52%] ........................................................................ [ 53%] ........................................................................ [ 53%] ........................................................................ [ 53%] ........................................................................ [ 53%] ........................................................................ [ 53%] ........................................................................ [ 53%] .............X.......................................................... [ 53%] ........................................................................ [ 53%] ........................................................................ [ 53%] ................s....FFFFF.. [ 53%] lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py . [ 53%] .............................................FFFFFFFFF.FFFFFFFFFFFF....s [ 53%] .ss..s.ssss....s.ss..s.ssss....s.ss..s.ssss....s.ss..s.ssss....s.ss..s.s [ 53%] sss....s.ss..s.ssssF...............ssssssssFFF......F.......FF.......... [ 54%] .......................................FFFFFFFFF.FFFFFFFFFFFF....s.ss... [ 54%] .s.ss....s.ss....s.ss....s.ss....s.ss....s.ss....s.ss....s.ss....s.ss... [ 54%] .s.ss....s.ssF.......................FFF......F......................... [ 54%] .....................FFFFFFFFFFFFFFFFFFFFFFFF....s.......s..F....s...... [ 54%] .s.FF....s.......s..F....s.......s.FF....s.......s..F....s.......s...... [ 54%] .....ssssssssFFF......F..xx [ 54%] lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py . [ 54%] F..F.. [ 54%] lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py . [ 54%] ............FF....FF......................FF....FF................FF.... [ 54%] FF...................FF....FF...................FF....FF................ [ 54%] ...FF....FF............................................................. [ 54%] ........................................................................ [ 54%] ........................................................................ [ 54%] ........................................................................ [ 55%] ........................................................................ [ 55%] ............................................s.ss.ss.s............s.ss.s. [ 55%] ...s.......s.......s.......s.......s.......X.......x.....s.s..sss..X.... [ 55%] .s.s.........F.F..s....F.F.s...F.F..s...F.F.s....F.F.s....F.F.s........s [ 55%] ........s.......s.......s........s........s.........s........s.......s.. [ 55%] .....s.......s.......s........s........ss...............s............... [ 55%] ........................... [ 55%] lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lgmres.py F [ 55%] FF...F. [ 55%] lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lsmr.py . [ 55%] .............. [ 55%] lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lsqr.py F [ 55%] .... [ 55%] lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_minres.py . [ 55%] ...... [ 55%] lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_utils.py . [ 55%] [ 55%] lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_expm_multiply.py . [ 55%] ........................................................................ [ 55%] ........................................................................ [ 55%] .................................. [ 55%] lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_interface.py . [ 55%] ........................... [ 55%] lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_matfuncs.py . [ 55%] ................................. [ 55%] lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_norm.py .... [ 55%] .... [ 55%] lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_onenormest.py s [ 55%] s.s... [ 55%] lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py F [ 55%] FFFFF......FFFFFF......FFFFFF......FFFFFF......ssssssss............X [ 56%] lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_pydata_sparse.py s [ 56%] ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 56%] ssssss [ 56%] lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_special_sparse_arrays.py . [ 56%] ........................................................................ [ 56%] ........................................................................ [ 56%] ........................................................................ [ 56%] ..................................................................... [ 56%] lib/python3.12/site-packages/scipy/sparse/tests/test_arithmetic1d.py ... [ 56%] ................................. [ 56%] lib/python3.12/site-packages/scipy/sparse/tests/test_array_api.py ...... [ 56%] ........................................................................ [ 56%] ........................................................................ [ 56%] ........................................................................ [ 56%] ........................................................................ [ 56%] .................. [ 56%] lib/python3.12/site-packages/scipy/sparse/tests/test_base.py ........... [ 56%] ........................................................................ [ 56%] .................................................................s...... [ 57%] ........................................................................ [ 57%] ........................................................................ [ 57%] ..................s..................................................... [ 57%] ........................................................................ [ 57%] ...............................................s........................ [ 57%] ........................................................................ [ 57%] ...................................................................s.... [ 57%] ..............ssssss.s.................................................. [ 57%] ....s.sssssss........................................................... [ 57%] ..................s........ssssss.s..................................... [ 57%] .................s.sssssss.............................................. [ 57%] ...............................s............sssss.s..................... [ 58%] ...................................sssssss.............................. [ 58%] ...............................................s............sssss.s..... [ 58%] ...................................................sssssss.............. [ 58%] ...............................................................s........ [ 58%] ..............ssssssssssssssssssssssssssssssssssssssssss.......sssss..ss [ 58%] sssss................................................................... [ 58%] .........s.......x................ssssssssssssssssssssssssssssssssssssss [ 58%] ssss.......sssss..sssssss............................................... [ 58%] .............................s.......x...........sssss.sssssssssssssssss [ 58%] ssssssssssssssssssssssssss.......sssss..sssssss......................... [ 58%] ..................................................s...x.s.......sssss.ss [ 59%] sssssssssssssssssssssssssssssssssssssssss.......sssss..sssssss.......... [ 59%] .................................................................s...x.s [ 59%] ..........s.......ssssssssssssssssssssssssssssssssssssssssss.......sssss [ 59%] ........................................................................ [ 59%] ...........s.............xx.x.s.......ssssssssssssssssssssssssssssssssss [ 59%] ssssssss.......sssss.................................................... [ 59%] ...............................s.............xx.x....................... [ 59%] ........................................................................ [ 59%] ...................................................s.................... [ 59%] sss..xx................................................................. [ 59%] ........................................................................ [ 59%] .....s........................sss..xx................................... [ 60%] ........................................................................ [ 60%] ...................................s...............sss..xx.............. [ 60%] ........................................................................ [ 60%] ........................................................s............... [ 60%] ...sss..xx.......ssssssssssssssssssssssssssssssssssssssssss.......sssss. [ 60%] ........................................................................ [ 60%] ......s.............xx.x.sssxx.......sssssssssssssssssssssssssssssssssss [ 60%] sssssss.......sssss..................................................... [ 60%] ..........................s.............xx.x....sssxx.......ssssssssssss [ 60%] ssssssssssssssssssssssssssssss.......sssss.sssssss...................... [ 60%] .....................................................s.......x........ss [ 60%] s........ssssssssssssssssssssssssssssssssssssssssss.......sssss.sssssss. [ 61%] ........................................................................ [ 61%] ..s.......x...........sss....s......ss..ss....................sss......s [ 61%] ss....sssssssssssssssss.....sssss....s..s.x...............s...s...ss.... [ 61%] ..............sssssxxs..sssss.s.s...............ss......ss..ss.......... [ 61%] ......sss.....sss..sssssssssssssssssss....sssss.s...s..s.xsss........... [ 61%] ..s...s.s.ss..................ssss..s..sssss.s..s...................s... [ 61%] ..........................................s............................. [ 61%] .....s.............................................s...............s.... [ 61%] ...............s...........................ss....................s...... [ 61%] ..............................s......................................... [ 61%] ....s...............s...................s.s......sss..ss.............sss [ 62%] ....sss..sssssssssssssssssss....sssssss...s..s.xss..........sssss...sss. [ 62%] ss.................ssss...s..sssss.s.s..............s...s.......s....... [ 62%] .s.......................sss....................s....ss......s..ss...... [ 62%] ...ssss......ss...................................s..................s.. [ 62%] ....s..............................sss.....................s.....s...... [ 62%] .s..s...s.........ssss.....ss.....................................s..... [ 62%] .............ss......ss..ss....................sss......sss....sssssssss [ 62%] ssssssss.....sssss....s..s.x...............s...s...ss..................s [ 62%] ssssxxs..sssss.s.s...............ss......ss..ss................sss.....s [ 62%] ss..sssssssssssssssssss....sssss.s...s..s.xsss.............s...s.s.ss... [ 62%] ...............ssss..s..sssss.s..s...................s.................. [ 62%] ...........................s..................................s......... [ 63%] ....................................s...............s................... [ 63%] s...........................ss....................s..................... [ 63%] ...............s.............................................s.......... [ 63%] .....s...................s.s......sss..ss.............sss....sss..ssssss [ 63%] sssssssssssss....sssssss...s..s.xss..........sssss...sss.ss............. [ 63%] ....ssss...s..sssss.s.s..............s...s.......s........s............. [ 63%] ..........sss....................s....ss......s..ss.........ssss......ss [ 63%] ...................................s..................s......s.......... [ 63%] ....................sss.....................s.....s.......s..s...s...... [ 63%] ...ssss.....ss.....................................s..................ss [ 63%] ......ss..ss....................sss......sss....sssssssssssssssss.....ss [ 63%] sss....s..s.x...............s...s...ss..................sssssxxs..sssss. [ 64%] s.s...............ss......ss..ss................sss.....sss..sssssssssss [ 64%] ssssssss....sssss.s...s..s.xsss.............s...s.s.ss.................. [ 64%] ssss..s..sssss.s..s...................s................................. [ 64%] ............s..................................s........................ [ 64%] .....................s...............s...................s.............. [ 64%] .............ss....................s.................................... [ 64%] s.............................................s...............s......... [ 64%] ..........s.s......sss..ss.............sss....sss..sssssssssssssssssss.. [ 64%] ..sssssss...s..s.xss..........sssss...sss.ss.................ssss...s..s [ 64%] ssss.s.s..............s...s.......s........s.......................sss.. [ 64%] ..................s....ss......s..ss.........ssss......ss............... [ 65%] ....................s..................s......s......................... [ 65%] .....sss.....................s.....s.......s..s...s.........ssss.....ss. [ 65%] ....................................s..................ss......ss..ss... [ 65%] .................sss......sss....sssssssssssssssss.....sssss....s..s.x.. [ 65%] .............s...s...ss..................sssssxxs..sssss.s.s............ [ 65%] ...ss......ss..ss................sss.....sss..sssssssssssssssssss....sss [ 65%] ss.s...s..s.xsss.............s...s.s.ss..................ssss..s..sssss. [ 65%] s..s...................s.............................................s.. [ 65%] ................................s....................................... [ 65%] ......s...............s...................s...........................ss [ 65%] ....................s....................................s.............. [ 65%] ...............................s...............s...................s.s.. [ 66%] ....sss..ss.............sss....sss..sssssssssssssssssss....sssssss...s.. [ 66%] s.xss..........sssss...sss.ss.................ssss...s..sssss.s.s....... [ 66%] .......s...s.......s........s.......................sss................. [ 66%] ...s....ss......s..ss.........ssss......ss.............................. [ 66%] .....s..................s......s..............................sss....... [ 66%] ..............s.....s.......s..s...s.........ssss.....ss................ [ 66%] .....................s..................ss.......ss..ss................. [ 66%] ...sss......sss....sssssssssssssssss.....sss.ss.....s..s.x.............. [ 66%] .s...s...ss..................sssssxxs..sssss.s.s...............ss....... [ 66%] ss..ss................sss.....sss..sssssssssssssssssss....ssss.s..s...s. [ 66%] .s.xsss.............s...s.s.ss..................ssss..s..sssss.s..s..... [ 66%] ..............s..............................................s.......... [ 67%] ..........................s............................................. [ 67%] s...............s...................s............................ss..... [ 67%] ...............s......................................s................. [ 67%] ............................s...............s....................s.s.... [ 67%] ..s.ss..ss.............sss....sss..sssssssssssssssssss....ssss.ss.s...s. [ 67%] .s.xss..........sssss...sss.ss.................ssss...s..sssss.s.s...... [ 67%] ........s...s.......s.........s.......................sss............... [ 67%] .....s.....s.s......s..ss.........ssss......ss.......................... [ 67%] .........s..................s......s...............................sss.. [ 67%] ...................s.......s.......s..s...s.........ssss.....ss......... [ 67%] ............................s..................ss.......ss..ss.......... [ 68%] ..........sss......sss....sssssssssssssssss.....sss.ss.....s..s.x....... [ 68%] ........s...s...ss..................sssssxxs..sssss.s.s...............ss [ 68%] .......ss..ss................sss.....sss..sssssssssssssssssss....ssss.s. [ 68%] .s...s..s.xsss.............s...s.s.ss..................ssss..s..sssss.s. [ 68%] .s...................s..............................................s... [ 68%] .................................s...................................... [ 68%] .......s...............s...................s............................ [ 68%] ss....................s......................................s.......... [ 68%] ...................................s...............s.................... [ 68%] s.s......s.ss..ss.............sss....sss..sssssssssssssssssss....ssss.ss [ 68%] .s...s..s.xss..........sssss...sss.ss.................ssss...s..sssss.s. [ 68%] s..............s...s.......s.........s.......................sss........ [ 69%] ............s.....s.s......s..ss.........ssss......ss................... [ 69%] ................s..................s......s............................. [ 69%] ..sss.....................s.......s.......s..s...s.........ssss.....ss.. [ 69%] ...................................s..................ss.......ss..ss... [ 69%] .................sss......sss....sssssssssssssssss.....sss.ss.....s..s.x [ 69%] ...............s...s...ss..................sssssxxs..sssss.s.s.......... [ 69%] .....ss.......ss..ss................sss.....sss..sssssssssssssssssss.... [ 69%] ssss.s..s...s..s.xsss.............s...s.s.ss..................ssss..s..s [ 69%] ssss.s..s...................s........................................... [ 69%] ...s....................................s............................... [ 69%] ..............s...............s...................s..................... [ 69%] .......ss....................s......................................s... [ 70%] ..........................................s...............s............. [ 70%] .......s.s......s.ss..ss.............sss....sss..sssssssssssssssssss.... [ 70%] ssss.ss.s...s..s.xss..........sssss...sss.ss.................ssss...s..s [ 70%] ssss.s.s..............s...s.......s.........s.......................sss. [ 70%] ...................s.....s.s......s..ss.........ssss......ss............ [ 70%] .......................s..................s......s...................... [ 70%] .........sss.....................s.......s.......s..s...s.........ssss.. [ 70%] ...ss.....................................s..................ss.......ss [ 70%] ..ss....................sss......sss....sssssssssssssssss.....sss.ss.... [ 70%] .s..s.x...............s...s...ss..................sssssxxs..sssss.s.s... [ 70%] ............ss.......ss..ss................sss.....sss..ssssssssssssssss [ 70%] sss....ssss.s..s...s..s.xsss.............s...s.s.ss..................sss [ 71%] s..s..sssss.s..s...................s.................................... [ 71%] ..........s....................................s........................ [ 71%] .....................s...............s...................s.............. [ 71%] ..............ss....................s................................... [ 71%] ...s.............................................s...............s...... [ 71%] ..............s.s......s.ss..ss.............sss....sss..ssssssssssssssss [ 71%] sss....ssss.ss.s...s..s.xss..........sssss...sss.ss.................ssss [ 71%] ...s..sssss.s.s..............s...s.......s.........s.................... [ 71%] ...sss....................s.....s.s......s..ss.........ssss......ss..... [ 71%] ..............................s..................s......s............... [ 71%] ................sss.....................s.......s.......s..s...s........ [ 72%] .ssss.....ss.....................................s..................ss.. [ 72%] .....ss..ss....................sss......sss....sssssssssssssssss.....sss [ 72%] .ss.....s..s.x...............s...s...ss..................sssssxxs..sssss [ 72%] .s.s...............ss.......ss..ss................sss.....sss..sssssssss [ 72%] ssssssssss....ssss.s..s...s..s.xsss.............s...s.s.ss.............. [ 72%] ....ssss..s..sssss.s..s...................s............................. [ 72%] .................s....................................s................. [ 72%] ............................s...............s...................s....... [ 72%] .....................ss....................s............................ [ 72%] ..........s.............................................s............... [ 72%] s....................s.s......s.ss..ss.............sss....sss..sssssssss [ 72%] ssssssssss....ssss.ss.s...s..s.xss..........sssss...sss.ss.............. [ 73%] ...ssss...s..sssss.s.s..............s...s.......s.........s............. [ 73%] ..........sss....................s.....s.s......s..ss.........ssss...... [ 73%] ss...................................s..................s......s........ [ 73%] .......................sss.....................s.......s.......s..s...s. [ 73%] ........ssss.....ss.....................................s............... [ 73%] ...s. [ 73%] lib/python3.12/site-packages/scipy/sparse/tests/test_common1d.py ....... [ 73%] ........................................................................ [ 73%] ........................ [ 73%] lib/python3.12/site-packages/scipy/sparse/tests/test_construct.py ...... [ 73%] ........................................s.................. [ 73%] lib/python3.12/site-packages/scipy/sparse/tests/test_coo.py ............ [ 73%] ........................................................................ [ 73%] ........................................................................ [ 73%] ........................................................................ [ 73%] ........................................................................ [ 74%] .... [ 74%] lib/python3.12/site-packages/scipy/sparse/tests/test_csc.py ........... [ 74%] lib/python3.12/site-packages/scipy/sparse/tests/test_csr.py ............ [ 74%] .. [ 74%] lib/python3.12/site-packages/scipy/sparse/tests/test_dok.py ............ [ 74%] ............................................. [ 74%] lib/python3.12/site-packages/scipy/sparse/tests/test_extract.py .... [ 74%] lib/python3.12/site-packages/scipy/sparse/tests/test_indexing1d.py ..... [ 74%] ................................................... [ 74%] lib/python3.12/site-packages/scipy/sparse/tests/test_matrix_io.py ...... [ 74%] . [ 74%] lib/python3.12/site-packages/scipy/sparse/tests/test_minmax1d.py ....... [ 74%] ..... [ 74%] lib/python3.12/site-packages/scipy/sparse/tests/test_sparsetools.py .... [ 74%] ...ss...sss...ss.. [ 74%] lib/python3.12/site-packages/scipy/sparse/tests/test_spfuncs.py ... [ 74%] lib/python3.12/site-packages/scipy/sparse/tests/test_sputils.py ........ [ 74%] ..................................................... [ 74%] lib/python3.12/site-packages/scipy/spatial/tests/test__plotutils.py ssss [ 74%] s [ 74%] lib/python3.12/site-packages/scipy/spatial/tests/test__procrustes.py ... [ 74%] ... [ 74%] lib/python3.12/site-packages/scipy/spatial/tests/test_distance.py ...... [ 74%] ........................................................................ [ 74%] ........................................................................ [ 74%] .............ss............................ss........................... [ 74%] ...............................ss....................................... [ 74%] ........................................................................ [ 74%] ........................................................................ [ 74%] .................................................... [ 74%] lib/python3.12/site-packages/scipy/spatial/tests/test_hausdorff.py ..... [ 74%] .............s [ 74%] lib/python3.12/site-packages/scipy/spatial/tests/test_kdtree.py ........ [ 74%] ........................................................................ [ 75%] ........................................................................ [ 75%] ........................................................................ [ 75%] ........... [ 75%] lib/python3.12/site-packages/scipy/spatial/tests/test_qhull.py ......... [ 75%] ........................................................................ [ 75%] ........................................................................ [ 75%] ..................................... [ 75%] lib/python3.12/site-packages/scipy/spatial/tests/test_slerp.py ......... [ 75%] ........................................................................ [ 75%] .. [ 75%] lib/python3.12/site-packages/scipy/spatial/tests/test_spherical_voronoi.py . [ 75%] ........................................................................ [ 75%] .............................................. [ 75%] lib/python3.12/site-packages/scipy/spatial/transform/tests/test_rigid_transform.py . [ 75%] ............................................. [ 75%] lib/python3.12/site-packages/scipy/spatial/transform/tests/test_rotation.py . [ 75%] ........................................................................ [ 75%] ........................................................................ [ 75%] ................................................................. [ 76%] lib/python3.12/site-packages/scipy/spatial/transform/tests/test_rotation_groups.py . [ 76%] ........................................................................ [ 76%] ........................................................................ [ 76%] ........................................................................ [ 76%] ............... [ 76%] lib/python3.12/site-packages/scipy/spatial/transform/tests/test_rotation_spline.py . [ 76%] ......s [ 76%] lib/python3.12/site-packages/scipy/special/tests/test_basic.py ......... [ 76%] ....................................x...X............................... [ 76%] ..............................................xxx....................... [ 76%] ........................................................................ [ 76%] ........................................................................ [ 76%] ...................................X.................................... [ 76%] ........................................................................ [ 76%] ........................................................................ [ 76%] ........................................................................ [ 76%] ........................................................................ [ 77%] ........................................................................ [ 77%] ........................................................................ [ 77%] ........................................s...s...s...s...s...s...s...s... [ 77%] s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s... [ 77%] s...s...s...s...s...s...s...s...s...s...s...s...s...s...ss..ss..ss..ss.. [ 77%] ss..ss..ss..ss..ss..ss..ss..ss..ss..ss..ss..ss..ss..ss..ss..ss..s...s... [ 77%] s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s... [ 77%] ........................................................................ [ 77%] ........................................................................ [ 77%] ........................................................................ [ 77%] ...................s...s...s...s...s...s...s...s...s...s...s...s...s...s [ 78%] ...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s [ 78%] ...s...s...s...s...s...s...s...s...ss..ss..ss..ss..ss..ss..ss..ss..ss..s [ 78%] s..ss..ss..ss..ss..ss..ss..ss..ss..ss..ss..s...s...s...s...s...s...s...s [ 78%] ...s...s...s...s...s...s...s...s...s...s...s...s........................ [ 78%] ........................................................................ [ 78%] ........................................................................ [ 78%] ........................................................................ [ 78%] ........................................................................ [ 78%] ........................................................................ [ 78%] ........s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s... [ 78%] s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s...s... [ 78%] s...s...s...s...s...s...ss..ss..ss..ss..ss..ss..ss..ss..ss..ss..ss..ss.. [ 79%] ss..ss..ss..ss..ss..ss..ss..ss..s...s...s...s...s...s...s...s...s...s... [ 79%] s...s...s...s...s...s...s...s...s...s................................... [ 79%] ........................................................................ [ 79%] ........................................................................ [ 79%] ........................................................................ [ 79%] .............................XX......................................... [ 79%] ........................................................................ [ 79%] .................................................. [ 79%] lib/python3.12/site-packages/scipy/special/tests/test_bdtr.py .......... [ 79%] .............. [ 79%] lib/python3.12/site-packages/scipy/special/tests/test_boost_ufuncs.py .. [ 79%] ......... [ 79%] lib/python3.12/site-packages/scipy/special/tests/test_boxcox.py ........ [ 79%] .. [ 79%] lib/python3.12/site-packages/scipy/special/tests/test_cdflib.py ssssssss [ 79%] sssssssssssssss......................................................... [ 79%] .........................................................x............ [ 79%] lib/python3.12/site-packages/scipy/special/tests/test_cdft_asymptotic.py . [ 79%] .. [ 79%] lib/python3.12/site-packages/scipy/special/tests/test_cephes_intp_cast.py . [ 79%] ................. [ 79%] lib/python3.12/site-packages/scipy/special/tests/test_cosine_distr.py .. [ 79%] ............................. [ 80%] lib/python3.12/site-packages/scipy/special/tests/test_cython_special.py . [ 80%] ........................................................xxxxx..xx..xx... [ 80%] ........................................................................ [ 80%] ...................................xxxx............xxxx......xxxx....... [ 80%] ................... [ 80%] lib/python3.12/site-packages/scipy/special/tests/test_data.py .......... [ 80%] ........................................................................ [ 80%] .............................x.x........................................ [ 80%] .......x..x...x......................................... [ 80%] lib/python3.12/site-packages/scipy/special/tests/test_dd.py ..... [ 80%] lib/python3.12/site-packages/scipy/special/tests/test_digamma.py ... [ 80%] lib/python3.12/site-packages/scipy/special/tests/test_ellip_harm.py .... [ 80%] . [ 80%] lib/python3.12/site-packages/scipy/special/tests/test_erfinv.py ........ [ 80%] ..... [ 80%] lib/python3.12/site-packages/scipy/special/tests/test_exponential_integrals.py . [ 80%] ............................ [ 80%] lib/python3.12/site-packages/scipy/special/tests/test_extending.py F [ 80%] lib/python3.12/site-packages/scipy/special/tests/test_faddeeva.py ...... [ 80%] ........... [ 80%] lib/python3.12/site-packages/scipy/special/tests/test_gamma.py .. [ 80%] lib/python3.12/site-packages/scipy/special/tests/test_gammainc.py ...... [ 80%] ............................................... [ 80%] lib/python3.12/site-packages/scipy/special/tests/test_hyp2f1.py ........ [ 80%] ......................................x................................. [ 80%] ......x................................x.........x...................... [ 80%] ......x..................x.............................................. [ 80%] ...s.................................................................... [ 81%] ................................. [ 81%] lib/python3.12/site-packages/scipy/special/tests/test_hypergeometric.py . [ 81%] ........................................................................ [ 81%] ....................xx.... [ 81%] lib/python3.12/site-packages/scipy/special/tests/test_iv_ratio.py ...... [ 81%] ........................................................................ [ 81%] ...................................... [ 81%] lib/python3.12/site-packages/scipy/special/tests/test_kolmogorov.py .... [ 81%] ................................. [ 81%] lib/python3.12/site-packages/scipy/special/tests/test_lambertw.py ...... [ 81%] [ 81%] lib/python3.12/site-packages/scipy/special/tests/test_legendre.py ...... [ 81%] ........................................................................ [ 81%] ........................................................................ [ 81%] ........................................................................ [ 81%] ........................................................................ [ 81%] ........................................................................ [ 81%] ........................................................................ [ 81%] ........................................................................ [ 81%] ........................................................................ [ 82%] ........................................................................ [ 82%] ........................................................................ [ 82%] ........................................................... [ 82%] lib/python3.12/site-packages/scipy/special/tests/test_log1mexp.py ...... [ 82%] ......................................... [ 82%] lib/python3.12/site-packages/scipy/special/tests/test_loggamma.py ...... [ 82%] [ 82%] lib/python3.12/site-packages/scipy/special/tests/test_logit.py ......... [ 82%] . [ 82%] lib/python3.12/site-packages/scipy/special/tests/test_logsumexp.py ..... [ 82%] ........................................................................ [ 82%] ........................................................................ [ 82%] ........................................................................ [ 82%] ........................................................................ [ 82%] ........................................................................ [ 82%] ........................................ [ 82%] lib/python3.12/site-packages/scipy/special/tests/test_mpmath.py ssssssss [ 82%] ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 82%] ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 83%] sssssssssssssssss [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_nan_inputs.py .... [ 83%] ........................................................................ [ 83%] ........................................................................ [ 83%] ........................................................................ [ 83%] .............. [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_ndtr.py ........ [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_ndtri_exp.py ..... [ 83%] ....... [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_orthogonal.py .... [ 83%] .............................. [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_orthogonal_eval.py . [ 83%] ........................................................................ [ 83%] ...................... [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_owens_t.py .... [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_pcf.py .. [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_pdtr.py .......... [ 83%] [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_powm1.py ......... [ 83%] ..................... [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_precompute_expn_asy.py s [ 83%] [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_precompute_gammainc.py s [ 83%] ssss [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_precompute_utils.py s [ 83%] s [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_round.py .. [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_sf_error.py ...... [ 83%] .... [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_sici.py .. [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_specfun.py ..... [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_spence.py .. [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_spfun_stats.py ... [ 83%] . [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_sph_harm.py ...... [ 83%] ........... [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_spherical_bessel.py . [ 83%] .................................................... [ 83%] lib/python3.12/site-packages/scipy/special/tests/test_support_alternative_backends.py . [ 83%] ........................................................................ [ 83%] ........................................................................ [ 83%] ........................................................................ [ 83%] .....................................................................sss [ 84%] ssssssssssssssssssss.................................................... [ 84%] ......................................... [ 84%] lib/python3.12/site-packages/scipy/special/tests/test_trig.py ..s. [ 84%] lib/python3.12/site-packages/scipy/special/tests/test_ufunc_signatures.py . [ 84%] ........................................................................ [ 84%] ........................................................................ [ 84%] ........................................................................ [ 84%] ........................................................................ [ 84%] .................................... [ 84%] lib/python3.12/site-packages/scipy/special/tests/test_wright_bessel.py . [ 84%] ........................................................................ [ 84%] ........................................................................ [ 84%] ........................................................................ [ 84%] ........................................................................ [ 84%] .................xxxxxxxxxxxxxxx........................................ [ 85%] ................................................................... [ 85%] lib/python3.12/site-packages/scipy/special/tests/test_wrightomega.py ... [ 85%] ....... [ 85%] lib/python3.12/site-packages/scipy/special/tests/test_zeta.py .......... [ 85%] ............................................... [ 85%] lib/python3.12/site-packages/scipy/stats/tests/test_axis_nan_policy.py s [ 85%] ...........................................s............................ [ 85%] ......s...........................................s..................... [ 85%] .............s...........................................s.............. [ 85%] ........................................................................ [ 85%] ........................................................................ [ 85%] ........................................................................ [ 85%] ........................................................................ [ 85%] ........................................................................ [ 85%] ........................................................................ [ 85%] ........................................................................ [ 86%] ........................................................................ [ 86%] ........................................................................ [ 86%] ........................................................................ [ 86%] ........................................................................ [ 86%] ........................................................................ [ 86%] ........................................................................ [ 86%] ........................................................................ [ 86%] ..........ss............................ssssss.......................... [ 86%] ..........................ss............................................ [ 86%] ........................................................................ [ 86%] ........................................ss.............................. [ 86%] ........................................................................ [ 87%] ......................................................ss................ [ 87%] ..............................sss....................................... [ 87%] .................s.......................s..s........................... [ 87%] .............ss......................................................... [ 87%] ...................................................................... [ 87%] lib/python3.12/site-packages/scipy/stats/tests/test_binned_statistic.py . [ 87%] ............................................................ [ 87%] lib/python3.12/site-packages/scipy/stats/tests/test_censored_data.py ... [ 87%] ......... [ 87%] lib/python3.12/site-packages/scipy/stats/tests/test_contingency.py ..... [ 87%] ............ [ 87%] lib/python3.12/site-packages/scipy/stats/tests/test_continued_fraction.py . [ 87%] ............................. [ 87%] lib/python3.12/site-packages/scipy/stats/tests/test_continuous.py ...... [ 87%] .................................s...................................... [ 87%] .......................................................s................ [ 87%] ss.......s........s..s...........s.ssss.sss....................s.....ss. [ 87%] .s......s............s......s.........s......ss......................... [ 87%] ................................................. [ 88%] lib/python3.12/site-packages/scipy/stats/tests/test_continuous_basic.py . [ 88%] ...........................s..........................ssss.ss........... [ 88%] .........s.........s.s....s...........ss...........ss..........ss..ss..s [ 88%] s..ss..ss..ss..ss..............ss......ss..................ss..ss..ss... [ 88%] ...ss..ss........ssss..ss..ss..ss..ss..ss..ss..ss..........ss..ss......s [ 88%] s..........ss..............ss........ssss..ss..ss..ss..ss..ss..ss..ss..s [ 88%] sssssssss..ss..ss..........ss..ssssss..........ss..........ss......ss... [ 88%] .....ssss..ssssss......ss..ss..................ss..ss........ssss......s [ 88%] s..........ss....ssss..ssssss......ss..ss..ssssssssss..ss..ss......sssss [ 88%] s..............ss............................................s.......... [ 88%] ................ssss.ss....................s.........s.s....s........... [ 88%] ss................................................................xssss. [ 88%] ss.................X.............s......s...........ss.................. [ 89%] ..................s..................................................... [ 89%] ..................s..................................................... [ 89%] ........................................................................ [ 89%] ........................................................................ [ 89%] ........................................................................ [ 89%] ........................................................................ [ 89%] ........................................................................ [ 89%] ........................................................................ [ 89%] ........................................................................ [ 89%] ........................................................................ [ 89%] ........................................................................ [ 90%] ........................................................................ [ 90%] ........................................................................ [ 90%] ........................................................................ [ 90%] ..........................................................s............. [ 90%] ......... [ 90%] lib/python3.12/site-packages/scipy/stats/tests/test_continuous_fit_censored.py . [ 90%] ................. [ 90%] lib/python3.12/site-packages/scipy/stats/tests/test_correlation.py ..... [ 90%] . [ 90%] lib/python3.12/site-packages/scipy/stats/tests/test_crosstab.py ........ [ 90%] ..... [ 90%] lib/python3.12/site-packages/scipy/stats/tests/test_discrete_basic.py .. [ 90%] ........................................................................ [ 90%] ........................................................................ [ 90%] ........................................................................ [ 90%] ........................................................................ [ 90%] ........................................................................ [ 90%] ............................................ [ 90%] lib/python3.12/site-packages/scipy/stats/tests/test_discrete_distns.py . [ 90%] ........................................................................ [ 90%] ... [ 90%] lib/python3.12/site-packages/scipy/stats/tests/test_distributions.py ... [ 90%] ...................................ssssssssssssssssssssssss............. [ 91%] ........................................................................ [ 91%] ........................................................................ [ 91%] ........................................................................ [ 91%] ........................................................................ [ 91%] .........................s.............................................. [ 91%] ........................................................................ [ 91%] ........................................................................ [ 91%] ........................................................................ [ 91%] ........................................................................ [ 91%] ........................................................................ [ 91%] ........................................................................ [ 92%] ........................................................................ [ 92%] ........................................................................ [ 92%] ........................................................................ [ 92%] ........................................................................ [ 92%] ........................................................................ [ 92%] ........................................................................ [ 92%] ........................................................................ [ 92%] ........................................................................ [ 92%] ........................................................................ [ 92%] ........................................................................ [ 92%] ..............................................................ss.xxxx... [ 92%] ..s..s.........................xxxxxxxxxx........................s...... [ 93%] ..........................s..............................s.............. [ 93%] ..............s.............ss.......................................... [ 93%] ........................................................................ [ 93%] .......s................................................................ [ 93%] ........................................................................ [ 93%] ........sssss.s.....ss.................................................. [ 93%] ........................................................................ [ 93%] ........................................................................ [ 93%] ...................xxxxxxxxxxxxxxxxxxxxxxxxxxx.......................... [ 93%] ........................................................................ [ 93%] .............................................................s.......... [ 93%] .........s.........................sss.................................. [ 94%] . [ 94%] lib/python3.12/site-packages/scipy/stats/tests/test_entropy.py ......... [ 94%] ....................................... [ 94%] lib/python3.12/site-packages/scipy/stats/tests/test_fast_gen_inversion.py . [ 94%] .......................................................................s [ 94%] s................................................................ [ 94%] lib/python3.12/site-packages/scipy/stats/tests/test_fit.py .....s....... [ 94%] s.x....ss.....xx.xx.s...............xs..xxxx.xx......x..........xsx..... [ 94%] .....s.s....x.x.x....xx.xs....x..x.x.xxxxx.xxxx..xxxxxx..xxxxxx..xxx.x.. [ 94%] x...x.xxxxxxxxxxxxxx..xxx..x..x.x.xxxx.x....xx..x.x..x.xxxxx..xxxx.xx... [ 94%] s....................................................................... [ 94%] ...............................................ss....sss....s.s.s.ss...s [ 94%] s..s.......s.....s....s.s..ssss...............s...s.ss......s....s....ss [ 94%] ss.....s....ss....s.ss.ssss.s.............ss....s...s..s..ssss.ss.....ss [ 94%] ......s.....s..s.ss.ss.........ss.sss.s.ss......s....s..s.ssss.s.sss..s. [ 94%] sss..ss.s..s.ss.ss.......s.........s..........s.....sss... [ 95%] lib/python3.12/site-packages/scipy/stats/tests/test_hypotests.py ....... [ 95%] ........................................................................ [ 95%] ........................................................................ [ 95%] ................s......................ss......................... [ 95%] lib/python3.12/site-packages/scipy/stats/tests/test_kdeoth.py ...s.s.... [ 95%] ....ss......ss....ssssssssssssssss..ss......ss.......Fs.s..... [ 95%] lib/python3.12/site-packages/scipy/stats/tests/test_mgc.py .........ssss [ 95%] sssss.s [ 95%] lib/python3.12/site-packages/scipy/stats/tests/test_morestats.py ....... [ 95%] .............................s.......................................... [ 95%] .....................................................................s.. [ 95%] .................s........................s............................. [ 95%] ....................................s................................... [ 95%] ........................................................................ [ 95%] ............................................ [ 95%] lib/python3.12/site-packages/scipy/stats/tests/test_mstats_basic.py .... [ 95%] ..s..s......ss........s................................................. [ 96%] ..................................................................... [ 96%] lib/python3.12/site-packages/scipy/stats/tests/test_mstats_extras.py ... [ 96%] ....... [ 96%] lib/python3.12/site-packages/scipy/stats/tests/test_multicomp.py ....... [ 96%] ......................................... [ 96%] lib/python3.12/site-packages/scipy/stats/tests/test_multivariate.py .... [ 96%] ..s.s..ss..ss............ssss....ssss........ssssssss........ssssssss... [ 96%] ..................................................F..................... [ 96%] ........................................................................ [ 96%] ........................................................................ [ 96%] ........................................................................ [ 96%] ....................................ssssssssssssssssssss................ [ 96%] ........................................................................ [ 96%] ........................................................................ [ 96%] ...................................... [ 96%] lib/python3.12/site-packages/scipy/stats/tests/test_odds_ratio.py ...... [ 96%] ........................................................................ [ 96%] ........................... [ 97%] lib/python3.12/site-packages/scipy/stats/tests/test_qmc.py ........x.... [ 97%] .....................................................sss................ [ 97%] ..........................s.s.s.s.s.s.s...ssss.......................... [ 97%] ............. [ 97%] lib/python3.12/site-packages/scipy/stats/tests/test_quantile.py ........ [ 97%] ..............................................ssss........ssss........ss [ 97%] ss........ssss.................... [ 97%] lib/python3.12/site-packages/scipy/stats/tests/test_rank.py ............ [ 97%] .................................................................. [ 97%] lib/python3.12/site-packages/scipy/stats/tests/test_relative_risk.py ... [ 97%] ............ [ 97%] lib/python3.12/site-packages/scipy/stats/tests/test_resampling.py ...... [ 97%] ........................................................................ [ 97%] ...........s......................................................sssss. [ 97%] ............................................ss..........ssss............ [ 97%] .. [ 97%] lib/python3.12/site-packages/scipy/stats/tests/test_sampling.py ........ [ 97%] ........................................................................ [ 97%] ........................................................................ [ 97%] ..............................................s..ss...sssssss.sss..s.... [ 97%] ........................ssssssssssssssssssssssssssssssssssssssssssssssss [ 98%] ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss.. [ 98%] ...................................................sssssssssssssssssssss [ 98%] ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 98%] sssssssssssssssssssssssss.............................s..ss...sssssss.ss [ 98%] s..s................................ [ 98%] lib/python3.12/site-packages/scipy/stats/tests/test_sensitivity_analysis.py . [ 98%] ss...... [ 98%] lib/python3.12/site-packages/scipy/stats/tests/test_stats.py ........... [ 98%] ........................................................................ [ 98%] ............s........................................................... [ 98%] ........................................................................ [ 98%] ........................................................................ [ 98%] ........................................................................ [ 98%] ........................................................................ [ 99%] .......ss............................................................... [ 99%] .................................................................ss..... [ 99%] .s.......................................................ssssss......... [ 99%] ....................xxx....................................ss........... [ 99%] ........................................................................ [ 99%] ........................................................................ [ 99%] ........................................................................ [ 99%] ........................................................................ [ 99%] ........................................................................ [ 99%] ........................................................................ [ 99%] ..........................................................s [ 99%] lib/python3.12/site-packages/scipy/stats/tests/test_survival.py ........ [ 99%] ............... [ 99%] lib/python3.12/site-packages/scipy/stats/tests/test_tukeylambda_stats.py . [ 99%] .. [ 99%] lib/python3.12/site-packages/scipy/stats/tests/test_variation.py ....... [ 99%] ....................... [100%] =================================== FAILURES =================================== ___________________ TestKMeans.test_kmeans2_high_dim[numpy] ____________________ lib/python3.12/site-packages/scipy/cluster/tests/test_vq.py:327: in test_kmeans2_high_dim kmeans2(data, 2) data = array([[-2.2 , 1.17, -1.63, 1.69, -2.04, 4.38, -3.09, 0.95, -1.7 , 4.79, -1.68, 0.68, -2.26, 3.34, -2.2...75, -2.25, 1.71, -3.28, 3.38, -1.74, 0.88, -2.41, 1.92, -2.24, 1.19, -2.48, 1.06, -1.68, -0.62]]) self = xp = lib/python3.12/site-packages/scipy/_lib/_util.py:352: in wrapper return fun(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^ NEW_NAME = 'rng' args = (array([[-2.2 , 1.17, -1.63, 1.69, -2.04, 4.38, -3.09, 0.95, -1.7 , 4.79, -1.68, 0.68, -2.26, 3.34, -2....-2.25, 1.71, -3.28, 3.38, -1.74, 0.88, -2.41, 1.92, -2.24, 1.19, -2.48, 1.06, -1.68, -0.62]]), 2) as_new_kwarg = False as_old_kwarg = False as_pos_arg = False cmn_msg = 'To silence this warning and ensure consistent behavior in SciPy None, control the RNG using argument `rng`. Arguments...ndom` or `RandomState` instances will result in an error. See the documentation of `default_rng` for more information.' emit_warning = False end_version = None fun = global_seed_set = True kwargs = {} old_name = 'seed' position_num = None lib/python3.12/site-packages/scipy/cluster/vq.py:817: in kmeans2 code_book = init_meth(data, code_book, rng, xp) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ check_finite = True code_book = array(2) d = 20 data = array([[-2.2 , 1.17, -1.63, 1.69, -2.04, 4.38, -3.09, 0.95, -1.7 , 4.79, -1.68, 0.68, -2.26, 3.34, -2.2...75, -2.25, 1.71, -3.28, 3.38, -1.74, 0.88, -2.41, 1.92, -2.24, 1.19, -2.48, 1.06, -1.68, -0.62]]) init_meth = iter = 10 k = 2 minit = 'random' miss_meth = missing = 'warn' nc = 2 rng = RandomState(MT19937) at 0x7FFB9218DA40 thresh = 1e-05 xp = lib/python3.12/site-packages/scipy/cluster/vq.py:559: in _krandinit _, s, vh = xp.linalg.svd(data - mu, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ data = array([[-2.2 , 1.17, -1.63, 1.69, -2.04, 4.38, -3.09, 0.95, -1.7 , 4.79, -1.68, 0.68, -2.26, 3.34, -2.2...75, -2.25, 1.71, -3.28, 3.38, -1.74, 0.88, -2.41, 1.92, -2.24, 1.19, -2.48, 1.06, -1.68, -0.62]]) k = array(2) mu = array([-2.167, 1.365, -2.194, 1.835, -2.763, 2.068, -2.037, 1.657, -2.779, 3.082, -2.813, 2.507, -2.237, 1.527, -2.725, 1.646, -2.31 , 1.832, -2.862, 2.207]) rng = RandomState(MT19937) at 0x7FFB9218DA40 xp = lib/python3.12/site-packages/scipy/_lib/array_api_compat/_internal.py:34: in wrapped_f return f(*args, xp=xp, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ args = (array([[-3.300e-02, -1.950e-01, 5.640e-01, -1.450e-01, 7.230e-01, 2.312e+00, -1.053e+00, -7.070e-01, 1.07...-1.627e+00, -1.730e-01, 3.930e-01, 4.850e-01, -4.560e-01, -1.700e-01, -7.720e-01, 1.182e+00, -2.827e+00]]),) f = kwargs = {'full_matrices': False} xp = lib/python3.12/site-packages/scipy/_lib/array_api_compat/common/_linalg.py:76: in svd return SVDResult(*xp.linalg.svd(x, full_matrices=full_matrices, **kwargs)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ full_matrices = False kwargs = {} x = array([[-3.300e-02, -1.950e-01, 5.640e-01, -1.450e-01, 7.230e-01, 2.312e+00, -1.053e+00, -7.070e-01, 1.079..., -1.627e+00, -1.730e-01, 3.930e-01, 4.850e-01, -4.560e-01, -1.700e-01, -7.720e-01, 1.182e+00, -2.827e+00]]) xp = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[-3.300e-02, -1.950e-01, 5.640e-01, -1.450e-01, 7.230e-01, 2.312e+00, -1.053e+00, -7.070e-01, 1.079..., -1.627e+00, -1.730e-01, 3.930e-01, 4.850e-01, -4.560e-01, -1.700e-01, -7.720e-01, 1.182e+00, -2.827e+00]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _______________________ TestKMeans.test_krandinit[numpy] _______________________ lib/python3.12/site-packages/scipy/cluster/tests/test_vq.py:361: in test_krandinit init = _krandinit(data, k, rng, xp) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ data = array([[-2.2 , 1.17, -1.63, 1.69, -2.04, 4.38, -3.09, 0.95, -1.7 , 4.79, -1.68, 0.68, -2.26, 3.34, -2.2...75, -2.25, 1.71, -3.28, 3.38, -1.74, 0.88, -2.41, 1.92, -2.24, 1.19, -2.48, 1.06, -1.68, -0.62]]) datas = [array([[-2.2 , 1.17], [-1.63, 1.69], [-2.04, 4.38], [-3.09, 0.95], [-1.7 , 4.79], ...5, -2.25, 1.71, -3.28, 3.38, -1.74, 0.88, -2.41, 1.92, -2.24, 1.19, -2.48, 1.06, -1.68, -0.62]])] init = array([[-4.2476942 , 3.07325673], [-1.59463018, 1.59733605], [-1.45562225, 5.21439788], ..., ... [-3.49856072, -0.78444178], [-3.88969651, 2.04362185], [-4.13983711, 3.44200772]], shape=(1000000, 2)) init_cov = array([[ 1.27618058, -0.76695963], [-0.76695963, 2.25735712]]) k = 1000000 krand_lock = orig_cov = array([[ 1.28029628, -0.76950405], [-0.76950405, 2.25962155]]) rng = Generator(PCG64) at 0x7FFB660B57E0 self = xp = lib/python3.12/site-packages/scipy/cluster/vq.py:559: in _krandinit _, s, vh = xp.linalg.svd(data - mu, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ data = array([[-2.2 , 1.17, -1.63, 1.69, -2.04, 4.38, -3.09, 0.95, -1.7 , 4.79, -1.68, 0.68, -2.26, 3.34, -2.2...75, -2.25, 1.71, -3.28, 3.38, -1.74, 0.88, -2.41, 1.92, -2.24, 1.19, -2.48, 1.06, -1.68, -0.62]]) k = array(1000000) mu = array([-2.167, 1.365, -2.194, 1.835, -2.763, 2.068, -2.037, 1.657, -2.779, 3.082, -2.813, 2.507, -2.237, 1.527, -2.725, 1.646, -2.31 , 1.832, -2.862, 2.207]) rng = Generator(PCG64) at 0x7FFB660B57E0 xp = lib/python3.12/site-packages/scipy/_lib/array_api_compat/_internal.py:34: in wrapped_f return f(*args, xp=xp, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ args = (array([[-3.300e-02, -1.950e-01, 5.640e-01, -1.450e-01, 7.230e-01, 2.312e+00, -1.053e+00, -7.070e-01, 1.07...-1.627e+00, -1.730e-01, 3.930e-01, 4.850e-01, -4.560e-01, -1.700e-01, -7.720e-01, 1.182e+00, -2.827e+00]]),) f = kwargs = {'full_matrices': False} xp = lib/python3.12/site-packages/scipy/_lib/array_api_compat/common/_linalg.py:76: in svd return SVDResult(*xp.linalg.svd(x, full_matrices=full_matrices, **kwargs)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ full_matrices = False kwargs = {} x = array([[-3.300e-02, -1.950e-01, 5.640e-01, -1.450e-01, 7.230e-01, 2.312e+00, -1.053e+00, -7.070e-01, 1.079..., -1.627e+00, -1.730e-01, 3.930e-01, 4.850e-01, -4.560e-01, -1.700e-01, -7.720e-01, 1.182e+00, -2.827e+00]]) xp = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[-3.300e-02, -1.950e-01, 5.640e-01, -1.450e-01, 7.230e-01, 2.312e+00, -1.053e+00, -7.070e-01, 1.079..., -1.627e+00, -1.730e-01, 3.930e-01, 4.850e-01, -4.560e-01, -1.700e-01, -7.720e-01, 1.182e+00, -2.827e+00]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _____________________ test_dtype_preservation[float64-AAA] _____________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:49: in test_dtype_preservation r = method(z, np.sin(z)) ^^^^^^^^^^^^^^^^^^^^ dtype = method = rng = Generator(PCG64) at 0x7FFB624F7840 rtol = np.float64(1.8189894035458565e-10) z = array([-1. , -0.95918367, -0.91836735, -0.87755102, -0.83673469, -0.79591837, -0.75510204, -0.71428571, ...346939, 0.71428571, 0.75510204, 0.79591837, 0.83673469, 0.87755102, 0.91836735, 0.95918367, 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1. , -0.95918367, -0.91836735, -0.87755102, -0.83673469, -0.79591837, -0.75510204, -0.71428571, ...346939, 0.71428571, 0.75510204, 0.79591837, 0.83673469, 0.87755102, 0.91836735, 0.95918367, 1. ]) y = array([-0.84147098, -0.81872312, -0.79461147, -0.7691762 , -0.74245968, -0.71450642, -0.68536298, -0.6550779 , ...370163, 0.6550779 , 0.68536298, 0.71450642, 0.74245968, 0.7691762 , 0.79461147, 0.81872312, 0.84147098]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([-0.84147098, -0.81872312, -0.79461147, -0.7691762 , -0.74245968, -0.71450642, -0.68536298, -0.6550779 , ...370163, 0.6550779 , 0.68536298, 0.71450642, 0.74245968, 0.7691762 , 0.79461147, 0.81872312, 0.84147098]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]) x = array([-1. , -0.95918367, -0.91836735, -0.87755102, -0.83673469, -0.79591837, -0.75510204, -0.71428571, ...346939, 0.71428571, 0.75510204, 0.79591837, 0.83673469, 0.87755102, 0.91836735, 0.95918367, 1. ]) y = array([-0.84147098, -0.81872312, -0.79461147, -0.7691762 , -0.74245968, -0.71450642, -0.68536298, -0.6550779 , ...370163, 0.6550779 , 0.68536298, 0.71450642, 0.74245968, 0.7691762 , 0.79461147, 0.81872312, 0.84147098]) z = array([-1. , -0.95918367, -0.91836735, -0.87755102, -0.83673469, -0.79591837, -0.75510204, -0.71428571, ...346939, 0.71428571, 0.75510204, 0.79591837, 0.83673469, 0.87755102, 0.91836735, 0.95918367, 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[0.84147098, nan, 0.88008375, ..., 1. , 1. , 1. ], [0.84739074, 0.55... ], [ nan, 0.84147098, 0.70808142, ..., 1. , 1. , 1. ]], shape=(50, 100)) C = array([[ -0.5 , inf, -0.64473684, ..., -0.99291364, -0.99291364, 0.99291364], [ -0.... [ inf, 0.5 , 2.22727273, ..., 0.72541244, -0.72541244, 0.72541244]], shape=(50, 100)) D = array([ 1. , -3.29465519, -1.36471895, -0.60349388, 1. , -0.06371854, 1. , -0.19...19629, 1. , -8.4344545 , -8.22228451, -9.676625 , -13.32576469, -24.93282291, 1. ]) D_inf = array([ True, False, False, False, True, False, True, False, False, False, False, True, True, False, False,... True, False, False, True, False, False, False, False, True, False, False, False, False, False, True]) M = 50 N = array([-8.41470985e-01, 2.55074235e+00, 9.42830161e-01, 3.27782195e-01, -7.42459684e-01, -8.02204636e-02, -6...1, -5.89414574e+00, -5.96546412e+00, -7.29689087e+00, -1.04358187e+01, -2.02532879e+01, 8.41470985e-01]) R = array([-0.84147098, -0.77420616, -0.69086031, -0.54314088, -0.74245968, 1.25898158, -0.68536298, -0.0590693 , ...102552, 0.60251416, 0.68536298, 0.69881766, 0.72552392, 0.75407395, 0.78313095, 0.81231427, 0.84147098]) V = array([[-2.28395577e-01, -2.28593972e-01, -2.59452577e-01, -2.73590369e-01, -2.60883226e-01, -2.47088278e-01, ... -9.17973423e-02, -4.13971482e-02, -4.43893061e-02, -6.17889517e-02, -5.89601007e-03, -1.30199615e-02]]) _ = array([[-0.17088221, 0.27156155, 0.33005324, -0.36768943, -0.33606759, -0.31968547, 0.20775393, 0.54381593...2138, -0.01214209, 0.0887783 , 0.06838993, 0.21793958, 0.09200758, 0.11495448, 0.05186375, 0.04242248]]) atol = np.float64(1.5306268047568601e-12) dtype = dtype('float64') errors = array([1.68294197e+00, 5.98891941e-02, 4.22032608e-03, 1.02184954e-05, 6.46057196e-01, 2.91845297e-01, 6.704358...2.09300756e-07, 1.72624742e-07, 1.23056231e-08, 1.35012283e-07, 1.76998839e-07, 9.70112212e-08, 2.73462288e-29]) f = array([-0.84147098, -0.81872312, -0.79461147, -0.7691762 , -0.74245968, -0.71450642, -0.68536298, -0.6550779 , ...370163, 0.6550779 , 0.68536298, 0.71450642, 0.74245968, 0.7691762 , 0.79461147, 0.81872312, 0.84147098]) fj = array([ 8.41470985e-001, -8.41470985e-001, 5.23556880e-001, -1.42371730e-001, -5.23556880e-001, 6.85362979e-0...00000000e+000, 0.00000000e+000, 0.00000000e+000, 0.00000000e+000, 0.00000000e+000, 0.00000000e+000]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(3) m = 15 mask = array([False, True, True, True, False, False, False, True, True, True, True, False, False, True, True,...False, True, True, False, True, True, True, True, False, True, True, True, True, True, False]) max_error = np.float64(1.9734880011449905) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(34) rtol = np.float64(1.8189894035458565e-12) s = array([2.03009814e+01, 1.39297598e+00, 8.17966170e-02, 3.50613545e-04, 8.71404571e-07, 5.64991961e-10, 3.044786...2.88090333e-15, 1.85643684e-15, 1.09519922e-15, 1.02363799e-15, 8.66950786e-16, 3.78943246e-16, 2.01792565e-24]) self = wj = array([ 0.96260895, -0.15118806, -0.1050093 , -0.07079801, -0.02905697, -0.10523247, -0.03229404, -0.04736084, -0.05612204, -0.09179734, -0.04139715, -0.04438931, -0.06178895, -0.00589601, -0.01301996]) z = array([-1. , -0.95918367, -0.91836735, -0.87755102, -0.83673469, -0.79591837, -0.75510204, -0.71428571, ...346939, 0.71428571, 0.75510204, 0.79591837, 0.83673469, 0.87755102, 0.91836735, 0.95918367, 1. ]) zj = array([ 1. , -1. , 0.55102041, -0.14285714, -0.55102041, 0.75510204, -0.51020408, -0.30612245, ...542384, 0.60610574, -0.79877221, -0.09189908, 0.16898236, -0.26152087, -0.57888564, 0.61672713, -0.06269594]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.84739074, 0.55732279, 0.88880702, 0.82853045, 0.72315728, 0.87738356, 0.73581912, 0.79220671, 0.820...985, 0.87619489, 0.75978507, 0.88855876, 0.88716314, 0.86747616, 0.86929497, 0.87738356, 0.87358427]])] array = array([[0.84739074, 0.55732279, 0.88880702, 0.82853045, 0.72315728, 0.87738356, 0.73581912, 0.79220671, 0.8202...2985, 0.87619489, 0.75978507, 0.88855876, 0.88716314, 0.86747616, 0.86929497, 0.87738356, 0.87358427]]) arrays = [array([[0.84739074, 0.55732279, 0.88880702, 0.82853045, 0.72315728, 0.87738356, 0.73581912, 0.79220671, 0.820...985, 0.87619489, 0.75978507, 0.88855876, 0.88716314, 0.86747616, 0.86929497, 0.87738356, 0.87358427]])] batch_shapes = [()] core_shapes = [(34, 16)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (34, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.84739074, 0.55732279, 0.88880702, 0.82853045, 0.72315728, 0.87738356, 0.73581912, 0.79220671, 0.8202...2985, 0.87619489, 0.75978507, 0.88855876, 0.88716314, 0.86747616, 0.86929497, 0.87738356, 0.87358427]]) a1 = array([[0.84739074, 0.55732279, 0.88880702, 0.82853045, 0.72315728, 0.87738356, 0.73581912, 0.79220671, 0.8202...2985, 0.87619489, 0.75978507, 0.88855876, 0.88716314, 0.86747616, 0.86929497, 0.87738356, 0.87358427]]) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 15 lapack_driver = 'gesdd' lwork = 1328 m = 34 max_mn = 34 min_mn = 16 n = 16 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 544 u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _______________________________ TestAAA.test_exp _______________________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:104: in test_exp r = AAA(UNIT_INTERVAL, f) ^^^^^^^^^^^^^^^^^^^^^ f = array([0.36787944, 0.36861667, 0.36935538, 0.37009558, 0.37083725, 0.37158041, 0.37232506, 0.3730712 , 0.373818...38, 2.67509257, 2.68045347, 2.68582512, 2.69120753, 2.69660073, 2.70200474, 2.70741958, 2.71284527, 2.71828183]) self = lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([0.36787944, 0.36861667, 0.36935538, 0.37009558, 0.37083725, 0.37158041, 0.37232506, 0.3730712 , 0.373818...38, 2.67509257, 2.68045347, 2.68582512, 2.69120753, 2.69660073, 2.70200474, 2.70741958, 2.71284527, 2.71828183]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([0.36787944, 0.36861667, 0.36935538, 0.37009558, 0.37083725, 0.37158041, 0.37232506, 0.3730712 , 0.373818...38, 2.67509257, 2.68045347, 2.68582512, 2.69120753, 2.69660073, 2.70200474, 2.70741958, 2.71284527, 2.71828183]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,..., 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]) x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([0.36787944, 0.36861667, 0.36935538, 0.37009558, 0.37083725, 0.37158041, 0.37232506, 0.3730712 , 0.373818...38, 2.67509257, 2.68045347, 2.68582512, 2.69120753, 2.69660073, 2.70200474, 2.70741958, 2.71284527, 2.71828183]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[1.17520119, nan, 0.99933768, ..., 0. , 0. , 0. ], [1.17600976, 0.36... ], [ nan, 1.17520119, 2.40483886, ..., 0. , 0. , 0. ]], shape=(1000, 100)) C = array([[ -0.5 , inf, -0.5715103 , ..., 0. , 0. , 0. ], ... inf, 0.5 , 3.996 , ..., 0. , 0. , 0. ]], shape=(1000, 100)) D = array([ 1.00000000e+00, 6.74754899e+01, 3.36352137e+01, 2.23555377e+01, 1.67160312e+01, 1.33326089e+01, 1...7616e+01, 9.33367587e+01, 1.15853929e+02, 1.53397115e+02, 2.28504861e+02, 4.53869912e+02, 1.00000000e+00]) D_inf = array([ True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,...False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) M = 1000 N = array([ 3.67879441e-01, 2.49269850e+01, 1.24777035e+01, 8.32800346e+00, 6.25320654e+00, 5.00837731e+00, 4...1728e+02, 2.51111918e+02, 3.12334821e+02, 4.14402463e+02, 6.18580964e+02, 1.23120097e+03, 2.71828183e+00]) R = array([ 3.67879441e-01, 3.69422809e-01, 3.70971434e-01, 3.72525303e-01, 3.74084402e-01, 3.75648707e-01, 3...5017e+00, 2.69038610e+00, 2.69593637e+00, 2.70150102e+00, 2.70708011e+00, 2.71267370e+00, 2.71828183e+00]) V = array([[-3.81462644e-01, -1.47188962e-01, -3.32489617e-01, -2.32792129e-01, -1.87189112e-01, -1.59672137e-01, ... 1.24741903e-02, 4.46979560e-02, 1.98733544e-01, 7.78336988e-02, 1.79737083e-02, 1.12736532e-01]]) _ = array([[-0.01984227, 0.04503073, 0.06285666, ..., -0.07489551, 0.21693477, -0.11869985], [-0.0198565..., [-0.0475634 , -0.06437099, 0.07789624, ..., -0.01564769, 0.0125583 , 0.04179214]], shape=(985, 15)) atol = np.float64(4.9445258418182586e-12) dtype = dtype('float64') errors = array([ 2.35040239e+00, 3.32418578e-02, 3.01085821e-04, 5.89367304e-07, 1.18477808e-03, 4.18451300e+00, 1...6667e-01, 2.00000000e-01, 2.50000000e-01, 3.33333333e-01, 5.00000000e-01, 1.00000000e+00, inf]) f = array([0.36787944, 0.36861667, 0.36935538, 0.37009558, 0.37083725, 0.37158041, 0.37232506, 0.3730712 , 0.373818...38, 2.67509257, 2.68045347, 2.68582512, 2.69120753, 2.69660073, 2.70200474, 2.70741958, 2.71284527, 2.71828183]) fj = array([2.71828183e+000, 3.67879441e-001, 2.11647030e+000, 1.05027186e+000, 6.53491714e-001, 4.49418929e-001, 1....388e-323, 2.47032823e-323, 1.97626258e-323, 1.48219694e-323, 9.88131292e-324, 4.94065646e-324, 0.00000000e+000]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(540) m = 15 mask = array([False, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, False]) max_error = np.float64(5.968667194759089) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(984) rtol = np.float64(1.8189894035458565e-12) s = array([1.51800331e+02, 3.00001577e+00, 2.62227223e-02, 8.68409280e-05, 5.05007668e-08, 1.25665507e-11, 3.338200...1.71386280e-13, 1.47317221e-13, 1.40215122e-13, 7.37847596e-14, 5.11483421e-14, 3.14997340e-14, 1.68110567e-20]) self = wj = array([-0.90244447, 0.13549895, 0.20352182, 0.06441227, 0.00484544, -0.02670819, 0.14422675, 0.19554511, 0.03389229, 0.01247419, 0.04469796, 0.19873354, 0.0778337 , 0.01797371, 0.11273653]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) zj = array([ 1. , -1. , 0.74974975, 0.04904905, -0.42542543, -0.7997998 , 0.51351351, 0.72772773, ...5 , 0.14285714, 0.16666667, 0.2 , 0.25 , 0.33333333, 0.5 , 1. , inf]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[1.17600976, 0.36824793, 1.00006058, ..., 0.53464301, 0.78372492, 0.6696685 ], [1.17681922, 0.3...2089], [2.71556264, 1.17365775, 2.40233302, ..., 1.52210911, 2.00494259, 1.78807447]], shape=(984, 16))] array = array([[1.17600976, 0.36824793, 1.00006058, ..., 0.53464301, 0.78372492, 0.6696685 ], [1.17681922, 0.36...02089], [2.71556264, 1.17365775, 2.40233302, ..., 1.52210911, 2.00494259, 1.78807447]], shape=(984, 16)) arrays = [array([[1.17600976, 0.36824793, 1.00006058, ..., 0.53464301, 0.78372492, 0.6696685 ], [1.17681922, 0.3...2089], [2.71556264, 1.17365775, 2.40233302, ..., 1.52210911, 2.00494259, 1.78807447]], shape=(984, 16))] batch_shapes = [()] core_shapes = [(984, 16)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (984, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[1.17600976, 0.36824793, 1.00006058, ..., 0.53464301, 0.78372492, 0.6696685 ], [1.17681922, 0.36...02089], [2.71556264, 1.17365775, 2.40233302, ..., 1.52210911, 2.00494259, 1.78807447]], shape=(984, 16)) a1 = array([[1.17600976, 0.36824793, 1.00006058, ..., 0.53464301, 0.78372492, 0.6696685 ], [1.17681922, 0.36...02089], [2.71556264, 1.17365775, 2.40233302, ..., 1.52210911, 2.00494259, 1.78807447]], shape=(984, 16)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 15 lapack_driver = 'gesdd' lwork = 1328 m = 984 max_mn = 984 min_mn = 16 n = 16 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 15744 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na...n, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(984, 16)) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _______________________________ TestAAA.test_tan _______________________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:116: in test_tan r = AAA(UNIT_INTERVAL, f) ^^^^^^^^^^^^^^^^^^^^^ f = array([ 1.22464680e-16, 6.28955772e-03, 1.25796131e-02, 1.88706638e-02, 2.51632081e-02, 3.14577445e-02, 3...7722e-02, -3.14577445e-02, -2.51632081e-02, -1.88706638e-02, -1.25796131e-02, -6.28955772e-03, -1.22464680e-16]) self = lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([ 1.22464680e-16, 6.28955772e-03, 1.25796131e-02, 1.88706638e-02, 2.51632081e-02, 3.14577445e-02, 3...7722e-02, -3.14577445e-02, -2.51632081e-02, -1.88706638e-02, -1.25796131e-02, -6.28955772e-03, -1.22464680e-16]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([ 1.22464680e-16, 6.28955772e-03, 1.25796131e-02, 1.88706638e-02, 2.51632081e-02, 3.14577445e-02, 3...7722e-02, -3.14577445e-02, -2.51632081e-02, -1.88706638e-02, -1.25796131e-02, -6.28955772e-03, -1.22464680e-16]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,..., 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]) x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([ 1.22464680e-16, 6.28955772e-03, 1.25796131e-02, 1.88706638e-02, 2.51632081e-02, 3.14577445e-02, 3...7722e-02, -3.14577445e-02, -2.51632081e-02, -1.88706638e-02, -1.25796131e-02, -6.28955772e-03, -1.22464680e-16]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[-1.27069329e+03, 4.24129937e+02, -1.22464680e-16, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e...069329e+03, nan, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(1000, 100)) C = array([[ -1.998 , -0.66688919, -0.5 , ..., 0. , 0. , 0. ], ....66688919, 1.998 , inf, ..., 0. , 0. , 0. ]], shape=(1000, 100)) D = array([ 1.00000000e+00, -1.05476001e+00, -1.80578127e+00, -2.06305997e+00, -2.19696673e+00, -2.28157650e+00, -2...3596e-01, 9.21280525e-01, 9.44669216e-01, 9.84339281e-01, 1.06470956e+00, 1.30787423e+00, 1.00000000e+00]) D_inf = array([ True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,...False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) M = 1000 N = array([ 1.22464680e-16, -1.31376740e+00, -1.32648208e+00, -1.33935587e+00, -1.35239138e+00, -1.36559128e+00, -1...4863e+00, -1.07906140e+00, -1.07500480e+00, -1.07097848e+00, -1.06698209e+00, -1.06301530e+00, -1.22464680e-16]) R = array([ 1.22464680e-16, 1.24556050e+00, 7.34575166e-01, 6.49208402e-01, 6.15572080e-01, 5.98529689e-01, 5...8396e+00, -1.17126257e+00, -1.13796954e+00, -1.08801762e+00, -1.00213442e+00, -8.12780984e-01, -1.22464680e-16]) V = array([[ 9.48656081e-01, 4.65764617e-03, 3.09518794e-04, -3.13625400e-01, -9.38559519e-04, -1.78581401e-03, ... -1.15318305e-03, -9.59325226e-04, -1.14986149e-03, -1.24492857e-03, -1.38987751e-03, -8.58455565e-04]]) _ = array([[-0.00286409, 0.00162512, 0.03564916, ..., 0.00306674, 0.03488792, -0.02431762], [-0.0028756..., [ 0.00093387, -0.00478774, 0.04693546, ..., 0.01328119, 0.01663658, 0.01465022]], shape=(985, 15)) atol = np.float64(1.1568456620301054e-09) dtype = dtype('float64') errors = array([1.27196526e+03, 1.27323977e+03, 1.93063047e+00, 2.72339855e-01, 2.10004722e+02, 4.45634481e+02, 7.563466...7.47151563e-10, 2.82227380e-10, 6.66853267e-10, 3.27314953e-10, 2.10332973e-09, 2.50811194e-09, 3.09258175e-11]) f = array([ 1.22464680e-16, 6.28955772e-03, 1.25796131e-02, 1.88706638e-02, 2.51632081e-02, 3.14577445e-02, 3...7722e-02, -3.14577445e-02, -2.51632081e-02, -1.88706638e-02, -1.25796131e-02, -6.28955772e-03, -1.22464680e-16]) fj = array([-6.35982628e+02, 6.35982628e+02, -1.22464680e-16, 2.11992812e+02, 1.22464680e-16, -2.11992812e+02, -9...0000e+00, 1.36332648e+04, 0.00000000e+00, -8.02682965e+03, 0.00000000e+00, 2.06246291e+03, 0.00000000e+00]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(749) m = 15 mask = array([False, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, False]) max_error = np.float64(11.363209640088568) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(984) rtol = np.float64(1.8189894035458565e-12) s = array([4.68336524e+05, 2.91373019e+05, 9.89217758e+01, 8.61675508e+00, 3.86001268e-01, 8.67731974e-03, 1.513452...4.16741025e-10, 5.74347542e-11, 5.14232527e-11, 2.46872449e-11, 1.33012772e-11, 7.87173488e-12, 1.33253147e-15]) self = wj = array([ 3.16231477e-01, -1.43194233e-03, -9.77731236e-04, 9.48669122e-01, 2.96592277e-03, -1.23408566e-03, -1...3815e-04, -1.15318305e-03, -9.59325226e-04, -1.14986149e-03, -1.24492857e-03, -1.38987751e-03, -8.58455565e-04]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) zj = array([-4.99499499e-01, 4.99499499e-01, 1.00000000e+00, -5.01501502e-01, -1.00000000e+00, 5.01501502e-01, 5...6861e-01, -1.11989558e-01, -1.35577655e-01, 1.58018177e-02, 2.06108982e-01, -7.56724779e-01, 3.04091780e-02]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-1.27580909e+03, 4.24692756e+02, -3.14792994e-03, ..., -9.72284402e+00, -8.88137503e+00, -7.56511659...7580909e+03, 3.14163408e+00, ..., 3.09804846e+01, 2.84538471e+01, 2.45035556e+01]], shape=(984, 16))] array = array([[-1.27580909e+03, 4.24692756e+02, -3.14792994e-03, ..., -9.72284402e+00, -8.88137503e+00, -7.56511659e...27580909e+03, 3.14163408e+00, ..., 3.09804846e+01, 2.84538471e+01, 2.45035556e+01]], shape=(984, 16)) arrays = [array([[-1.27580909e+03, 4.24692756e+02, -3.14792994e-03, ..., -9.72284402e+00, -8.88137503e+00, -7.56511659...7580909e+03, 3.14163408e+00, ..., 3.09804846e+01, 2.84538471e+01, 2.45035556e+01]], shape=(984, 16))] batch_shapes = [()] core_shapes = [(984, 16)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (984, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[-1.27580909e+03, 4.24692756e+02, -3.14792994e-03, ..., -9.72284402e+00, -8.88137503e+00, -7.56511659e...27580909e+03, 3.14163408e+00, ..., 3.09804846e+01, 2.84538471e+01, 2.45035556e+01]], shape=(984, 16)) a1 = array([[-1.27580909e+03, 4.24692756e+02, -3.14792994e-03, ..., -9.72284402e+00, -8.88137503e+00, -7.56511659e...27580909e+03, 3.14163408e+00, ..., 3.09804846e+01, 2.84538471e+01, 2.45035556e+01]], shape=(984, 16)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 15 lapack_driver = 'gesdd' lwork = 1328 m = 984 max_mn = 984 min_mn = 16 n = 16 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 15744 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na...n, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(984, 16)) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) __________________________ TestAAA.test_infinite_data __________________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:178: in test_infinite_data r = AAA(z, scipy.special.gamma(z)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ self = z = array([-1. , -0.95918367, -0.91836735, -0.87755102, -0.83673469, -0.79591837, -0.75510204, -0.71428571, ...346939, 0.71428571, 0.75510204, 0.79591837, 0.83673469, 0.87755102, 0.91836735, 0.95918367, 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1. , -0.95918367, -0.91836735, -0.87755102, -0.83673469, -0.79591837, -0.75510204, -0.71428571, ...346939, 0.71428571, 0.75510204, 0.79591837, 0.83673469, 0.87755102, 0.91836735, 0.95918367, 1. ]) y = array([ nan, -24.98135335, -12.79223403, -8.77277698, -6.79874663, -5.6460182 , -4.90728231, -4.40...99268, 1.21868671, 1.16884688, 1.12538636, 1.08742679, 1.05425174, 1.02527211, 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([-24.98135335, -12.79223403, -8.77277698, -6.79874663, -5.6460182 , -4.90728231, -4.40876116, -4.06...99268, 1.21868671, 1.16884688, 1.12538636, 1.08742679, 1.05425174, 1.02527211, 1. ]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([False, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]) x = array([-1. , -0.95918367, -0.91836735, -0.87755102, -0.83673469, -0.79591837, -0.75510204, -0.71428571, ...346939, 0.71428571, 0.75510204, 0.79591837, 0.83673469, 0.87755102, 0.91836735, 0.95918367, 1. ]) y = array([ nan, -24.98135335, -12.79223403, -8.77277698, -6.79874663, -5.6460182 , -4.90728231, -4.40...99268, 1.21868671, 1.16884688, 1.12538636, 1.08742679, 1.05425174, 1.02527211, 1. ]) z = array([-0.95918367, -0.91836735, -0.87755102, -0.83673469, -0.79591837, -0.75510204, -0.71428571, -0.67346939, ...346939, 0.71428571, 0.75510204, 0.79591837, 0.83673469, 0.87755102, 0.91836735, 0.95918367, 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[ 74.9536184 , -26.2218532 , nan, ..., 0. , 0. , 0. ], [ 65.... [-48.43098686, 49.58583122, 13.26131577, ..., 0. , 0. , 0. ]], shape=(49, 100)) C = array([[-1.02083333e+000, -1.06521739e+000, inf, ..., 4.09432201e-320, 4.46388311e-320, 4.4060...000e-001, 5.10416667e-001, ..., 6.95241534e-310, 6.95241534e-310, 6.95241534e-310]], shape=(49, 100)) D = array([ 1. , 1. , -1.22796915, -0.04218314, 1. , 1. , -0.61133332, -1.12...32148, -2.86633546, -3.02595066, -3.31746209, -3.862863 , -5.030814 , -8.6688265 , 1. ]) D_inf = array([ True, True, False, False, True, True, False, False, True, False, True, False, True, False, False,...False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) M = 49 N = array([ -24.98135335, -12.79223403, 17.41423658, 5.23617543, -5.6460182 , -4.90728231, 5.47701701,... -2.97081461, -3.0234903 , -3.22839227, -3.70331912, -4.81371797, -8.40461048, 1. ]) R = array([ -24.98135335, -12.79223403, -14.18133065, -124.12958186, -5.6460182 , -4.90728231, -8.95913381,... 1.03645043, 0.99918691, 0.97315122, 0.95869802, 0.95684674, 0.96952113, 1. ]) V = array([[-6.83714917e-01, 6.83279899e-01, 7.98354947e-03, -1.39660352e-02, 1.19113350e-02, 1.73938383e-02, ... 7.29943273e-02, -9.36542503e-02, 4.96023787e-02, -2.41128472e-03, 7.90377839e-02, 5.56820270e-02]]) _ = array([[-4.13397332e-02, 6.42830953e-01, 1.85602926e-01, -4.75568928e-01, -2.51920764e-01, 2.46698721e-01, ...-3.38257010e-01, -1.57475865e-02, 2.10077849e-01, -2.12947763e-01, 6.19969381e-02, -1.46204602e-01]]) atol = np.float64(9.021784891668215e-11) dtype = dtype('float64') errors = array([9.80403863e+01, 2.32659472e+01, 8.35122531e-02, 4.77905641e-02, 1.32721179e-01, 5.65079928e-02, 3.372520...0.00000000e+00, 1.45102041e+00, 0.00000000e+00, 1.47551020e+00, 0.00000000e+00, 1.50000000e+00, 0.00000000e+00]) f = array([-24.98135335, -12.79223403, -8.77277698, -6.79874663, -5.6460182 , -4.90728231, -4.40876116, -4.06...99268, 1.21868671, 1.16884688, 1.12538636, 1.08742679, 1.05425174, 1.02527211, 1. ]) fj = array([ 4.84425994e+01, -4.95977870e+01, -2.49813533e+01, 1.00000000e+00, -1.27922340e+01, -4.90728231e+00, -3...6389e-94, 5.11459806e-94, -5.11459806e-94, 5.24139986e-94, -5.24139986e-94, 5.37134534e-94, -5.37134534e-94]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(1) m = 13 mask = array([False, False, True, False, False, False, True, True, False, True, False, True, False, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, False]) max_error = np.float64(117.3308352269926) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(35) rtol = np.float64(1.8189894035458565e-12) s = array([1.93982846e+03, 3.59863160e+02, 7.07085490e-01, 4.24047033e-01, 1.34740781e-03, 1.16224364e-05, 1.76667391e-06, 6.33739737e-11, 2.36765321e-12, 3.42313609e-13, 7.08638243e-14, 3.57066528e-14, 4.93731319e-16]) self = wj = array([-0.66753815, -0.64750328, 0.05041662, 0.30177084, -0.10833537, -0.01666197, 0.05998091, 0.07299433, -0.09365425, 0.04960238, -0.00241128, 0.07903778, 0.05568203]) z = array([-0.95918367, -0.91836735, -0.87755102, -0.83673469, -0.79591837, -0.75510204, -0.71428571, -0.67346939, ...346939, 0.71428571, 0.75510204, 0.79591837, 0.83673469, 0.87755102, 0.91836735, 0.95918367, 1. ]) zj = array([ 0.02040816, -0.02040816, -0.95918367, 1. , -0.91836735, -0.75510204, -0.55102041, -0.34693878, ...174217, 2.08211339, -2.08211339, 2.13373343, -2.13373343, 2.18663323, -2.18663323, 2.24084454, -2.24084454]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 6.37171237e+01, -4.76291783e+01, 1.98555061e+02, 5.20506600e+00, 9.84766978e+01, 3.15682065e+01,...1.76400169e+01, 7.95400813e+00, 3.80108401e+00, 3.21232889e+00, 3.04856932e+00, 4.35655589e+00]])] array = array([[ 6.37171237e+01, -4.76291783e+01, 1.98555061e+02, 5.20506600e+00, 9.84766978e+01, 3.15682065e+01, ... 1.76400169e+01, 7.95400813e+00, 3.80108401e+00, 3.21232889e+00, 3.04856932e+00, 4.35655589e+00]]) arrays = [array([[ 6.37171237e+01, -4.76291783e+01, 1.98555061e+02, 5.20506600e+00, 9.84766978e+01, 3.15682065e+01,...1.76400169e+01, 7.95400813e+00, 3.80108401e+00, 3.21232889e+00, 3.04856932e+00, 4.35655589e+00]])] batch_shapes = [()] core_shapes = [(35, 14)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (35, 14) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[ 6.37171237e+01, -4.76291783e+01, 1.98555061e+02, 5.20506600e+00, 9.84766978e+01, 3.15682065e+01, ... 1.76400169e+01, 7.95400813e+00, 3.80108401e+00, 3.21232889e+00, 3.04856932e+00, 4.35655589e+00]]) a1 = array([[ 6.37171237e+01, -4.76291783e+01, 1.98555061e+02, 5.20506600e+00, 9.84766978e+01, 3.15682065e+01, ... 1.76400169e+01, 7.95400813e+00, 3.80108401e+00, 3.21232889e+00, 3.04856932e+00, 4.35655589e+00]]) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 13 lapack_driver = 'gesdd' lwork = 1134 m = 35 max_mn = 35 min_mn = 14 n = 14 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 490 u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan...n, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan...n, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _______________________________ TestAAA.test_nan _______________________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:185: in test_nan r = AAA(x, f) ^^^^^^^^^ f = array([ nan, 0.97246416, 0.89257761, 0.76818344, 0.61132858, 0.43686402, 0.26074138, 0.09822029, ...112799, -0.05779547, -0.05487803, -0.04328181, -0.02524793, -0.00394014, 0.01709452, 0.03450266, 0.04564726]) self = x = array([ 0. , 0.40816327, 0.81632653, 1.2244898 , 1.63265306, 2.04081633, 2.44897959, 2.85714286, ...469388, 17.14285714, 17.55102041, 17.95918367, 18.36734694, 18.7755102 , 19.18367347, 19.59183673, 20. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([ 0. , 0.40816327, 0.81632653, 1.2244898 , 1.63265306, 2.04081633, 2.44897959, 2.85714286, ...469388, 17.14285714, 17.55102041, 17.95918367, 18.36734694, 18.7755102 , 19.18367347, 19.59183673, 20. ]) y = array([ nan, 0.97246416, 0.89257761, 0.76818344, 0.61132858, 0.43686402, 0.26074138, 0.09822029, ...112799, -0.05779547, -0.05487803, -0.04328181, -0.02524793, -0.00394014, 0.01709452, 0.03450266, 0.04564726]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([ 0.97246416, 0.89257761, 0.76818344, 0.61132858, 0.43686402, 0.26074138, 0.09822029, -0.03779068, ...112799, -0.05779547, -0.05487803, -0.04328181, -0.02524793, -0.00394014, 0.01709452, 0.03450266, 0.04564726]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([False, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]) x = array([ 0. , 0.40816327, 0.81632653, 1.2244898 , 1.63265306, 2.04081633, 2.44897959, 2.85714286, ...469388, 17.14285714, 17.55102041, 17.95918367, 18.36734694, 18.7755102 , 19.18367347, 19.59183673, 20. ]) y = array([ nan, 0.97246416, 0.89257761, 0.76818344, 0.61132858, 0.43686402, 0.26074138, 0.09822029, ...112799, -0.05779547, -0.05487803, -0.04328181, -0.02524793, -0.00394014, 0.01709452, 0.03450266, 0.04564726]) z = array([ 0.40816327, 0.81632653, 1.2244898 , 1.63265306, 2.04081633, 2.44897959, 2.85714286, 3.26530612, ...469388, 17.14285714, 17.55102041, 17.95918367, 18.36734694, 18.7755102 , 19.18367347, 19.59183673, 20. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[ nan, -0.29147561, -0.04730628, ..., 0. , 0. , 0. ], [-0.1957220..., [-0.04730628, 0.01694881, nan, ..., 0. , 0. , 0. ]], shape=(49, 100)) C = array([[ inf, -2.45000000e-001, -5.10416667e-002, ..., 6.95241688e-310, 6.95327637e-310, 6.9523...842e-002, inf, ..., 6.95241534e-310, 6.95327637e-310, 6.95241534e-310]], shape=(49, 100)) D = array([ 1. , 2.67794113, 2.50424581, 1. , -0.94321887, -0.26373614, -0.04088614, 0.10576182, ...098517, 1. , 1. , -0.12734506, -0.08386667, -0.06801145, -0.06252377, -0.07044572, 1. ]) D_inf = array([ True, False, False, True, False, False, False, False, False, True, True, False, False, False, False,...False, False, False, False, True, False, False, True, True, False, False, False, False, False, True]) M = 49 N = array([ 0.97246416, 2.25873099, 1.80884621, 0.61132858, -0.48821269, -0.12437565, -0.03935078, -0.02008831, ...061744, -0.05779547, -0.05487803, 0.02963342, 0.02661495, 0.02502839, 0.02377642, 0.02228337, 0.04564726]) R = array([ 0.97246416, 0.84345805, 0.72231176, 0.61132858, 0.51760276, 0.47159123, 0.96244812, -0.18993913, ...438119, -0.05779547, -0.05487803, -0.23270175, -0.31734835, -0.36800258, -0.38027805, -0.31631974, 0.04564726]) V = array([[ 6.37346313e-01, 1.69383683e-01, 1.07721205e-03, 6.85290724e-01, 7.94736499e-02, -3.07324701e-02, ...-3.29724447e-02, -1.12770790e-01, -4.63135831e-03, -2.39535643e-02, 7.05010388e-03, -3.08320370e-02]]) _ = array([[-2.14175295e-01, 3.96951944e-01, -1.98929048e-01, -2.41167226e-01, -2.27900701e-01, -1.82285788e-01, ...-6.06986604e-01, 4.79462433e-01, 2.13760230e-01, -3.54661876e-01, -6.02969504e-02, 2.34507846e-01]]) atol = np.float64(1.7689020112194333e-12) dtype = dtype('float64') errors = array([ 1.18969637, 0.8101849 , 1.00507088, 5.73735406, 1.06734203, 102.42115039, 56.42074571, 3.53... 2.08211339, -2.08211339, 2.13373343, -2.13373343, 2.18663323, -2.18663323, 2.24084454, -2.24084454]) f = array([ 0.97246416, 0.89257761, 0.76818344, 0.61132858, 0.43686402, 0.26074138, 0.09822029, -0.03779068, ...112799, -0.05779547, -0.05487803, -0.04328181, -0.02524793, -0.00394014, 0.01709452, 0.03450266, 0.04564726]) fj = array([ 0.97246416, -0.21723221, 0.04564726, 0.61132858, -0.06887285, 0.08785804, 0.05829506, -0.01312038, ...174217, 2.08211339, -2.08211339, 2.13373343, -2.13373343, 2.18663323, -2.18663323, 2.24084454, -2.24084454]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(23) m = 13 mask = array([False, True, True, False, True, True, True, True, True, False, False, True, True, True, True,... True, True, True, True, False, True, True, False, False, True, True, True, True, True, False]) max_error = np.float64(1.0018551128708126) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(35) rtol = np.float64(1.8189894035458565e-12) s = array([1.63235759e+00, 6.30883998e-01, 3.52392978e-01, 3.11749961e-01, 2.29959966e-01, 1.46838861e-01, 8.72581488e-02, 2.47459994e-02, 1.54454458e-04, 3.72593298e-05, 6.89778102e-08, 1.92625557e-08, 3.46624372e-14]) self = wj = array([ 0.76169368, -0.10583648, 0.01207278, -0.61344006, -0.08556642, 0.09616582, 0.01405246, -0.03297244, -0.11277079, -0.00463136, -0.02395356, 0.0070501 , -0.03083204]) z = array([ 0.40816327, 0.81632653, 1.2244898 , 1.63265306, 2.04081633, 2.44897959, 2.85714286, 3.26530612, ...469388, 17.14285714, 17.55102041, 17.95918367, 18.36734694, 18.7755102 , 19.18367347, 19.59183673, 20. ]) zj = array([ 0.40816327, 4.48979592, 20. , 1.63265306, 10.20408163, 6.93877551, 13.46938776, 15.91836735, ...174217, 2.08211339, 2.08211339, 2.13373343, 2.13373343, 2.18663323, 2.18663323, 2.24084454, 2.24084454]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-1.95722060e-01, -3.02114895e-01, -4.41484968e-02, -3.44530058e-01, -1.02415375e-01, -1.31437530e-01,...1.49811164e-02, 8.20837046e-03, 4.37965371e-02, 3.98627724e-03, 3.76884023e-02, -2.84369427e-04]])] array = array([[-1.95722060e-01, -3.02114895e-01, -4.41484968e-02, -3.44530058e-01, -1.02415375e-01, -1.31437530e-01, ... 1.49811164e-02, 8.20837046e-03, 4.37965371e-02, 3.98627724e-03, 3.76884023e-02, -2.84369427e-04]]) arrays = [array([[-1.95722060e-01, -3.02114895e-01, -4.41484968e-02, -3.44530058e-01, -1.02415375e-01, -1.31437530e-01,...1.49811164e-02, 8.20837046e-03, 4.37965371e-02, 3.98627724e-03, 3.76884023e-02, -2.84369427e-04]])] batch_shapes = [()] core_shapes = [(35, 14)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (35, 14) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[-1.95722060e-01, -3.02114895e-01, -4.41484968e-02, -3.44530058e-01, -1.02415375e-01, -1.31437530e-01, ... 1.49811164e-02, 8.20837046e-03, 4.37965371e-02, 3.98627724e-03, 3.76884023e-02, -2.84369427e-04]]) a1 = array([[-1.95722060e-01, -3.02114895e-01, -4.41484968e-02, -3.44530058e-01, -1.02415375e-01, -1.31437530e-01, ... 1.49811164e-02, 8.20837046e-03, 4.37965371e-02, 3.98627724e-03, 3.76884023e-02, -2.84369427e-04]]) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 13 lapack_driver = 'gesdd' lwork = 1134 m = 35 max_mn = 35 min_mn = 14 n = 14 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 490 u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan...n, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan...n, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) ____________________________ TestAAA.test_residues _____________________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:190: in test_residues r = AAA(x, np.exp(x) / x) ^^^^^^^^^^^^^^^^^^^^^ self = x = array([-1.33700000e+00, -1.33077425e+00, -1.32454851e+00, -1.31832276e+00, -1.31209701e+00, -1.30587127e+00, -1...0, 1.96887127e+00, 1.97509701e+00, 1.98132276e+00, 1.98754851e+00, 1.99377425e+00, 2.00000000e+00]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1.33700000e+00, -1.33077425e+00, -1.32454851e+00, -1.31832276e+00, -1.31209701e+00, -1.30587127e+00, -1...0, 1.96887127e+00, 1.97509701e+00, 1.98132276e+00, 1.98754851e+00, 1.99377425e+00, 2.00000000e+00]) y = array([-1.96434095e-01, -1.98585573e-01, -2.00765010e-01, -2.02972850e-01, -2.05209546e-01, -2.07475561e-01, -2...0, 3.63791549e+00, 3.64909611e+00, 3.66034746e+00, 3.67166976e+00, 3.68306322e+00, 3.69452805e+00]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([-1.96434095e-01, -1.98585573e-01, -2.00765010e-01, -2.02972850e-01, -2.05209546e-01, -2.07475561e-01, -2...0, 3.63791549e+00, 3.64909611e+00, 3.66034746e+00, 3.67166976e+00, 3.68306322e+00, 3.69452805e+00]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,...516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536]) x = array([-1.33700000e+00, -1.33077425e+00, -1.32454851e+00, -1.31832276e+00, -1.31209701e+00, -1.30587127e+00, -1...0, 1.96887127e+00, 1.97509701e+00, 1.98132276e+00, 1.98754851e+00, 1.99377425e+00, 2.00000000e+00]) y = array([-1.96434095e-01, -1.98585573e-01, -2.00765010e-01, -2.02972850e-01, -2.05209546e-01, -2.07475561e-01, -2...0, 3.63791549e+00, 3.64909611e+00, 3.66034746e+00, 3.67166976e+00, 3.68306322e+00, 3.69452805e+00]) z = array([-1.33700000e+00, -1.33077425e+00, -1.32454851e+00, -1.31832276e+00, -1.31209701e+00, -1.30587127e+00, -1...0, 1.96887127e+00, 1.97509701e+00, 1.98132276e+00, 1.98754851e+00, 1.99377425e+00, 2.00000000e+00]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[ 487.45292736, -159.13113392, 1.16600604, ..., 0. , 0. , 0. ], ...4.54018737, 107.69888787, nan, ..., 0. , 0. , 0. ]], shape=(537, 100)) C = array([[ -0.74708518, -0.75057624, -0.29967036, ..., 0. , 0. , 0. ], ...0.50038416, 0.49883017, inf, ..., 0. , 0. , 0. ]], shape=(537, 100)) D = array([ 1.00000000e+00, -1.22765569e+01, -6.20658468e+00, -4.17831921e+00, -3.16011655e+00, -2.54561429e+00, -2...0, 4.25270572e+00, 5.56829584e+00, 7.72199493e+00, 1.19799028e+01, 2.46688265e+01, 1.00000000e+00]) D_inf = array([ True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,... False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) M = 537 N = array([-1.96434095e-01, 2.47242989e+00, 1.28052420e+00, 8.82520714e-01, 6.82897436e-01, 5.62539910e-01, 4...1, 1.54203724e+01, 2.02681659e+01, 2.82136323e+01, 4.39342208e+01, 9.08043454e+01, 3.69452805e+00]) R = array([-1.96434095e-01, -2.01394405e-01, -2.06317044e-01, -2.11214287e-01, -2.16098813e-01, -2.20983954e-01, -2...0, 3.62601445e+00, 3.63992261e+00, 3.65367144e+00, 3.66732698e+00, 3.68093494e+00, 3.69452805e+00]) V = array([[-9.50358983e-01, 3.11122450e-01, -7.20080151e-04, 1.09493926e-03, -1.39468753e-03, -8.52438574e-04, ... -8.11308011e-02, -5.37245024e-02, -2.40077734e-02, -3.28081907e-02, -7.83304303e-02, -5.47606127e-02]]) _ = array([[-3.34655774e-03, 2.37706873e-02, 5.73173618e-02, ..., -4.67710534e-02, -7.50899218e-02, 3.63467560e...31720579e-02, -9.47780939e-02, ..., 9.32433231e-03, 5.61431492e-03, 2.68108827e-02]], shape=(522, 15)) atol = np.float64(1.1864842022752818e-09) dtype = dtype('float64') errors = array([8.64484976e+02, 2.19267095e+00, 7.95128185e-02, 5.26247240e-04, 4.62620475e-03, 1.91225736e-02, 6.312767...2.08211339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) f = array([-1.96434095e-01, -1.98585573e-01, -2.00765010e-01, -2.02972850e-01, -2.05209546e-01, -2.07475561e-01, -2...0, 3.63791549e+00, 3.64909611e+00, 3.66034746e+00, 3.67166976e+00, 3.68306322e+00, 3.69452805e+00]) fj = array([ 6.52276588e+02, -2.12208388e+02, 3.69452805e+00, -1.96434095e-01, 2.72053212e+00, 3.21327934e+00, -4...1339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(436) m = 15 mask = array([False, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, False]) max_error = np.float64(78.12340392408636) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(521) rtol = np.float64(1.8189894035458565e-12) s = array([1.53942046e+05, 7.97463305e+01, 1.90594593e+00, 1.11551789e-02, 7.24236060e-05, 9.53770376e-08, 1.875955...2.13323607e-13, 1.29533096e-13, 9.20046400e-14, 7.55527497e-14, 3.13436589e-14, 1.77182866e-14, 4.26929106e-18]) self = wj = array([ 0.29965509, 0.91481352, -0.15753921, -0.07549607, -0.10834418, -0.04111406, -0.06076496, -0.0312338 , -0.06672608, -0.0811308 , -0.0537245 , -0.02400777, -0.03280819, -0.07833043, -0.05476061]) z = array([-1.33700000e+00, -1.33077425e+00, -1.32454851e+00, -1.31832276e+00, -1.31209701e+00, -1.30587127e+00, -1...0, 1.96887127e+00, 1.97509701e+00, 1.98132276e+00, 1.98754851e+00, 1.99377425e+00, 2.00000000e+00]) zj = array([ 1.53544776e-03, -4.69029851e-03, 2.00000000e+00, -1.33700000e+00, 1.04123507e+00, 1.69493843e+00, -9...1339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 489.73235962, -159.87660602, 1.16883143, ..., 1.13780181, 1.13083371, 1.12953937], ...5.56013021, 108.02866161, 1.84151967, ..., 1.29519909, 1.60932377, 1.35773339]], shape=(521, 16))] array = array([[ 489.73235962, -159.87660602, 1.16883143, ..., 1.13780181, 1.13083371, 1.12953937], ...25.56013021, 108.02866161, 1.84151967, ..., 1.29519909, 1.60932377, 1.35773339]], shape=(521, 16)) arrays = [array([[ 489.73235962, -159.87660602, 1.16883143, ..., 1.13780181, 1.13083371, 1.12953937], ...5.56013021, 108.02866161, 1.84151967, ..., 1.29519909, 1.60932377, 1.35773339]], shape=(521, 16))] batch_shapes = [()] core_shapes = [(521, 16)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (521, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[ 489.73235962, -159.87660602, 1.16883143, ..., 1.13780181, 1.13083371, 1.12953937], ...25.56013021, 108.02866161, 1.84151967, ..., 1.29519909, 1.60932377, 1.35773339]], shape=(521, 16)) a1 = array([[ 489.73235962, -159.87660602, 1.16883143, ..., 1.13780181, 1.13083371, 1.12953937], ...25.56013021, 108.02866161, 1.84151967, ..., 1.29519909, 1.60932377, 1.35773339]], shape=(521, 16)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 15 lapack_driver = 'gesdd' lwork = 1328 m = 521 max_mn = 521 min_mn = 16 n = 16 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 8336 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na...n, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(521, 16)) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) ______________ TestAAA.test_basic_functions[-5e-13-1e-07] ______________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:211: in test_basic_functions assert_allclose(AAA(UNIT_INTERVAL, func(UNIT_INTERVAL))(PTS), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ atol = 5e-13 f = array([0.50009999, 0.43324054, 0.37085733, ..., 1.37075896, 1.43316001, 1.50003333], shape=(1001,)) func = at 0x7ffb8a0a0a40> rtol = 1e-07 self = lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([0.50009999, 0.49809839, 0.49609679, 0.4940952 , 0.49209361, 0.49009202, 0.48809044, 0.48608886, 0.484087...72, 1.48401768, 1.48601963, 1.48802159, 1.49002355, 1.4920255 , 1.49402746, 1.49602942, 1.49803138, 1.50003333]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([0.50009999, 0.49809839, 0.49609679, 0.4940952 , 0.49209361, 0.49009202, 0.48809044, 0.48608886, 0.484087...72, 1.48401768, 1.48601963, 1.48802159, 1.49002355, 1.4920255 , 1.49402746, 1.49602942, 1.49803138, 1.50003333]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,..., 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]) x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([0.50009999, 0.49809839, 0.49609679, 0.4940952 , 0.49209361, 0.49009202, 0.48809044, 0.48608886, 0.484087...72, 1.48401768, 1.48601963, 1.48802159, 1.49002355, 1.4920255 , 1.49402746, 1.49602942, 1.49803138, 1.50003333]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[ 0.49996667, -0.97919477, nan, ..., 0. , 0. , 0. ], [ 0.5014694... [ nan, 0.99367877, 0.49996667, ..., 0. , 0. , 0. ]], shape=(1000, 100)) C = array([[ -0.5 , -1.998 , inf, ..., 0. , 0. , 0. ], ... inf, 0.66688919, 0.5 , ..., 0. , 0. , 0. ]], shape=(1000, 100)) D = array([ 1.00000000e+00, -6.73174980e+01, -3.38373673e+01, -2.26752109e+01, -1.70924339e+01, -1.37413114e+01, -1...3639e+01, 9.13791508e+01, 1.14020629e+02, 1.51757485e+02, 2.27232774e+02, 4.53661777e+02, 1.00000000e+00]) D_inf = array([ True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,...False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) M = 1000 N = array([ 5.00099990e-01, -3.30327243e+01, -1.62889178e+01, -1.07063477e+01, -7.91404384e+00, -6.23781003e+00, -5...0986e+02, 1.36163900e+02, 1.70128596e+02, 2.26736854e+02, 3.39954014e+02, 6.79606771e+02, 1.50003333e+00]) R = array([ 5.00099990e-01, 4.90700416e-01, 4.81388450e-01, 4.72160888e-01, 4.63014448e-01, 4.53945759e-01, 4...0965e+00, 1.49009811e+00, 1.49208610e+00, 1.49407362e+00, 1.49606066e+00, 1.49804724e+00, 1.50003333e+00]) V = array([[-3.27736844e-01, -2.20212740e-01, -1.40886995e-02, -3.03241254e-01, -5.26077602e-02, -3.05178833e-01, ... 2.88255772e-02, -2.40433051e-02, 7.00148823e-02, 1.95796142e-01, 1.01894385e-01, -1.11822701e-02]]) _ = array([[ 0.0038037 , 0.06333242, -0.02766309, ..., 0.09482307, -0.14462344, -0.16130973], [ 0.0037581..., [-0.03704859, -0.01159186, -0.03677917, ..., 0.04096519, 0.03724585, -0.0085267 ]], shape=(985, 15)) atol = np.float64(2.728544737625218e-12) dtype = dtype('float64') errors = array([1.49002082e+00, 1.00669998e+00, 1.78628546e-01, 3.61366186e+02, 4.37799234e-02, 2.59771869e+01, 1.995809...2.08211339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) f = array([0.50009999, 0.49809839, 0.49609679, 0.4940952 , 0.49209361, 0.49009202, 0.48809044, 0.48608886, 0.484087...72, 1.48401768, 1.48601963, 1.48802159, 1.49002355, 1.4920255 , 1.49402746, 1.49602942, 1.49803138, 1.50003333]) fj = array([1.50003333, 0.01001252, 0.50009999, 0.26495354, 0.36800376, 0.56115017, 0.03788032, 0.43304841, 0.305969...17, 2.03174217, 2.08211339, 2.08211339, 2.13373343, 2.13373343, 2.18663323, 2.18663323, 2.24084454, 2.24084454]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(306) m = 15 mask = array([False, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, False]) max_error = np.float64(16.78442981821611) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(984) rtol = np.float64(1.8189894035458565e-12) s = array([8.58574427e+01, 4.02959268e+01, 1.11624900e+01, 5.85309891e+00, 1.88595255e+00, 1.11790694e+00, 3.696280...4.02506186e-02, 2.70422042e-03, 2.58850140e-03, 1.41648735e-03, 4.01515840e-04, 5.32949825e-05, 1.06712482e-11]) self = wj = array([-0.90662888, 0.10164813, -0.13404275, 0.13657522, -0.02633761, 0.20356387, 0.00348658, 0.18246134, -0.0219214 , 0.02882558, -0.02404331, 0.07001488, 0.19579614, 0.10189438, -0.01118227]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) zj = array([ 1. , -0.4994995 , -1. , -0.23523524, -0.86786787, 0.06106106, -0.46346346, -0.06706707, ...174217, 2.08211339, 2.08211339, 2.13373343, 2.13373343, 2.18663323, 2.18663323, 2.24084454, 2.24084454]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 0.50146944, -0.97911202, -0.99979926, ..., -0.49370031, -0.90257056, -0.58394661], [ 0.502975... [ 0.99997775, 0.99367035, 0.49946566, ..., 0.99980231, 0.99869218, 0.9997449 ]], shape=(984, 16))] array = array([[ 0.50146944, -0.97911202, -0.99979926, ..., -0.49370031, -0.90257056, -0.58394661], [ 0.5029752..., [ 0.99997775, 0.99367035, 0.49946566, ..., 0.99980231, 0.99869218, 0.9997449 ]], shape=(984, 16)) arrays = [array([[ 0.50146944, -0.97911202, -0.99979926, ..., -0.49370031, -0.90257056, -0.58394661], [ 0.502975... [ 0.99997775, 0.99367035, 0.49946566, ..., 0.99980231, 0.99869218, 0.9997449 ]], shape=(984, 16))] batch_shapes = [()] core_shapes = [(984, 16)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (984, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[ 0.50146944, -0.97911202, -0.99979926, ..., -0.49370031, -0.90257056, -0.58394661], [ 0.5029752..., [ 0.99997775, 0.99367035, 0.49946566, ..., 0.99980231, 0.99869218, 0.9997449 ]], shape=(984, 16)) a1 = array([[ 0.50146944, -0.97911202, -0.99979926, ..., -0.49370031, -0.90257056, -0.58394661], [ 0.5029752..., [ 0.99997775, 0.99367035, 0.49946566, ..., 0.99980231, 0.99869218, 0.9997449 ]], shape=(984, 16)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 15 lapack_driver = 'gesdd' lwork = 1328 m = 984 max_mn = 984 min_mn = 16 n = 16 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 15744 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na...n, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(984, 16)) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _____________ TestAAA.test_basic_functions[-2e-13-1e-07_0] _____________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:211: in test_basic_functions assert_allclose(AAA(UNIT_INTERVAL, func(UNIT_INTERVAL))(PTS), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ atol = 2e-13 f = array([ 0.46868793, 0.48315497, 0.4974332 , ..., -0.64821734, 0.76343811, 0.91294525], shape=(1001,)) func = at 0x7ffb8a0a0ae0> rtol = 1e-07 self = lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([ 4.68687928e-01, 4.69109106e-01, 4.69531001e-01, 4.69953615e-01, 4.70376950e-01, 4.70801008e-01, 4...2942e-01, -8.16846701e-01, -9.99209657e-01, -8.38392892e-01, -3.26322441e-01, 3.71359642e-01, 9.12945251e-01]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([ 4.68687928e-01, 4.69109106e-01, 4.69531001e-01, 4.69953615e-01, 4.70376950e-01, 4.70801008e-01, 4...2942e-01, -8.16846701e-01, -9.99209657e-01, -8.38392892e-01, -3.26322441e-01, 3.71359642e-01, 9.12945251e-01]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,..., 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]) x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([ 4.68687928e-01, 4.69109106e-01, 4.69531001e-01, 4.69953615e-01, 4.70376950e-01, 4.70801008e-01, 4...2942e-01, -8.16846701e-01, -9.99209657e-01, -8.38392892e-01, -3.26322441e-01, 3.71359642e-01, 9.12945251e-01]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[-0.79913875, 0.37590705, -0.7525764 , ..., 0. , 0. , 0. ], [-0.8002396... [11.79649271, -0.14840903, 12.58619563, ..., 0. , 0. , 0. ]], shape=(1000, 100)) C = array([[-0.54411765, -0.70750708, -0.53941685, ..., 0. , 0. , 0. ], [-0.5447110... [ 6.16666667, 1.70477816, 6.84246575, ..., 0. , 0. , 0. ]], shape=(1000, 100)) D = array([-3.57850815e-01, -3.58202988e-01, -3.58555835e-01, -3.58909359e-01, -3.59263561e-01, -3.59618444e-01, -3...0665e+02, 1.00000000e+00, 1.00000000e+00, 1.81695036e+02, 1.02798169e+02, 7.27357731e+01, 5.65716464e+01]) D_inf = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, False,...False, False, False, False, False, False, False, False, False, True, True, False, False, False, False]) M = 1000 N = array([ 4.60768166e-01, 4.61273717e-01, 4.61780397e-01, 4.62288208e-01, 4.62797155e-01, 4.63307242e-01, 4...1892e+02, -8.16846701e-01, -9.99209657e-01, -1.69733726e+02, -9.50027415e+01, -6.70137333e+01, -5.20905107e+01]) R = array([-1.28759848e+00, -1.28774391e+00, -1.28788978e+00, -1.28803609e+00, -1.28818284e+00, -1.28833004e+00, -1...2844e-01, -8.16846701e-01, -9.99209657e-01, -9.34168206e-01, -9.24167641e-01, -9.21331147e-01, -9.20788311e-01]) V = array([[ 2.95038849e-07, -4.99558066e-04, 4.70992752e-03, 7.11170327e-01, 8.33909464e-01, 7.31686001e-03, ... -6.19732598e-03, -5.12075635e-03, -4.30290207e-03, -3.63283279e-03, -2.46244643e-03, -1.74749607e-03]]) _ = array([[-2.69937079e-03, 4.42870749e-03, 9.00516228e-03, ..., -1.39233137e-02, 6.03321229e-02, 1.79898701e...73977288e-02, 3.06013424e-03, ..., 4.67062329e-03, 2.79145734e-03, -6.47923493e-05]], shape=(985, 15)) atol = np.float64(1.818989397447272e-12) dtype = dtype('float64') errors = array([ 1.99999951e+00, 8.72551016e+01, 2.22161993e+00, 3.72639110e+01, 8.13159452e+01, 3.15529450e+00, 2...1339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) f = array([ 4.68687928e-01, 4.69109106e-01, 4.69531001e-01, 4.69953615e-01, 4.70376950e-01, 4.70801008e-01, 4...2942e-01, -8.16846701e-01, -9.99209657e-01, -8.38392892e-01, -3.26322441e-01, 3.71359642e-01, 9.12945251e-01]) fj = array([-0.99999951, 1. , -0.92647873, -0.99920966, -0.8168467 , 0.99989342, 0.99957922, 0.99885711, ...174217, 2.08211339, 2.08211339, 2.13373343, 2.13373343, 2.18663323, 2.18663323, 2.24084454, 2.24084454]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(658) m = 15 mask = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, False, False, True, True, True, True]) max_error = np.float64(234.79633284660386) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(984) rtol = np.float64(1.8189894035458565e-12) s = array([6.41667500e+02, 2.86184925e+02, 1.72234958e+02, 1.52328543e+02, 2.34003892e+01, 2.47522468e+00, 4.145722...2.72455289e-08, 7.35950424e-11, 2.15794534e-11, 2.92453603e-12, 6.02156200e-13, 5.85406816e-14, 9.65186541e-20]) self = wj = array([ 0.79234686, -0.0135075 , -0.49739032, 0.22565147, 0.27058947, -0.01011362, -0.01056505, -0.00966893, -0.00753502, -0.00619733, -0.00512076, -0.0043029 , -0.00363283, -0.00246245, -0.0017475 ]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) zj = array([0.83783784, 0.41341341, 0.85385385, 0.99199199, 0.98998999, 0.40740741, 0.4014014 , 0.39339339, 0.373373...17, 2.03174217, 2.08211339, 2.08211339, 2.13373343, 2.13373343, 2.18663323, 2.18663323, 2.24084454, 2.24084454]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-0.79913875, 0.37590705, -0.7525764 , ..., 0.38729184, 0.38718586, 0.38725292], [-0.800239... [11.79649271, -0.14840903, 12.58619563, ..., -0.09375193, -0.08664213, -0.0993522 ]], shape=(984, 16))] array = array([[-0.79913875, 0.37590705, -0.7525764 , ..., 0.38729184, 0.38718586, 0.38725292], [-0.8002396..., [11.79649271, -0.14840903, 12.58619563, ..., -0.09375193, -0.08664213, -0.0993522 ]], shape=(984, 16)) arrays = [array([[-0.79913875, 0.37590705, -0.7525764 , ..., 0.38729184, 0.38718586, 0.38725292], [-0.800239... [11.79649271, -0.14840903, 12.58619563, ..., -0.09375193, -0.08664213, -0.0993522 ]], shape=(984, 16))] batch_shapes = [()] core_shapes = [(984, 16)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (984, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[-0.79913875, 0.37590705, -0.7525764 , ..., 0.38729184, 0.38718586, 0.38725292], [-0.8002396..., [11.79649271, -0.14840903, 12.58619563, ..., -0.09375193, -0.08664213, -0.0993522 ]], shape=(984, 16)) a1 = array([[-0.79913875, 0.37590705, -0.7525764 , ..., 0.38729184, 0.38718586, 0.38725292], [-0.8002396..., [11.79649271, -0.14840903, 12.58619563, ..., -0.09375193, -0.08664213, -0.0993522 ]], shape=(984, 16)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 15 lapack_driver = 'gesdd' lwork = 1328 m = 984 max_mn = 984 min_mn = 16 n = 16 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 15744 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na...n, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(984, 16)) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _______________ TestAAA.test_basic_functions[-3.5e-12-0] _______________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:211: in test_basic_functions assert_allclose(AAA(UNIT_INTERVAL, func(UNIT_INTERVAL))(PTS), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ atol = 3.5e-12 f = array([0.36787944, 0.3171211 , 0.26740607, ..., 0.26740607, 0.3171211 , 0.36787944], shape=(1001,)) func = at 0x7ffb8a0a0b80> rtol = 0 self = lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([3.67879441e-001, 3.66404978e-001, 3.64927578e-001, 3.63447253e-001, 3.61964016e-001, 3.60477880e-001, 3....858e-001, 3.60477880e-001, 3.61964016e-001, 3.63447253e-001, 3.64927578e-001, 3.66404978e-001, 3.67879441e-001]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([3.67879441e-001, 3.66404978e-001, 3.64927578e-001, 3.63447253e-001, 3.61964016e-001, 3.60477880e-001, 3....858e-001, 3.60477880e-001, 3.61964016e-001, 3.63447253e-001, 3.64927578e-001, 3.66404978e-001, 3.67879441e-001]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,..., 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]) x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([3.67879441e-001, 3.66404978e-001, 3.64927578e-001, 3.63447253e-001, 3.61964016e-001, 3.60477880e-001, 3....858e-001, 3.60477880e-001, 3.61964016e-001, 3.63447253e-001, 3.64927578e-001, 3.66404978e-001, 3.67879441e-001]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[ nan, -0.32813532, -0. , ..., 0. , 0. , 0. ], [-0.7364943... [ 0. , 0.41857809, nan, ..., 0. , 0. , 0. ]], shape=(1000, 100)) C = array([[ inf, -0.89196429, -0.5 , ..., 0. , 0. , 0. ], ....5 , 1.13781321, inf, ..., 0. , 0. , 0. ]], shape=(1000, 100)) D = array([ 1.00000000e+00, -3.86696146e+02, -1.94409972e+02, -1.30319583e+02, -9.82781809e+01, -7.90564051e+01, -6...5024e+01, 1.55173196e+01, 2.03439637e+01, 2.83178103e+01, 4.41671811e+01, 9.15322686e+01, 1.00000000e+00]) D_inf = array([ True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,...False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) M = 1000 N = array([ 3.67879441e-001, -1.41404711e+002, -7.06638167e+001, -4.70834974e+001, -3.52933220e+001, -2.82192045e+0...56117727e+000, 7.33033447e+000, 1.02576107e+001, 1.60824353e+001, 3.35015281e+001, 3.67879441e-001]) R = array([ 3.67879441e-001, 3.65673961e-001, 3.63478355e-001, 3.61292572e-001, 3.59116558e-001, 3.56950262e-0...58385174e-001, 3.60319876e-001, 3.62231777e-001, 3.64126370e-001, 3.66007842e-001, 3.67879441e-001]) V = array([[ 5.14684219e-01, 8.50811171e-04, -5.17785548e-01, 1.95647324e-01, -4.86689878e-01, 3.71828188e-02, ... -2.05461327e-01, 2.20676900e-01, 2.60753699e-01, 8.24584436e-02, 8.72800193e-02, 9.34063023e-02]]) _ = array([[-0.03486835, 0.03730336, 0.07400821, ..., -0.05151027, 0.02510584, 0.06763432], [-0.0348813..., [-0.02233146, -0.03680593, -0.04783388, ..., -0.04803953, -0.03832159, -0.02962564]], shape=(985, 15)) atol = np.float64(6.691688052732249e-13) dtype = dtype('float64') errors = array([ 0.36787944, 0.39264566, 0.05119051, 0.0583268 , 1.57493537, 11.32825257, 4.03853784, 8.43163762, ...174217, 2.08211339, 2.08211339, 2.13373343, 2.13373343, 2.18663323, 2.18663323, 2.24084454, 2.24084454]) f = array([3.67879441e-001, 3.66404978e-001, 3.64927578e-001, 3.63447253e-001, 3.61964016e-001, 3.60477880e-001, 3....858e-001, 3.60477880e-001, 3.61964016e-001, 3.63447253e-001, 3.64927578e-001, 3.66404978e-001, 3.67879441e-001]) fj = array([3.67879441e-001, 2.49114300e-030, 3.67879441e-001, 1.87589603e-002, 2.63467642e-001, 1.58112969e-022, 2....339e+000, 2.13373343e+000, 2.13373343e+000, 2.18663323e+000, 2.18663323e+000, 2.24084454e+000, 2.24084454e+000]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(369) m = 15 mask = array([False, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, False]) max_error = np.float64(6.950334509155677) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(984) rtol = np.float64(1.8189894035458565e-12) s = array([2.50759680e+01, 2.26474097e+01, 8.37804739e+00, 3.96659569e+00, 3.38952569e-01, 1.92042035e-01, 4.921446...2.80616273e-03, 1.20815852e-03, 1.76063547e-04, 1.06618204e-04, 3.51635592e-06, 7.26054479e-07, 1.20310153e-10]) self = wj = array([-0.76994435, 0.11885975, -0.18930835, 0.29070536, -0.18351312, 0.10861833, 0.0713959 , 0.12580544, 0.15577016, -0.20546133, 0.2206769 , 0.2607537 , 0.08245844, 0.08728002, 0.0934063 ]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) zj = array([-1. , 0.12112112, 1. , -0.5015015 , 0.86586587, -0.14114114, 0.06506507, -0.21521522, ...174217, 2.08211339, 2.08211339, 2.13373343, 2.13373343, 2.18663323, 2.18663323, 2.24084454, 2.24084454]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-0.73649439, -0.32740481, 0.00073797, ..., -0.38288554, -0.39700496, -0.49066815], [-0.737227... [-0.00073797, 0.41785225, 0.73649439, ..., 0.35263832, 0.34145389, 0.29330003]], shape=(984, 16))] array = array([[-0.73649439, -0.32740481, 0.00073797, ..., -0.38288554, -0.39700496, -0.49066815], [-0.7372278..., [-0.00073797, 0.41785225, 0.73649439, ..., 0.35263832, 0.34145389, 0.29330003]], shape=(984, 16)) arrays = [array([[-0.73649439, -0.32740481, 0.00073797, ..., -0.38288554, -0.39700496, -0.49066815], [-0.737227... [-0.00073797, 0.41785225, 0.73649439, ..., 0.35263832, 0.34145389, 0.29330003]], shape=(984, 16))] batch_shapes = [()] core_shapes = [(984, 16)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (984, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[-0.73649439, -0.32740481, 0.00073797, ..., -0.38288554, -0.39700496, -0.49066815], [-0.7372278..., [-0.00073797, 0.41785225, 0.73649439, ..., 0.35263832, 0.34145389, 0.29330003]], shape=(984, 16)) a1 = array([[-0.73649439, -0.32740481, 0.00073797, ..., -0.38288554, -0.39700496, -0.49066815], [-0.7372278..., [-0.00073797, 0.41785225, 0.73649439, ..., 0.35263832, 0.34145389, 0.29330003]], shape=(984, 16)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 15 lapack_driver = 'gesdd' lwork = 1328 m = 984 max_mn = 984 min_mn = 16 n = 16 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 15744 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na...n, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(984, 16)) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) ________________ TestAAA.test_basic_functions[-2e-12-0] ________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:211: in test_basic_functions assert_allclose(AAA(UNIT_INTERVAL, func(UNIT_INTERVAL))(PTS), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ atol = 2e-12 f = array([3.72007598e-44, 1.53109787e-38, 1.18476388e-33, ..., 1.18476388e-33, 1.53109787e-38, 3.72007598e-44], shape=(1001,)) func = at 0x7ffb8a0a0c20> rtol = 0 self = lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([3.72007598e-44, 5.54969899e-44, 8.27254076e-44, 1.23214061e-43, 1.83372200e-43, 2.72683329e-43, 4.051683...4.05168384e-43, 2.72683329e-43, 1.83372200e-43, 1.23214061e-43, 8.27254076e-44, 5.54969899e-44, 3.72007598e-44]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([3.72007598e-44, 5.54969899e-44, 8.27254076e-44, 1.23214061e-43, 1.83372200e-43, 2.72683329e-43, 4.051683...4.05168384e-43, 2.72683329e-43, 1.83372200e-43, 1.23214061e-43, 8.27254076e-44, 5.54969899e-44, 3.72007598e-44]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,..., 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]) x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([3.72007598e-44, 5.54969899e-44, 8.27254076e-44, 1.23214061e-43, 1.83372200e-43, 2.72683329e-43, 4.051683...4.05168384e-43, 2.72683329e-43, 1.83372200e-43, 1.23214061e-43, 8.27254076e-44, 5.54969899e-44, 3.72007598e-44]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[ 1.00090171e+00, 9.60001006e-41, 9.96107291e-01, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e...678469e-43, -1.00210794e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(1000, 100)) C = array([[ -1.001002 , -49.95 , -0.99700599, ..., 0. , 0. , 0. ], [ -1.... [ 0.999 , 0.50505561, 1.00301205, ..., 0. , 0. , 0. ]], shape=(1000, 100)) D = array([-1.70126919e+00, -1.84885641e+00, -2.03280668e+00, -2.26866733e+00, -2.58234540e+00, -3.02046644e+00, -3...0152e-01, 5.49535802e-01, 5.81242743e-01, 6.34727816e-01, 7.42651607e-01, 1.06831716e+00, 1.00000000e+00]) D_inf = array([False, False, False, False, False, False, False, False, False, False, True, False, False, False, False,...False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) M = 1000 N = array([ 9.26749759e-02, 9.28988341e-02, 9.31237275e-02, 9.33496631e-02, 9.35766479e-02, 9.38046889e-02, 9...5521e-02, -4.58947014e-02, -4.58607259e-02, -4.58266282e-02, -4.57924105e-02, -4.57580755e-02, 3.72007598e-44]) R = array([-5.44740224e-02, -5.02466464e-02, -4.58104198e-02, -4.11473564e-02, -3.62370765e-02, -3.10563586e-02, -2...4135e-02, -8.35153984e-02, -7.89011588e-02, -7.21988654e-02, -6.16606901e-02, -4.28319205e-02, 3.72007598e-44]) V = array([[-4.64570083e-01, 2.29927800e-03, -4.64181246e-01, -1.00396954e-01, -3.19678108e-03, -2.07505510e-01, ... 4.90600153e-02, 6.78804064e-02, 1.95312694e-01, 3.36335379e-03, 1.52682940e-01, 4.00613457e-03]]) _ = array([[-0.00983237, -0.00722676, 0.01485607, ..., 0.03797543, 0.02812346, -0.02718467], [-0.0098520..., [ 0.00995222, 0.00592146, -0.01373997, ..., 0.02991844, -0.0056437 , 0.05427745]], shape=(985, 15)) atol = np.float64(1.8188071493923088e-12) dtype = dtype('float64') errors = array([ 9.99899805e-01, 1.15405864e+01, 1.86381566e-01, 2.24846480e-01, 3.70656069e+02, 5.12470357e+01, 4...1339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) f = array([3.72007598e-44, 5.54969899e-44, 8.27254076e-44, 1.23214061e-43, 1.83372200e-43, 2.72683329e-43, 4.051683...4.05168384e-43, 2.72683329e-43, 1.83372200e-43, 1.23214061e-43, 8.27254076e-44, 5.54969899e-44, 3.72007598e-44]) fj = array([9.99899805e-01, 1.95912470e-42, 9.99098604e-01, 6.97929846e-02, 3.72007598e-44, 3.45409370e-01, 3.263870...2.08211339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(102) m = 15 mask = array([ True, True, True, True, True, True, True, True, True, True, False, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, False]) max_error = np.float64(21.58893968590156) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(984) rtol = np.float64(1.8189894035458565e-12) s = array([2.04770079e+02, 1.32164232e+02, 4.45628864e+01, 1.18343912e+01, 1.13084224e+00, 8.05607342e-01, 1.462753...6.77851763e-04, 5.44855535e-04, 2.67584758e-05, 2.98286171e-06, 9.11148832e-07, 5.65402246e-07, 1.66020339e-15]) self = wj = array([-0.88324004, 0.0261296 , 0.25214374, 0.03038461, -0.00130773, 0.14184469, 0.00378987, 0.23777045, 0.09763544, 0.04906002, 0.06788041, 0.19531269, 0.00336335, 0.15268294, 0.00400613]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) zj = array([-1.00100100e-03, -9.79979980e-01, 3.00300300e-03, 1.63163163e-01, 1.00000000e+00, -1.03103103e-01, -8...1339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 1.00090171e+00, 9.60001006e-41, 9.96107291e-01, ..., 5.29396719e-01, 6.76148259e-29, 5.25408651...2410971e-43, -1.00412425e+00, ..., -6.16672534e-01, -6.86596466e-30, -6.24364540e-28]], shape=(984, 16))] array = array([[ 1.00090171e+00, 9.60001006e-41, 9.96107291e-01, ..., 5.29396719e-01, 6.76148259e-29, 5.25408651e...62410971e-43, -1.00412425e+00, ..., -6.16672534e-01, -6.86596466e-30, -6.24364540e-28]], shape=(984, 16)) arrays = [array([[ 1.00090171e+00, 9.60001006e-41, 9.96107291e-01, ..., 5.29396719e-01, 6.76148259e-29, 5.25408651...2410971e-43, -1.00412425e+00, ..., -6.16672534e-01, -6.86596466e-30, -6.24364540e-28]], shape=(984, 16))] batch_shapes = [()] core_shapes = [(984, 16)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (984, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[ 1.00090171e+00, 9.60001006e-41, 9.96107291e-01, ..., 5.29396719e-01, 6.76148259e-29, 5.25408651e...62410971e-43, -1.00412425e+00, ..., -6.16672534e-01, -6.86596466e-30, -6.24364540e-28]], shape=(984, 16)) a1 = array([[ 1.00090171e+00, 9.60001006e-41, 9.96107291e-01, ..., 5.29396719e-01, 6.76148259e-29, 5.25408651e...62410971e-43, -1.00412425e+00, ..., -6.16672534e-01, -6.86596466e-30, -6.24364540e-28]], shape=(984, 16)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 15 lapack_driver = 'gesdd' lwork = 1328 m = 984 max_mn = 984 min_mn = 16 n = 16 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 15744 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na...n, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(984, 16)) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) ________________ TestAAA.test_basic_functions[-1e-14-0] ________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:211: in test_basic_functions assert_allclose(AAA(UNIT_INTERVAL, func(UNIT_INTERVAL))(PTS), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ atol = 1e-14 f = array([1.06153465e-02, 9.20546868e-03, 7.99265452e-03, ..., 6.46673629e-14, 5.32921574e-17, 1.92874985e-22], shape=(1001,)) func = at 0x7ffb8a0a0cc0> rtol = 0 self = lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([1.06153465e-02, 1.05714883e-02, 1.05277320e-02, 1.04840773e-02, 1.04405245e-02, 1.03970734e-02, 1.035372...3.27772028e-21, 2.09072118e-21, 1.32209126e-21, 8.28625397e-22, 5.14603397e-22, 3.16582025e-22, 1.92874985e-22]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([1.06153465e-02, 1.05714883e-02, 1.05277320e-02, 1.04840773e-02, 1.04405245e-02, 1.03970734e-02, 1.035372...3.27772028e-21, 2.09072118e-21, 1.32209126e-21, 8.28625397e-22, 5.14603397e-22, 3.16582025e-22, 1.92874985e-22]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,..., 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]) x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([1.06153465e-02, 1.05714883e-02, 1.05277320e-02, 1.04840773e-02, 1.04405245e-02, 1.03970734e-02, 1.035372...3.27772028e-21, 2.09072118e-21, 1.32209126e-21, 8.28625397e-22, 5.14603397e-22, 3.16582025e-22, 1.92874985e-22]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[ nan, -5.41610374e-03, -1.99958846e-02, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e...751537e-17, -4.09824305e-03, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(1000, 100)) C = array([[ inf, -0.5102145 , -6.57236842, ..., 0. , 0. , 0. ], [499.... [ 0.5 , 24.975 , 0.5411701 , ..., 0. , 0. , 0. ]], shape=(1000, 100)) D = array([ 1.00000000e+00, 4.09231464e+02, 2.06807569e+02, 1.39362335e+02, 1.05662604e+02, 8.54617819e+01, 7...8604e+00, -6.21970087e+00, -5.89317048e+00, -5.60442009e+00, -5.34716857e+00, -5.11645652e+00, -4.90831583e+00]) D_inf = array([ True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,...False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]) M = 1000 N = array([ 1.06153465e-02, 4.32260863e+00, 2.17365323e+00, 1.45753967e+00, 1.09964276e+00, 8.85037741e-01, 7...1406e-03, 1.56527328e-03, 1.56423314e-03, 1.56319364e-03, 1.56215479e-03, 1.56111658e-03, 1.56007903e-03]) R = array([ 1.06153465e-02, 1.05627475e-02, 1.05105110e-02, 1.04586341e-02, 1.04071139e-02, 1.03559477e-02, 1...5222e-04, -2.51663756e-04, -2.65431510e-04, -2.78921569e-04, -2.92146164e-04, -3.05116749e-04, -3.17844060e-04]) V = array([[ 5.64855629e-01, 7.10778442e-02, 4.91404350e-01, 2.48217912e-01, 1.29164320e-01, 1.80606979e-01, ... -7.79516908e-02, -3.65767929e-02, -3.62964450e-02, -3.58605988e-02, -3.65821567e-02, -3.37228847e-02]]) _ = array([[-0.05831616, 0.07105245, 0.06344199, ..., 0.14941804, -0.07774533, -0.00718002], [-0.0582381..., [-0.01226896, -0.0255043 , 0.04495569, ..., 0.13878226, 0.28970415, 0.0817286 ]], shape=(985, 15)) atol = np.float64(1.9309202729303583e-14) dtype = dtype('float64') errors = array([ 1.06153465e-02, 1.15532861e-03, 1.76440677e-04, 2.29283571e-05, 3.19561366e-01, 8.06937745e-01, 5...1339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) f = array([1.06153465e-02, 1.05714883e-02, 1.05277320e-02, 1.04840773e-02, 1.04405245e-02, 1.03970734e-02, 1.035372...3.27772028e-21, 2.09072118e-21, 1.32209126e-21, 8.28625397e-22, 5.14603397e-22, 3.16582025e-22, 1.92874985e-22]) fj = array([1.06153465e-02, 8.08006839e-19, 7.57292959e-03, 9.98087723e-04, 2.10753432e-05, 2.48834954e-04, 1.562972...2.08211339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(589) m = 15 mask = array([False, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) max_error = np.float64(0.2163250769391323) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(984) rtol = np.float64(1.8189894035458565e-12) s = array([7.00347373e-01, 1.13082029e-01, 1.63146498e-02, 9.13198704e-04, 1.58904534e-04, 8.08511161e-06, 2.034840...2.14738492e-09, 2.37488960e-10, 5.05701385e-12, 3.84379014e-12, 9.72290332e-13, 5.94489470e-13, 2.75700447e-18]) self = wj = array([ 0.81067628, -0.15381764, -0.41182831, -0.12673814, -0.03375729, -0.06736225, -0.03671015, -0.28049015, -0.18784612, -0.07795169, -0.03657679, -0.03629645, -0.0358606 , -0.03658216, -0.03372288]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) zj = array([-1. , 0.95995996, -0.84784785, -0.24724725, 0.27127127, -0.00500501, 0.64364364, -0.58758759, ...174217, 2.08211339, 2.08211339, 2.13373343, 2.13373343, 2.18663323, 2.18663323, 2.24084454, 2.24084454]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-2.19071303e-02, -5.39924175e-03, -1.99704013e-02, ..., -7.82885357e-03, -5.73339677e-03, -8.83394115...1751537e-17, -4.09824305e-03, ..., -1.17627193e-05, -3.54143355e-12, -6.02070508e-05]], shape=(984, 16))] array = array([[-2.19071303e-02, -5.39924175e-03, -1.99704013e-02, ..., -7.82885357e-03, -5.73339677e-03, -8.83394115e...01751537e-17, -4.09824305e-03, ..., -1.17627193e-05, -3.54143355e-12, -6.02070508e-05]], shape=(984, 16)) arrays = [array([[-2.19071303e-02, -5.39924175e-03, -1.99704013e-02, ..., -7.82885357e-03, -5.73339677e-03, -8.83394115...1751537e-17, -4.09824305e-03, ..., -1.17627193e-05, -3.54143355e-12, -6.02070508e-05]], shape=(984, 16))] batch_shapes = [()] core_shapes = [(984, 16)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (984, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[-2.19071303e-02, -5.39924175e-03, -1.99704013e-02, ..., -7.82885357e-03, -5.73339677e-03, -8.83394115e...01751537e-17, -4.09824305e-03, ..., -1.17627193e-05, -3.54143355e-12, -6.02070508e-05]], shape=(984, 16)) a1 = array([[-2.19071303e-02, -5.39924175e-03, -1.99704013e-02, ..., -7.82885357e-03, -5.73339677e-03, -8.83394115e...01751537e-17, -4.09824305e-03, ..., -1.17627193e-05, -3.54143355e-12, -6.02070508e-05]], shape=(984, 16)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 15 lapack_driver = 'gesdd' lwork = 1328 m = 984 max_mn = 984 min_mn = 16 n = 16 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 15744 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na...n, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(984, 16)) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _____________ TestAAA.test_basic_functions[-2e-13-1e-07_1] _____________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:211: in test_basic_functions assert_allclose(AAA(UNIT_INTERVAL, func(UNIT_INTERVAL))(PTS), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ atol = 2e-13 f = array([1.00000000e+00, 1.00000000e+00, 1.00000000e+00, ..., 2.95310479e-60, 5.75661200e-63, 7.17509597e-66], shape=(1001,)) func = at 0x7ffb8a0a0d60> rtol = 1e-07 self = lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.000000...2.38507900e-65, 1.95234662e-65, 1.59812624e-65, 1.30817318e-65, 1.07082721e-65, 8.76543668e-66, 7.17509597e-66]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.000000...2.38507900e-65, 1.95234662e-65, 1.59812624e-65, 1.30817318e-65, 1.07082721e-65, 8.76543668e-66, 7.17509597e-66]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,..., 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]) x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.000000...2.38507900e-65, 1.95234662e-65, 1.59812624e-65, 1.30817318e-65, 1.07082721e-65, 8.76543668e-66, 7.17509597e-66]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[ nan, -1.14302059e+00, -5.00000000e-01, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e...790065e-17, nan, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(1000, 100)) C = array([[ inf, -1.14302059, -0.5 , ..., 0. , 0. , 0. ], ....5 , 0.88879004, inf, ..., 0. , 0. , 0. ]], shape=(1000, 100)) D = array([ 1.00000000e+00, 4.82648481e+02, 2.41795233e+02, 1.61514145e+02, 1.21376141e+02, 9.72954033e+01, 8...4539e-01, 2.32331802e-01, 2.38404174e-01, 2.42854823e-01, 2.48428901e-01, 2.61966239e-01, 1.00000000e+00]) D_inf = array([ True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,...False, False, False, True, False, False, False, True, False, False, False, False, False, False, True]) M = 1000 N = array([ 1.00000000e+00, 4.82600872e+02, 2.41747457e+02, 1.61466202e+02, 1.21328028e+02, 9.72471204e+01, 8...2350e-01, 2.64165513e-01, 2.63958940e-01, 2.63752631e-01, 2.63546584e-01, 2.63340802e-01, 7.17509597e-66]) R = array([ 1.00000000e+00, 9.99901358e-01, 9.99802412e-01, 9.99703162e-01, 9.99603607e-01, 9.99503749e-01, 9...2297e+00, 1.13701831e+00, 1.10719093e+00, 1.08605062e+00, 1.06085316e+00, 1.00524710e+00, 7.17509597e-66]) V = array([[-4.71441467e-02, 2.31711602e-02, -7.73799725e-02, 3.12246780e-02, -1.21890974e-01, -7.85058400e-02, ... -1.98912073e-03, -3.25142128e-03, -1.85765602e-03, -8.04648515e-04, -4.40111880e-03, -1.53502801e-03]]) _ = array([[ 0.03381357, 0.00660374, -0.00997302, ..., 0.23033678, -0.208855 , -0.01281648], [ 0.0339110..., [ 0.00269438, -0.01855146, 0.01454931, ..., -0.00765342, -0.03435105, 0.00460697]], shape=(985, 15)) atol = np.float64(1.8189894035458565e-12) dtype = dtype('float64') errors = array([1.00000000e+00, 1.22632199e+00, 1.59867793e+02, 6.93326996e-01, 3.18507955e+01, 4.05554510e+02, 2.040000...2.08211339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) f = array([1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.000000...2.38507900e-65, 1.95234662e-65, 1.59812624e-65, 1.30817318e-65, 1.07082721e-65, 8.76543668e-66, 7.17509597e-66]) fj = array([1.00000000e+00, 5.24072105e-17, 7.17509597e-66, 9.99999996e-01, 9.59032785e-01, 6.48980995e-65, 7.803693...2.08211339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(430) m = 15 mask = array([False, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, False, True, True, True, False, True, True, True, True, True, True, False]) max_error = np.float64(190.95095451228175) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(984) rtol = np.float64(1.8189894035458565e-12) s = array([1.08505357e+02, 1.00817764e+02, 4.47629087e+01, 4.11244155e+01, 1.49494103e+00, 5.95503266e-01, 1.412512...3.17550528e-04, 2.50756373e-05, 5.36026649e-06, 5.16273419e-06, 5.58754950e-08, 2.08700447e-09, 3.53594336e-15]) self = wj = array([ 9.64397036e-01, -2.61028380e-03, -5.08207471e-05, -1.22664462e-01, -2.34175775e-01, -6.12278118e-06, -2...0541e-05, -1.98912073e-03, -3.25142128e-03, -1.85765602e-03, -8.04648515e-04, -4.40111880e-03, -1.53502801e-03]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) zj = array([-1. , -0.12512513, 1. , -0.69369369, -0.53153153, 0.97797798, -0.31331331, 0.98598599, ...174217, 2.08211339, 2.08211339, 2.13373343, 2.13373343, 2.18663323, 2.18663323, 2.24084454, 2.24084454]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 0.00000000e+00, -1.14564220e+00, -5.00501002e-01, ..., -1.60095647e+00, -1.32142857e+00, -1.13781321...6620350e-17, -7.94375182e-64, ..., -2.30950563e-06, -4.66761188e-12, -2.57308902e-17]], shape=(984, 16))] array = array([[ 0.00000000e+00, -1.14564220e+00, -5.00501002e-01, ..., -1.60095647e+00, -1.32142857e+00, -1.13781321e...66620350e-17, -7.94375182e-64, ..., -2.30950563e-06, -4.66761188e-12, -2.57308902e-17]], shape=(984, 16)) arrays = [array([[ 0.00000000e+00, -1.14564220e+00, -5.00501002e-01, ..., -1.60095647e+00, -1.32142857e+00, -1.13781321...6620350e-17, -7.94375182e-64, ..., -2.30950563e-06, -4.66761188e-12, -2.57308902e-17]], shape=(984, 16))] batch_shapes = [()] core_shapes = [(984, 16)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (984, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[ 0.00000000e+00, -1.14564220e+00, -5.00501002e-01, ..., -1.60095647e+00, -1.32142857e+00, -1.13781321e...66620350e-17, -7.94375182e-64, ..., -2.30950563e-06, -4.66761188e-12, -2.57308902e-17]], shape=(984, 16)) a1 = array([[ 0.00000000e+00, -1.14564220e+00, -5.00501002e-01, ..., -1.60095647e+00, -1.32142857e+00, -1.13781321e...66620350e-17, -7.94375182e-64, ..., -2.30950563e-06, -4.66761188e-12, -2.57308902e-17]], shape=(984, 16)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 15 lapack_driver = 'gesdd' lwork = 1328 m = 984 max_mn = 984 min_mn = 16 n = 16 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 15744 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na...n, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(984, 16)) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) ______________ TestAAA.test_basic_functions[-1e-06-1e-07] ______________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:211: in test_basic_functions assert_allclose(AAA(UNIT_INTERVAL, func(UNIT_INTERVAL))(PTS), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ atol = 1e-06 f = array([1.95 , 1.88312512, 1.82072248, ..., 0.07927752, 0.01687488, 0.05 ], shape=(1001,)) func = at 0x7ffb8a0a0e00> rtol = 1e-07 self = lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([1.95000000e+00, 1.94799800e+00, 1.94599600e+00, 1.94399399e+00, 1.94199199e+00, 1.93998999e+00, 1.937987...3.79879880e-02, 3.99899900e-02, 4.19919920e-02, 4.39939940e-02, 4.59959960e-02, 4.79979980e-02, 5.00000000e-02]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([1.95000000e+00, 1.94799800e+00, 1.94599600e+00, 1.94399399e+00, 1.94199199e+00, 1.93998999e+00, 1.937987...3.79879880e-02, 3.99899900e-02, 4.19919920e-02, 4.39939940e-02, 4.59959960e-02, 4.79979980e-02, 5.00000000e-02]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,..., 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]) x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([1.95000000e+00, 1.94799800e+00, 1.94599600e+00, 1.94399399e+00, 1.94199199e+00, 1.93998999e+00, 1.937987...3.79879880e-02, 3.99899900e-02, 4.19919920e-02, 4.39939940e-02, 4.59959960e-02, 4.79979980e-02, 5.00000000e-02]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[ nan, -1. , -0.95 , ..., 0. , 0. , 0. ], [-1. ... [-0.95 , 0.998 , nan, ..., 0. , 0. , 0. ]], shape=(1000, 100)) C = array([[ inf, -0.51283368, -0.5 , ..., 0. , 0. , 0. ], ....5 , 19.98 , inf, ..., 0. , 0. , 0. ]], shape=(1000, 100)) D = array([ 1.00000000e+00, -4.77339939e+02, -2.39037255e+02, -1.59603849e+02, -1.19887766e+02, -9.60586147e+01, -8...2070e+00, -5.13134256e+00, -8.08082863e+00, -1.35897628e+01, -2.88947172e+01, 1.00000000e+00, 1.00000000e+00]) D_inf = array([ True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,...False, False, False, False, False, False, False, False, False, False, False, False, False, True, True]) M = 1000 N = array([ 1.95000000e+00, -9.29838372e+02, -4.65146671e+02, -3.10250057e+02, -2.32802219e+02, -1.86333894e+02, -1...8164e-01, -5.57972639e-01, -6.97734781e-01, -9.61789970e-01, -1.69836765e+00, 4.79979980e-02, 5.00000000e-02]) R = array([ 1.95000000e+00, 1.94795846e+00, 1.94591705e+00, 1.94387579e+00, 1.94183466e+00, 1.93979368e+00, 1...3334e-01, 1.08738139e-01, 8.63444596e-02, 7.07731242e-02, 5.87777909e-02, 4.79979980e-02, 5.00000000e-02]) V = array([[ 2.69451636e-01, 2.59113471e-01, 2.12054139e-01, 2.68739448e-01, 2.13540341e-01, 2.68597737e-01, ... 6.63201673e-02, 3.60882299e-02, 1.03676802e-01, 9.82556711e-02, -1.26111118e-02, 8.02374171e-02]]) _ = array([[-3.21105047e-02, 9.70117703e-03, 1.37803583e-02, ..., 4.87810101e-01, -3.36334427e-01, -2.39539763e...00472204e-01, 1.25596781e-01, ..., 3.41465025e-01, 2.97652083e-01, -1.82020827e-02]], shape=(985, 15)) atol = np.float64(3.54702933691442e-12) dtype = dtype('float64') errors = array([ 1.94994995, 0.10002461, 0.07201124, 0.1016671 , 11.00805126, 4.99049541, 9.55275677, 13.01296445, ...174217, 2.08211339, 2.08211339, 2.13373343, 2.13373343, 2.18663323, 2.18663323, 2.24084454, 2.24084454]) f = array([1.95000000e+00, 1.94799800e+00, 1.94599600e+00, 1.94399399e+00, 1.94199199e+00, 1.93998999e+00, 1.937987...3.79879880e-02, 3.99899900e-02, 4.19919920e-02, 4.39939940e-02, 4.59959960e-02, 4.79979980e-02, 5.00000000e-02]) fj = array([1.95000000e+00, 5.00500500e-05, 5.00000000e-02, 1.21526527e+00, 4.79979980e-02, 6.00650651e-01, 7.367867...2.08211339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(915) m = 15 mask = array([False, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, False, False]) max_error = np.float64(3.2973726406385566) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(984) rtol = np.float64(1.8189894035458565e-12) s = array([1.16278305e+02, 1.57512840e+01, 6.05251947e+00, 1.46242851e+00, 1.16973672e+00, 3.41171417e-01, 1.117941...1.20175119e-03, 5.21548400e-04, 1.67700369e-04, 3.11258892e-05, 1.36231718e-06, 5.33129293e-08, 2.96223351e-14]) self = wj = array([-0.95416981, 0.01666202, 0.02127451, 0.11821443, 0.05364522, 0.09575777, 0.10546009, 0.0904347 , 0.1039548 , 0.06632017, 0.03608823, 0.1036768 , 0.09825567, -0.01261111, 0.08023742]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) zj = array([-1. , 0.94994995, 1. , -0.26526527, 0.997998 , 0.34934935, 0.21321321, 0.73773774, ...174217, 2.08211339, 2.08211339, 2.13373343, 2.13373343, 2.18663323, 2.18663323, 2.24084454, 2.24084454]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-1. , -1. , -0.9499499 , ..., -0.99594872, -1. , -1. ], [-1. ... [-0.95391174, 0.99782609, 1. , ..., 1. , -0.47784091, -0.37054795]], shape=(984, 16))] array = array([[-1. , -1. , -0.9499499 , ..., -0.99594872, -1. , -1. ], [-1. ..., [-0.95391174, 0.99782609, 1. , ..., 1. , -0.47784091, -0.37054795]], shape=(984, 16)) arrays = [array([[-1. , -1. , -0.9499499 , ..., -0.99594872, -1. , -1. ], [-1. ... [-0.95391174, 0.99782609, 1. , ..., 1. , -0.47784091, -0.37054795]], shape=(984, 16))] batch_shapes = [()] core_shapes = [(984, 16)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (984, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[-1. , -1. , -0.9499499 , ..., -0.99594872, -1. , -1. ], [-1. ..., [-0.95391174, 0.99782609, 1. , ..., 1. , -0.47784091, -0.37054795]], shape=(984, 16)) a1 = array([[-1. , -1. , -0.9499499 , ..., -0.99594872, -1. , -1. ], [-1. ..., [-0.95391174, 0.99782609, 1. , ..., 1. , -0.47784091, -0.37054795]], shape=(984, 16)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 15 lapack_driver = 'gesdd' lwork = 1328 m = 984 max_mn = 984 min_mn = 16 n = 16 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 15744 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na...n, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(984, 16)) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) ______________________ TestAAA.test_poles_zeros_residues _______________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py:225: in test_poles_zeros_residues r = AAA(UNIT_INTERVAL, np.sin(10*np.pi*UNIT_INTERVAL)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ f = .f at 0x7ffb6226eca0> r = self = lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:414: in __init__ super().__init__(x, y, rtol=rtol, max_terms=max_terms) __class__ = clean_up = True clean_up_tol = 1e-13 max_terms = 100 rtol = None self = x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([ 1.22464680e-15, 6.28532900e-02, 1.25458030e-01, 1.87566653e-01, 2.48933554e-01, 3.09316061e-01, 3...5395e-01, -3.09316061e-01, -2.48933554e-01, -1.87566653e-01, -1.25458030e-01, -6.28532900e-02, -1.22464680e-15]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:57: in __init__ self._compute_weights(z, f, **kwargs) f = array([ 1.22464680e-15, 6.28532900e-02, 1.25458030e-01, 1.87566653e-01, 2.48933554e-01, 3.09316061e-01, 3...5395e-01, -3.09316061e-01, -2.48933554e-01, -1.87566653e-01, -1.25458030e-01, -6.28532900e-02, -1.22464680e-15]) kwargs = {'max_terms': 100, 'rtol': None} self = to_keep = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) uni = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,..., 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999]) x = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) y = array([ 1.22464680e-15, 6.28532900e-02, 1.25458030e-01, 1.87566653e-01, 2.48933554e-01, 3.09316061e-01, 3...5395e-01, -3.09316061e-01, -2.48933554e-01, -1.87566653e-01, -1.25458030e-01, -6.28532900e-02, -1.22464680e-15]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) lib/python3.12/site-packages/scipy/interpolate/_bary_rational.py:479: in _compute_weights _, s, V = scipy.linalg.svd( A = array([[19.9799753 , -0.51283304, -6.73858007, ..., 0. , 0. , 0. ], [19.5043401... [-0.51283304, 19.9799753 , 0.53908641, ..., 0. , 0. , 0. ]], shape=(1000, 100)) C = array([[-19.98 , -0.51283368, -6.75 , ..., 0. , 0. , 0. ], [-20.... [ 0.51283368, 19.98 , 0.54 , ..., 0. , 0. , 0. ]], shape=(1000, 100)) D = array([-1.13517669e+01, -1.17328256e+01, -1.21455181e+01, -1.25941227e+01, -1.30837318e+01, -1.36204555e+01, -1...4169e+01, -1.63443623e+01, -2.03480043e+01, -2.70692436e+01, -4.05747279e+01, -8.12008138e+01, 1.00000000e+00]) D_inf = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, False,...False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) M = 1000 N = array([-9.47363031e+00, -9.84576565e+00, -1.02496545e+01, -1.06895924e+01, -1.11706904e+01, -1.16990792e+01, -1...4878e+00, 3.32745553e+00, 3.24182532e+00, 3.16255828e+00, 3.08890159e+00, 3.02022023e+00, -1.22464680e-15]) R = array([ 8.34551165e-01, 8.39164064e-01, 8.43904261e-01, 8.48776261e-01, 8.53784733e-01, 8.58934507e-01, 8...8243e-01, -2.03584298e-01, -1.59319080e-01, -1.16832163e-01, -7.61287074e-02, -3.71944576e-02, -1.22464680e-15]) V = array([[-5.42994979e-03, 3.03637429e-02, 1.44047473e-01, 2.23122566e-01, 3.86096706e-02, 1.15307326e-01, ... 6.05591937e-02, 3.11267203e-02, 2.07367929e-01, 3.66273500e-02, 1.16175399e-03, -3.11445063e-04]]) _ = array([[-0.00304499, 0.0091821 , 0.052859 , ..., 0.0355009 , -0.01732779, -0.04531799], [-0.0051688..., [ 0.04105157, 0.01797902, -0.09665794, ..., -0.06517522, -0.15364411, 0.22650882]], shape=(985, 15)) atol = np.float64(1.8189871549631742e-12) dtype = dtype('float64') errors = array([1.99999753e+000, 1.89504045e+000, 1.94696889e+003, 3.50402625e+000, 4.68649530e+001, 2.78128655e+002, 5....002e-154, 7.87221617e-067, 5.59939840e-067, 8.53161656e-096, 6.23470726e-038, 4.56340420e-072, 4.46666756e-033]) f = array([ 1.22464680e-15, 6.28532900e-02, 1.25458030e-01, 1.87566653e-01, 2.48933554e-01, 3.09316061e-01, 3...5395e-01, -3.09316061e-01, -2.48933554e-01, -1.87566653e-01, -1.25458030e-01, -6.28532900e-02, -1.22464680e-15]) fj = array([ 9.99998764e-01, -9.99998764e-01, -9.98308158e-01, -3.03328948e-01, -1.22464680e-15, 7.25211999e-01, -6...1339e+00, 2.13373343e+00, 2.13373343e+00, 2.18663323e+00, 2.18663323e+00, 2.24084454e+00, 2.24084454e+00]) i0 = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) jj = np.int64(536) m = 15 mask = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, False]) max_error = np.float64(364.9643104045682) max_terms = 100 mm = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, True]) rows = np.int64(984) rtol = np.float64(1.8189894035458565e-12) s = array([3.86473010e+02, 3.12713509e+02, 2.94803550e+02, 2.68069459e+02, 2.43171171e+02, 2.35578600e+02, 2.056874...1.82390682e+02, 1.63129136e+02, 1.51169352e+02, 9.64365543e+01, 6.19754498e+01, 4.56534860e+00, 2.14191535e-05]) self = wj = array([ 4.33155634e-01, -3.87080939e-02, -2.68751241e-01, 8.03393697e-01, 1.62858758e-01, 6.03118242e-02, -8...9034e-02, 6.05591937e-02, 3.11267203e-02, 2.07367929e-01, 3.66273500e-02, 1.16175399e-03, -3.11445063e-04]) z = array([-1. , -0.997998 , -0.995996 , -0.99399399, -0.99199199, -0.98998999, -0.98798799, -0.98598599, ...398398, 0.98598599, 0.98798799, 0.98998999, 0.99199199, 0.99399399, 0.995996 , 0.997998 , 1. ]) zj = array([-0.94994995, 0.94994995, -0.85185185, -0.80980981, 1. , 0.82582583, 0.72372372, 0.93793794, ...174217, 2.08211339, 2.08211339, 2.13373343, 2.13373343, 2.18663323, 2.18663323, 2.24084454, 2.24084454]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[19.9799753 , -0.51283304, -6.73858007, ..., -0.25451159, 0.10911549, 0.56616995], [19.504340... [-0.54562652, 19.50434017, 0.50569232, ..., 0.24685631, -0.60666246, -0.73324798]], shape=(984, 16))] array = array([[19.9799753 , -0.51283304, -6.73858007, ..., -0.25451159, 0.10911549, 0.56616995], [19.5043401..., [-0.54562652, 19.50434017, 0.50569232, ..., 0.24685631, -0.60666246, -0.73324798]], shape=(984, 16)) arrays = [array([[19.9799753 , -0.51283304, -6.73858007, ..., -0.25451159, 0.10911549, 0.56616995], [19.504340... [-0.54562652, 19.50434017, 0.50569232, ..., 0.24685631, -0.60666246, -0.73324798]], shape=(984, 16))] batch_shapes = [()] core_shapes = [(984, 16)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (984, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[19.9799753 , -0.51283304, -6.73858007, ..., -0.25451159, 0.10911549, 0.56616995], [19.5043401..., [-0.54562652, 19.50434017, 0.50569232, ..., 0.24685631, -0.60666246, -0.73324798]], shape=(984, 16)) a1 = array([[19.9799753 , -0.51283304, -6.73858007, ..., -0.25451159, 0.10911549, 0.56616995], [19.5043401..., [-0.54562652, 19.50434017, 0.50569232, ..., 0.24685631, -0.60666246, -0.73324798]], shape=(984, 16)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 15 lapack_driver = 'gesdd' lwork = 1328 m = 984 max_mn = 984 min_mn = 16 n = 16 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 15744 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na...n, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(984, 16)) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan... nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _________________________ TestLSQ.test_lstsq[norm-eq] __________________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bsplines.py:1703: in test_lstsq xp_assert_close(b.c, c1) E AssertionError: E Not equal to tolerance rtol=5.96046e-08, atol=0 E E Mismatched elements: 9 / 9 (100%) E Max absolute difference among violations: 1.13167673 E Max relative difference among violations: 1.99607504 E ACTUAL: array([ 0.711605, 0.036619, 1.160079, -0.564726, 2.084059, -0.404893, E 0.709475, 1.200894, 0.651994]) E DESIRED: array([ 0.72931 , -0.302283, 0.957353, 0.566951, 2.315098, -0.222595, E 0.570189, 1.25241 , 0.650862]) AY = (array([[1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.000...y([0.75190803, 0.53404556, 0.66774579, 0.67158225, 0.924913 , 1.02678541, 0.97446088, 0.58033897, 0.69369417])) _ = array([1.26800838, 1.09211245, 1.00187691, 0.9944644 , 0.95370186, 0.69162224, 0.4263237 , 0.25996151, 0.18389325]) aa = array([[1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.0000...e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) b = c0 = array([ 0.71160459, 0.0366185 , 1.16007871, -0.56472573, 2.084059 , -0.40489315, 0.70947474, 1.20089411, 0.65199405]) c1 = array([ 0.72930952, -0.3022834 , 0.9573527 , 0.56695099, 2.31509803, -0.2225946 , 0.57018925, 1.25240973, 0.65086238]) k = 3 method = 'norm-eq' self = t = array([0.19151945, 0.19151945, 0.19151945, 0.19151945, 0.31928943, 0.44705942, 0.5748294 , 0.70259939, 0.83036937, 0.95813935, 0.95813935, 0.95813935, 0.95813935]) x = array([0.19151945, 0.27259261, 0.27646426, 0.35781727, 0.43772774, 0.50099513, 0.62210877, 0.68346294, 0.77997581, 0.78535858, 0.80187218, 0.87593263, 0.95813935]) y = array([0.71270203, 0.37025075, 0.56119619, 0.50308317, 0.01376845, 0.77282662, 0.88264119, 0.36488598, 0.61539618, 0.07538124, 0.36882401, 0.9331401 , 0.65137814]) yy = array([0.75190803, 0.53404556, 0.66774579, 0.67158225, 0.924913 , 1.02678541, 0.97446088, 0.58033897, 0.69369417]) ____________________________ TestLSQ.test_lstsq[qr] ____________________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_bsplines.py:1703: in test_lstsq xp_assert_close(b.c, c1) E AssertionError: E Not equal to tolerance rtol=5.96046e-08, atol=0 E E Mismatched elements: 9 / 9 (100%) E Max absolute difference among violations: 1.13167673 E Max relative difference among violations: 1.99607504 E ACTUAL: array([ 0.711605, 0.036619, 1.160079, -0.564726, 2.084059, -0.404893, E 0.709475, 1.200894, 0.651994]) E DESIRED: array([ 0.72931 , -0.302283, 0.957353, 0.566951, 2.315098, -0.222595, E 0.570189, 1.25241 , 0.650862]) AY = (array([[1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.000...y([0.75190803, 0.53404556, 0.66774579, 0.67158225, 0.924913 , 1.02678541, 0.97446088, 0.58033897, 0.69369417])) _ = array([1.26800838, 1.09211245, 1.00187691, 0.9944644 , 0.95370186, 0.69162224, 0.4263237 , 0.25996151, 0.18389325]) aa = array([[1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.0000...e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) b = c0 = array([ 0.71160459, 0.0366185 , 1.16007871, -0.56472573, 2.084059 , -0.40489315, 0.70947474, 1.20089411, 0.65199405]) c1 = array([ 0.72930952, -0.3022834 , 0.9573527 , 0.56695099, 2.31509803, -0.2225946 , 0.57018925, 1.25240973, 0.65086238]) k = 3 method = 'qr' self = t = array([0.19151945, 0.19151945, 0.19151945, 0.19151945, 0.31928943, 0.44705942, 0.5748294 , 0.70259939, 0.83036937, 0.95813935, 0.95813935, 0.95813935, 0.95813935]) x = array([0.19151945, 0.27259261, 0.27646426, 0.35781727, 0.43772774, 0.50099513, 0.62210877, 0.68346294, 0.77997581, 0.78535858, 0.80187218, 0.87593263, 0.95813935]) y = array([0.71270203, 0.37025075, 0.56119619, 0.50308317, 0.01376845, 0.77282662, 0.88264119, 0.36488598, 0.61539618, 0.07538124, 0.36882401, 0.9331401 , 0.65137814]) yy = array([0.75190803, 0.53404556, 0.66774579, 0.67158225, 0.924913 , 1.02678541, 0.97446088, 0.58033897, 0.69369417]) ________________ test_conditionally_positive_definite[gaussian] ________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py:80: in test_conditionally_positive_definite assert _is_conditionally_positive_definite(kernel, m) E AssertionError: assert False E + where False = _is_conditionally_positive_definite('gaussian', 0) kernel = 'gaussian' m = 0 __________ test_conditionally_positive_definite[inverse_multiquadric] __________ lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py:80: in test_conditionally_positive_definite assert _is_conditionally_positive_definite(kernel, m) E AssertionError: assert False E + where False = _is_conditionally_positive_definite('inverse_multiquadric', 0) kernel = 'inverse_multiquadric' m = 0 ___________ test_conditionally_positive_definite[inverse_quadratic] ____________ lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py:80: in test_conditionally_positive_definite assert _is_conditionally_positive_definite(kernel, m) E AssertionError: assert False E + where False = _is_conditionally_positive_definite('inverse_quadratic', 0) kernel = 'inverse_quadratic' m = 0 _________________ test_conditionally_positive_definite[linear] _________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py:80: in test_conditionally_positive_definite assert _is_conditionally_positive_definite(kernel, m) E AssertionError: assert False E + where False = _is_conditionally_positive_definite('linear', 1) kernel = 'linear' m = 1 ______________ test_conditionally_positive_definite[multiquadric] ______________ lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py:80: in test_conditionally_positive_definite assert _is_conditionally_positive_definite(kernel, m) E AssertionError: assert False E + where False = _is_conditionally_positive_definite('multiquadric', 1) kernel = 'multiquadric' m = 1 ___________ TestRBFInterpolatorNeighborsNone.test_smoothing_limit_2d ___________ lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py:475: in test_smoothing_limit_2d xp_assert_close(yitp1, yitp2, atol=1e-8) E AssertionError: E Not equal to tolerance rtol=5.96046e-08, atol=1e-08 E E Mismatched elements: 100 / 100 (100%) E Max absolute difference among violations: 43.56847812 E Max relative difference among violations: 1.41230744 E ACTUAL: array([0.738503, 0.056145, 0.808498, 0.280273, 0.213296, 0.598773, E 0.317717, 0.12374 , 0.833532, 0.476892, 0.193611, 0.285645, E 0.646887, 0.064411, 0.87583 , 0.20993 , 0.24081 , 0.342043,... E DESIRED: array([ 24.137309, -12.61845 , 16.817483, -30.294236, 10.640937, E 2.164853, 9.027923, -32.992643, 30.13739 , -8.822025, E 1.052304, -30.693094, 26.488042, -7.637073, 21.026999,... P = array([[1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.0000...e-01, 6.04745370e-02, 6.11356670e-03, 4.62674618e-01, 4.67732747e-02, 4.72846174e-03, 4.78015503e-04]]) Pitp = array([[1.00000000e+00, 1.48437500e-01, 4.11522634e-01, 2.20336914e-02, 6.10853909e-02, 1.69350878e-01, 3.2706...e-01, 3.46659594e-01, 1.52839167e-01, 6.97200477e-01, 3.07389562e-01, 1.35525356e-01, 5.97519379e-02]]) degree = 3 self = seq = smoothing = 100000000.0 x = array([[0. , 0. ], [0.5 , 0.33333333], [0.25 , 0.66666667], [0.75 ,...4375 , 0.26337449], [0.5234375 , 0.59670782], [0.2734375 , 0.93004115], [0.7734375 , 0.0781893 ]]) xitp = array([[0.1484375 , 0.41152263], [0.6484375 , 0.74485597], [0.3984375 , 0.18930041], [0.8984375 ,...71875, 0.57613169], [0.63671875, 0.90946502], [0.38671875, 0.05761317], [0.88671875, 0.3909465 ]]) y = array([0.76642059, 0.49840448, 0.31048862, 0.36340529, 0.6427652 , 0.12909868, 0.85803234, 0.2343956 , 0.290161...15, 0.53756276, 0.30075403, 0.43354007, 0.34696036, 0.04783866, 0.84520618, 0.2354776 , 0.22728401, 0.30832173]) yitp1 = array([0.73850266, 0.05614521, 0.80849805, 0.28027338, 0.21329619, 0.5987733 , 0.31771657, 0.12374042, 0.833532...94, 0.17706949, 1.00896236, 0.47136914, 0.19362915, 0.4819258 , 0.45740164, 0.05759491, 0.7201485 , 0.39921436]) yitp2 = array([ 24.13730911, -12.61844984, 16.81748261, -30.2942356 , 10.64093722, 2.16485255, 9.02792269, -32.99... 37.04473491, 3.69145953, 6.8185533 , -11.38947003, 19.51375285, -16.11023332, 19.95045535, -26.6391783 ]) ___________ TestRBFInterpolatorNeighborsInf.test_smoothing_limit_2d ____________ lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py:475: in test_smoothing_limit_2d xp_assert_close(yitp1, yitp2, atol=1e-8) E AssertionError: E Not equal to tolerance rtol=5.96046e-08, atol=1e-08 E E Mismatched elements: 100 / 100 (100%) E Max absolute difference among violations: 43.56847812 E Max relative difference among violations: 1.41230744 E ACTUAL: array([0.738503, 0.056145, 0.808498, 0.280273, 0.213296, 0.598773, E 0.317717, 0.12374 , 0.833532, 0.476892, 0.193611, 0.285645, E 0.646887, 0.064411, 0.87583 , 0.20993 , 0.24081 , 0.342043,... E DESIRED: array([ 24.137309, -12.61845 , 16.817483, -30.294236, 10.640937, E 2.164853, 9.027923, -32.992643, 30.13739 , -8.822025, E 1.052304, -30.693094, 26.488042, -7.637073, 21.026999,... P = array([[1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.0000...e-01, 6.04745370e-02, 6.11356670e-03, 4.62674618e-01, 4.67732747e-02, 4.72846174e-03, 4.78015503e-04]]) Pitp = array([[1.00000000e+00, 1.48437500e-01, 4.11522634e-01, 2.20336914e-02, 6.10853909e-02, 1.69350878e-01, 3.2706...e-01, 3.46659594e-01, 1.52839167e-01, 6.97200477e-01, 3.07389562e-01, 1.35525356e-01, 5.97519379e-02]]) degree = 3 self = seq = smoothing = 100000000.0 x = array([[0. , 0. ], [0.5 , 0.33333333], [0.25 , 0.66666667], [0.75 ,...4375 , 0.26337449], [0.5234375 , 0.59670782], [0.2734375 , 0.93004115], [0.7734375 , 0.0781893 ]]) xitp = array([[0.1484375 , 0.41152263], [0.6484375 , 0.74485597], [0.3984375 , 0.18930041], [0.8984375 ,...71875, 0.57613169], [0.63671875, 0.90946502], [0.38671875, 0.05761317], [0.88671875, 0.3909465 ]]) y = array([0.76642059, 0.49840448, 0.31048862, 0.36340529, 0.6427652 , 0.12909868, 0.85803234, 0.2343956 , 0.290161...15, 0.53756276, 0.30075403, 0.43354007, 0.34696036, 0.04783866, 0.84520618, 0.2354776 , 0.22728401, 0.30832173]) yitp1 = array([0.73850266, 0.05614521, 0.80849805, 0.28027338, 0.21329619, 0.5987733 , 0.31771657, 0.12374042, 0.833532...94, 0.17706949, 1.00896236, 0.47136914, 0.19362915, 0.4819258 , 0.45740164, 0.05759491, 0.7201485 , 0.39921436]) yitp2 = array([ 24.13730911, -12.61844984, 16.81748261, -30.2942356 , 10.64093722, 2.16485255, 9.02792269, -32.99... 37.04473491, 3.69145953, 6.8185533 , -11.38947003, 19.51375285, -16.11023332, 19.95045535, -26.6391783 ]) ___________ TestRegularGridInterpolator.test_nonscalar_values[cubic] ___________ lib/python3.12/site-packages/scipy/interpolate/tests/test_rgi.py:554: in test_nonscalar_values interp = RegularGridInterpolator(points, values, method=method, method = 'cubic' points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5), (0.0, 0.5, 1.0, 1.5, 2.0, 2.5), (0.0, 5.0, 10.0, 15.0, 20, 25.0), (0.0, 5.0, 10.0, 15.0, 20, 25.0)] rng = Generator(PCG64) at 0x7FFB62067140 sample = array([[[0.31626151, 0.42096941, 0.09028064, 0.4112652 ], [0.32026796, 0.75087417, 0.23339826, 0.1540577 ], ..., [0.65737996, 0.86478194, 0.86402752, 0.60050074], [0.84958335, 0.79197404, 0.04301079, 0.42911181]]]) self = values = array([[[[[9.76699767e-01, 3.80195735e-01, 9.23246234e-01, ..., 1.18091233e-01, 2.41766293e-01, 3.18533929e...e-01, 7.06461640e-01, ..., 5.22866016e-02, 6.33775042e-01, 6.11062884e-01]]]]], shape=(6, 6, 6, 6, 8)) lib/python3.12/site-packages/scipy/interpolate/_rgi.py:298: in __init__ self._spline = self._construct_spline(method, solver, **solver_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ bounds_error = False fill_value = nan method = 'cubic' points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5), (0.0, 0.5, 1.0, 1.5, 2.0, 2.5), (0.0, 5.0, 10.0, 15.0, 20, 25.0), (0.0, 5.0, 10.0, 15.0, 20, 25.0)] self = solver = None solver_args = {} values = array([[[[[9.76699767e-01, 3.80195735e-01, 9.23246234e-01, ..., 1.18091233e-01, 2.41766293e-01, 3.18533929e...e-01, 7.06461640e-01, ..., 5.22866016e-02, 6.33775042e-01, 6.11062884e-01]]]]], shape=(6, 6, 6, 6, 8)) lib/python3.12/site-packages/scipy/interpolate/_rgi.py:309: in _construct_spline spl = make_ndbspl( method = 'cubic' self = solver = solver_args = {} lib/python3.12/site-packages/scipy/interpolate/_ndbspline.py:412: in make_ndbspl coef = solver(matr, vals, **solver_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ d = 3 k = (3, 3, 3, 3) matr = ndim = 4 numpts = 6 point = array([ 0., 5., 10., 15., 20., 25.]) points = (array([0. , 0.5, 1. , 1.5, 2. , 2.5]), array([0. , 0.5, 1. , 1.5, 2. , 2.5]), array([ 0., 5., 10., 15., 20., 25.]), array([ 0., 5., 10., 15., 20., 25.])) solver = functools.partial(, solver=) solver_args = {'atol': 1e-06} t = (array([0. , 0. , 0. , 0. , 1. , 1.5, 2.5, 2.5, 2.5, 2.5]), array([0. , 0. , 0. , 0. , 1. , 1.5, 2.5, 2.5, 2.5, 2.5]), array([ 0., 0., 0., 0., 10., 15., 25., 25., 25., 25.]), array([ 0., 0., 0., 0., 10., 15., 25., 25., 25., 25.])) v_shape = (6, 6, 6, 6, 8) vals = array([[0.97669977, 0.38019574, 0.92324623, ..., 0.11809123, 0.24176629, 0.31853393], [0.96407925, 0.26...34008], [0.66289952, 0.44220571, 0.70646164, ..., 0.0522866 , 0.63377504, 0.61106288]], shape=(1296, 8)) vals_shape = (1296, 8) values = array([[[[[9.76699767e-01, 3.80195735e-01, 9.23246234e-01, ..., 1.18091233e-01, 2.41766293e-01, 3.18533929e...e-01, 7.06461640e-01, ..., 5.22866016e-02, 6.33775042e-01, 6.11062884e-01]]]]], shape=(6, 6, 6, 6, 8)) xi_shape = (6, 6, 6, 6) xvals = array([[ 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 5. ], [ 0. , 0. , 0. , 10. ], ..., [ 2.5, 2.5, 25. , 15. ], [ 2.5, 2.5, 25. , 20. ], [ 2.5, 2.5, 25. , 25. ]], shape=(1296, 4)) lib/python3.12/site-packages/scipy/interpolate/_ndbspline.py:336: in _iter_solve raise ValueError(f"{solver = } returns {info =} for column {j}.") E ValueError: solver = returns info =12 for column 0. a = b = array([[0.97669977, 0.38019574, 0.92324623, ..., 0.11809123, 0.24176629, 0.31853393], [0.96407925, 0.26...34008], [0.66289952, 0.44220571, 0.70646164, ..., 0.0522866 , 0.63377504, 0.61106288]], shape=(1296, 8)) info = 12 j = 0 res = array([[-1.75690540e-001, 2.61692424e-001, 3.19097058e-001, ..., 3.18533929e-001, 9.64079245e-001, 2.6364...237e-001, 4.44015726e-001, ..., 6.11062884e-001, 6.95236697e-310, 6.95236697e-310]], shape=(1296, 8)) solver = solver_args = {'atol': 1e-06} ----------------------------- Captured stdout call ----------------------------- ** On entry to DLASCL parameter number 4 had an illegal value ___________________ TestInterpN.test_nonscalar_values[cubic] ___________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_rgi.py:899: in test_nonscalar_values v = interpn(points, values, sample, method=method, method = 'cubic' points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5), (0.0, 0.5, 1.0, 1.5, 2.0, 2.5), (0.0, 5.0, 10.0, 15.0, 20, 25.0), (0.0, 5.0, 10.0, 15.0, 20, 25.0)] rng = Generator(PCG64) at 0x7FFB56E91E00 sample = array([[[0.31626151, 0.42096941, 0.09028064, 0.4112652 ], [0.32026796, 0.75087417, 0.23339826, 0.1540577 ], ..., [0.65737996, 0.86478194, 0.86402752, 0.60050074], [0.84958335, 0.79197404, 0.04301079, 0.42911181]]]) self = values = array([[[[[9.76699767e-01, 3.80195735e-01, 9.23246234e-01, ..., 1.18091233e-01, 2.41766293e-01, 3.18533929e...e-01, 7.06461640e-01, ..., 5.22866016e-02, 6.33775042e-01, 6.11062884e-01]]]]], shape=(6, 6, 6, 6, 8)) lib/python3.12/site-packages/scipy/interpolate/_rgi.py:743: in interpn interp = RegularGridInterpolator(points, values, method=method, bounds_error = False descending_dimensions = () fill_value = nan grid = (array([0. , 0.5, 1. , 1.5, 2. , 2.5]), array([0. , 0.5, 1. , 1.5, 2. , 2.5]), array([ 0., 5., 10., 15., 20., 25.]), array([ 0., 5., 10., 15., 20., 25.])) method = 'cubic' ndim = 5 points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5), (0.0, 0.5, 1.0, 1.5, 2.0, 2.5), (0.0, 5.0, 10.0, 15.0, 20, 25.0), (0.0, 5.0, 10.0, 15.0, 20, 25.0)] values = array([[[[[9.76699767e-01, 3.80195735e-01, 9.23246234e-01, ..., 1.18091233e-01, 2.41766293e-01, 3.18533929e...e-01, 7.06461640e-01, ..., 5.22866016e-02, 6.33775042e-01, 6.11062884e-01]]]]], shape=(6, 6, 6, 6, 8)) xi = array([[[0.31626151, 0.42096941, 0.09028064, 0.4112652 ], [0.32026796, 0.75087417, 0.23339826, 0.1540577 ], ..., [0.65737996, 0.86478194, 0.86402752, 0.60050074], [0.84958335, 0.79197404, 0.04301079, 0.42911181]]]) lib/python3.12/site-packages/scipy/interpolate/_rgi.py:298: in __init__ self._spline = self._construct_spline(method, solver, **solver_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ bounds_error = False fill_value = nan method = 'cubic' points = [(0.0, 0.5, 1.0, 1.5, 2.0, 2.5), (0.0, 0.5, 1.0, 1.5, 2.0, 2.5), (0.0, 5.0, 10.0, 15.0, 20, 25.0), (0.0, 5.0, 10.0, 15.0, 20, 25.0)] self = solver = None solver_args = {} values = array([[[[[9.76699767e-01, 3.80195735e-01, 9.23246234e-01, ..., 1.18091233e-01, 2.41766293e-01, 3.18533929e...e-01, 7.06461640e-01, ..., 5.22866016e-02, 6.33775042e-01, 6.11062884e-01]]]]], shape=(6, 6, 6, 6, 8)) lib/python3.12/site-packages/scipy/interpolate/_rgi.py:309: in _construct_spline spl = make_ndbspl( method = 'cubic' self = solver = solver_args = {} lib/python3.12/site-packages/scipy/interpolate/_ndbspline.py:412: in make_ndbspl coef = solver(matr, vals, **solver_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ d = 3 k = (3, 3, 3, 3) matr = ndim = 4 numpts = 6 point = array([ 0., 5., 10., 15., 20., 25.]) points = (array([0. , 0.5, 1. , 1.5, 2. , 2.5]), array([0. , 0.5, 1. , 1.5, 2. , 2.5]), array([ 0., 5., 10., 15., 20., 25.]), array([ 0., 5., 10., 15., 20., 25.])) solver = functools.partial(, solver=) solver_args = {'atol': 1e-06} t = (array([0. , 0. , 0. , 0. , 1. , 1.5, 2.5, 2.5, 2.5, 2.5]), array([0. , 0. , 0. , 0. , 1. , 1.5, 2.5, 2.5, 2.5, 2.5]), array([ 0., 0., 0., 0., 10., 15., 25., 25., 25., 25.]), array([ 0., 0., 0., 0., 10., 15., 25., 25., 25., 25.])) v_shape = (6, 6, 6, 6, 8) vals = array([[0.97669977, 0.38019574, 0.92324623, ..., 0.11809123, 0.24176629, 0.31853393], [0.96407925, 0.26...34008], [0.66289952, 0.44220571, 0.70646164, ..., 0.0522866 , 0.63377504, 0.61106288]], shape=(1296, 8)) vals_shape = (1296, 8) values = array([[[[[9.76699767e-01, 3.80195735e-01, 9.23246234e-01, ..., 1.18091233e-01, 2.41766293e-01, 3.18533929e...e-01, 7.06461640e-01, ..., 5.22866016e-02, 6.33775042e-01, 6.11062884e-01]]]]], shape=(6, 6, 6, 6, 8)) xi_shape = (6, 6, 6, 6) xvals = array([[ 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 5. ], [ 0. , 0. , 0. , 10. ], ..., [ 2.5, 2.5, 25. , 15. ], [ 2.5, 2.5, 25. , 20. ], [ 2.5, 2.5, 25. , 25. ]], shape=(1296, 4)) lib/python3.12/site-packages/scipy/interpolate/_ndbspline.py:336: in _iter_solve raise ValueError(f"{solver = } returns {info =} for column {j}.") E ValueError: solver = returns info =12 for column 0. a = b = array([[0.97669977, 0.38019574, 0.92324623, ..., 0.11809123, 0.24176629, 0.31853393], [0.96407925, 0.26...34008], [0.66289952, 0.44220571, 0.70646164, ..., 0.0522866 , 0.63377504, 0.61106288]], shape=(1296, 8)) info = 12 j = 0 res = array([[-0.17569054, 0. , 0. , ..., 0. , 0. , 0. ], [-0.3935551..., [ 0.03576644, 0. , 0. , ..., 0. , 0. , 0. ]], shape=(1296, 8)) solver = solver_args = {'atol': 1e-06} ____________________ TestInterpN.test_matrix_input[quintic] ____________________ lib/python3.12/site-packages/scipy/interpolate/tests/test_rgi.py:1020: in test_matrix_input v1 = interpn((x, y), values, sample, method=method) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ method = 'quintic' sample = array([[[0.86763282, 0.44517443], [0.02918942, 0.10719824], [0.19625915, 0.23823634], [0.82451...3, 0.34864109], [0.48048149, 0.64392643], [0.62162643, 0.76119301], [0.28665106, 0.49238521]]]) self = values = matrix([[0.03931146, 0.43177652, 0.85427585, 0.42232848, 0.08844911, 0.05669501, 0.10327285], [0.4853...2, 0.45127308], [0.65087142, 0.80930517, 0.28296286, 0.27338179, 0.38573719, 0.42160812, 0.93216543]]) x = array([0. , 0.4, 0.8, 1.2, 1.6, 2. ]) y = array([0. , 0.16666667, 0.33333333, 0.5 , 0.66666667, 0.83333333, 1. ]) lib/python3.12/site-packages/scipy/interpolate/_rgi.py:743: in interpn interp = RegularGridInterpolator(points, values, method=method, bounds_error = True descending_dimensions = () fill_value = nan grid = (array([0. , 0.4, 0.8, 1.2, 1.6, 2. ]), array([0. , 0.16666667, 0.33333333, 0.5 , 0.66666667, 0.83333333, 1. ])) i = 1 method = 'quintic' ndim = 2 p = array([[0.44517443, 0.09030041, 0.03872889], [0.10719824, 0.80741429, 0.56463128], [0.23823634, 0.638303...33, 0.10890278, 0.64392643], [0.42051243, 0.88635183, 0.76119301], [0.28614259, 0.46621527, 0.49238521]]) points = (array([0. , 0.4, 0.8, 1.2, 1.6, 2. ]), array([0. , 0.16666667, 0.33333333, 0.5 , 0.66666667, 0.83333333, 1. ])) values = matrix([[0.03931146, 0.43177652, 0.85427585, 0.42232848, 0.08844911, 0.05669501, 0.10327285], [0.4853...2, 0.45127308], [0.65087142, 0.80930517, 0.28296286, 0.27338179, 0.38573719, 0.42160812, 0.93216543]]) xi = array([[[0.86763282, 0.44517443], [0.02918942, 0.10719824], [0.19625915, 0.23823634], [0.82451...3, 0.34864109], [0.48048149, 0.64392643], [0.62162643, 0.76119301], [0.28665106, 0.49238521]]]) lib/python3.12/site-packages/scipy/interpolate/_rgi.py:298: in __init__ self._spline = self._construct_spline(method, solver, **solver_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ bounds_error = True fill_value = nan method = 'quintic' points = (array([0. , 0.4, 0.8, 1.2, 1.6, 2. ]), array([0. , 0.16666667, 0.33333333, 0.5 , 0.66666667, 0.83333333, 1. ])) self = solver = None solver_args = {} values = matrix([[0.03931146, 0.43177652, 0.85427585, 0.42232848, 0.08844911, 0.05669501, 0.10327285], [0.4853...2, 0.45127308], [0.65087142, 0.80930517, 0.28296286, 0.27338179, 0.38573719, 0.42160812, 0.93216543]]) lib/python3.12/site-packages/scipy/interpolate/_rgi.py:309: in _construct_spline spl = make_ndbspl( method = 'quintic' self = solver = solver_args = {} lib/python3.12/site-packages/scipy/interpolate/_ndbspline.py:412: in make_ndbspl coef = solver(matr, vals, **solver_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ d = 1 k = (5, 5) matr = ndim = 2 numpts = 7 point = array([0. , 0.16666667, 0.33333333, 0.5 , 0.66666667, 0.83333333, 1. ]) points = (array([0. , 0.4, 0.8, 1.2, 1.6, 2. ]), array([0. , 0.16666667, 0.33333333, 0.5 , 0.66666667, 0.83333333, 1. ])) solver = functools.partial(, solver=) solver_args = {'atol': 1e-06} t = (array([0., 0., 0., 0., 0., 0., 2., 2., 2., 2., 2., 2.]), array([0. , 0. , 0. , 0. , 0. , 0. , 0.5, 1. , 1. , 1. , 1. , 1. , 1. ])) v_shape = (6, 7) vals = matrix([[0.03931146], [0.43177652], [0.85427585], [0.42232848], [0.08844911], ...930517], [0.28296286], [0.27338179], [0.38573719], [0.42160812], [0.93216543]]) vals_shape = (42, 1) values = matrix([[0.03931146, 0.43177652, 0.85427585, 0.42232848, 0.08844911, 0.05669501, 0.10327285], [0.4853...2, 0.45127308], [0.65087142, 0.80930517, 0.28296286, 0.27338179, 0.38573719, 0.42160812, 0.93216543]]) xi_shape = (6, 7) xvals = array([[0. , 0. ], [0. , 0.16666667], [0. , 0.33333333], [0. ,... , 0.5 ], [2. , 0.66666667], [2. , 0.83333333], [2. , 1. ]]) lib/python3.12/site-packages/scipy/interpolate/_ndbspline.py:341: in _iter_solve raise ValueError(f"{solver = } returns {info = }.") E ValueError: solver = returns info = 11. a = b = matrix([[0.03931146], [0.43177652], [0.85427585], [0.42232848], [0.08844911], ...930517], [0.28296286], [0.27338179], [0.38573719], [0.42160812], [0.93216543]]) info = 11 res = array([-1.06502726e-01, -4.53442373e-01, 8.71106829e-01, -7.27321330e-01, 5.68902141e-03, -5.34057008e-02, -1...2, 4.23864958e-01, -5.40778485e-01, -1.07949679e-02, -8.59246180e-02, 1.00981490e-02, -1.43190681e-01]) solver = solver_args = {'atol': 1e-06} ______________ TestLstsq.test_random_exact[True-gelsd-20-float64] ______________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: gelsd E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 1749522.18264238 E Max relative difference among violations: 37196183.8376638 E ACTUAL: array([[-4.715653e+05, -5.586097e+05, -2.540758e+04], E [ 5.518218e+05, 6.536808e+05, 2.973170e+04], E [ 2.084688e+05, 2.469490e+05, 1.123219e+04],... E DESIRED: array([[0.714994, 0.724091, 0.018676], E [0.285813, 0.580486, 0.930787], E [0.338997, 0.120083, 0.516273],... a = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...56998481e-01, 9.31751942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]]) a1 = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...56998481e-01, 9.31751942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]]) b = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083...98, 0.9389873 , 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]]) b1 = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083...98, 0.9389873 , 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]]) dtype = i = 0 lapack_driver = 'gelsd' n = 20 out = (array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03....18394179e+00, 5.90675981e+00, 5.78582044e+00, 5.13313932e+00, 4.72311946e+00, 2.37144709e+00, 2.38704807e-06])) overwrite = True r = 20 rng = RandomState(MT19937) at 0x7FFB56A90B40 self = x = array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03]... [-6.31981217e+03, -7.48639624e+03, -3.40455724e+02], [ 5.18676936e+02, 6.14395508e+02, 2.78750964e+01]]) ____________ TestLstsq.test_random_exact[True-gelsd-20-longdouble] _____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: gelsd E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 1749522.18264238 E Max relative difference among violations: 37196183.8376638 E ACTUAL: array([[-4.715653e+05, -5.586097e+05, -2.540758e+04], E [ 5.518218e+05, 6.536808e+05, 2.973170e+04], E [ 2.084688e+05, 2.469490e+05, 1.123219e+04],... E DESIRED: array([[0.714994, 0.724091, 0.018676], E [0.285813, 0.580486, 0.930787], E [0.338997, 0.120083, 0.516273],... a = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]], dtype=float64) a1 = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]], dtype=float64) b = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083... 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]], dtype=float64) b1 = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083... 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]], dtype=float64) dtype = i = 0 lapack_driver = 'gelsd' n = 20 out = (array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03....18394179e+00, 5.90675981e+00, 5.78582044e+00, 5.13313932e+00, 4.72311946e+00, 2.37144709e+00, 2.38704807e-06])) overwrite = True r = 20 rng = RandomState(MT19937) at 0x7FFB56A91140 self = x = array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03]... [-6.31981217e+03, -7.48639624e+03, -3.40455724e+02], [ 5.18676936e+02, 6.14395508e+02, 2.78750964e+01]]) _____________ TestLstsq.test_random_exact[True-gelsd-200-float64] ______________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1394: in test_random_exact out = lstsq(a1, b1, a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) dtype = i = 0 lapack_driver = 'gelsd' n = 200 overwrite = True rng = RandomState(MT19937) at 0x7FFB56A91740 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...1], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]])] array = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) arrays = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...1], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]])] batch_shapes = [(), ()] core_shapes = [(200, 200), (200, 3)] f = i = 1 kwargs = {'lapack_driver': 'gelsd', 'overwrite_a': True, 'overwrite_b': True} n_arrays = 2 name = 'b' names = ('a', 'b') ndim = 2 ndims = (2, '1|2') other_args = [] shape = (200, 3) lib/python3.12/site-packages/scipy/linalg/_basic.py:1503: in lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) check_finite = True cond = np.float64(2.220446049250313e-16) driver = 'gelsd' info = 23 iwork = 4000 lapack_driver = 'gelsd' lapack_func = lapack_lwork = lwork = 18476 m = 200 n = 200 nrhs = 3 overwrite_a = True overwrite_b = True rank = 0 real_data = True s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,...nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) x = array([[-5.67837908, -4.76113741, -5.43202327], [-4.6611549 , -4.66030207, -4.49933094], [-0.342441 , -... nan, nan], [ nan, nan, nan], [ nan, nan, nan]]) ____________ TestLstsq.test_random_exact[True-gelsd-200-longdouble] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1394: in test_random_exact out = lstsq(a1, b1, a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) dtype = i = 0 lapack_driver = 'gelsd' n = 200 overwrite = True rng = RandomState(MT19937) at 0x7FFB56A91D40 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...5326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64)] array = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) arrays = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...5326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64)] batch_shapes = [(), ()] core_shapes = [(200, 200), (200, 3)] f = i = 1 kwargs = {'lapack_driver': 'gelsd', 'overwrite_a': True, 'overwrite_b': True} n_arrays = 2 name = 'b' names = ('a', 'b') ndim = 2 ndims = (2, '1|2') other_args = [] shape = (200, 3) lib/python3.12/site-packages/scipy/linalg/_basic.py:1503: in lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) check_finite = True cond = np.float64(2.220446049250313e-16) driver = 'gelsd' info = 23 iwork = 4000 lapack_driver = 'gelsd' lapack_func = lapack_lwork = lwork = 18476 m = 200 n = 200 nrhs = 3 overwrite_a = True overwrite_b = True rank = 0 real_data = True s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,...nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) x = array([[-5.67837908, -4.76113741, -5.43202327], [-4.6611549 , -4.66030207, -4.49933094], [-0.342441 , -... nan, nan], [ nan, nan, nan], [ nan, nan, nan]]) ______________ TestLstsq.test_random_exact[True-gelss-20-float64] ______________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: gelss E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 2056429.83187321 E Max relative difference among violations: 45617880.52197842 E ACTUAL: array([[-409312.308155, -484865.650362, -22053.281196], E [1018743.671719, 1206790.204581, 54890.555421], E [ 274091.002081, 324684.290016, 14768.064298],... E DESIRED: array([[0.714994, 0.724091, 0.018676], E [0.285813, 0.580486, 0.930787], E [0.338997, 0.120083, 0.516273],... a = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...56998481e-01, 9.31751942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]]) a1 = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...56998481e-01, 9.31751942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]]) b = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083...98, 0.9389873 , 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]]) b1 = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083...98, 0.9389873 , 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]]) dtype = i = 0 lapack_driver = 'gelss' n = 20 out = (array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 5.96699909e+04, 7.06842945e+04, 3.21504883e+03....18394179e+00, 5.90675981e+00, 5.78582044e+00, 5.13313932e+00, 4.72311946e+00, 2.37144709e+00, 2.38704807e-06])) overwrite = True r = 20 rng = RandomState(MT19937) at 0x7FFB56A92340 self = x = array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 5.96699909e+04, 7.06842945e+04, 3.21504883e+03]... [-3.61282593e+03, -4.27974062e+03, -1.94700101e+02], [ 7.83132788e+02, 9.27637412e+02, 4.21190763e+01]]) ____________ TestLstsq.test_random_exact[True-gelss-20-longdouble] _____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: gelss E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 2056429.83187321 E Max relative difference among violations: 45617880.52197842 E ACTUAL: array([[-409312.308155, -484865.650362, -22053.281196], E [1018743.671719, 1206790.204581, 54890.555421], E [ 274091.002081, 324684.290016, 14768.064298],... E DESIRED: array([[0.714994, 0.724091, 0.018676], E [0.285813, 0.580486, 0.930787], E [0.338997, 0.120083, 0.516273],... a = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]], dtype=float64) a1 = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]], dtype=float64) b = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083... 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]], dtype=float64) b1 = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083... 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]], dtype=float64) dtype = i = 0 lapack_driver = 'gelss' n = 20 out = (array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 5.96699909e+04, 7.06842945e+04, 3.21504883e+03....18394179e+00, 5.90675981e+00, 5.78582044e+00, 5.13313932e+00, 4.72311946e+00, 2.37144709e+00, 2.38704807e-06])) overwrite = True r = 20 rng = RandomState(MT19937) at 0x7FFB56A92840 self = x = array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 5.96699909e+04, 7.06842945e+04, 3.21504883e+03]... [-3.61282593e+03, -4.27974062e+03, -1.94700101e+02], [ 7.83132788e+02, 9.27637412e+02, 4.21190763e+01]]) _____________ TestLstsq.test_random_exact[True-gelss-200-float64] ______________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1394: in test_random_exact out = lstsq(a1, b1, a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) dtype = i = 0 lapack_driver = 'gelss' n = 200 overwrite = True rng = RandomState(MT19937) at 0x7FFB56A92E40 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...1], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]])] array = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) arrays = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...1], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]])] batch_shapes = [(), ()] core_shapes = [(200, 200), (200, 3)] f = i = 1 kwargs = {'lapack_driver': 'gelss', 'overwrite_a': True, 'overwrite_b': True} n_arrays = 2 name = 'b' names = ('a', 'b') ndim = 2 ndims = (2, '1|2') other_args = [] shape = (200, 3) lib/python3.12/site-packages/scipy/linalg/_basic.py:1503: in lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) check_finite = True cond = np.float64(2.220446049250313e-16) driver = 'gelss' info = 199 lapack_driver = 'gelss' lapack_func = lapack_lwork = lwork = 13400 m = 200 n = 200 nrhs = 3 overwrite_a = True overwrite_b = True rank = 0 real_data = True s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,...nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) v = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na..., nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(200, 200)) work = array([13400., nan, nan, ..., nan, nan, nan], shape=(13400,)) x = array([[nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan]... [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan]]) ____________ TestLstsq.test_random_exact[True-gelss-200-longdouble] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1394: in test_random_exact out = lstsq(a1, b1, a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) dtype = i = 0 lapack_driver = 'gelss' n = 200 overwrite = True rng = RandomState(MT19937) at 0x7FFB56A93440 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...5326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64)] array = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) arrays = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...5326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64)] batch_shapes = [(), ()] core_shapes = [(200, 200), (200, 3)] f = i = 1 kwargs = {'lapack_driver': 'gelss', 'overwrite_a': True, 'overwrite_b': True} n_arrays = 2 name = 'b' names = ('a', 'b') ndim = 2 ndims = (2, '1|2') other_args = [] shape = (200, 3) lib/python3.12/site-packages/scipy/linalg/_basic.py:1503: in lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) check_finite = True cond = np.float64(2.220446049250313e-16) driver = 'gelss' info = 199 lapack_driver = 'gelss' lapack_func = lapack_lwork = lwork = 13400 m = 200 n = 200 nrhs = 3 overwrite_a = True overwrite_b = True rank = 0 real_data = True s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,...nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) v = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na..., nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(200, 200)) work = array([13400., nan, nan, ..., nan, nan, nan], shape=(13400,)) x = array([[nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan]... [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan]]) _____________ TestLstsq.test_random_exact[True-gelsy-200-float64] ______________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: gelsy E Mismatched elements: 600 / 600 (100%) E Max absolute difference among violations: 10.68855856 E Max relative difference among violations: 1582.76569645 E ACTUAL: array([[ 1.038243e+00, 3.570155e-01, 4.587448e-01], E [-4.676454e-01, -6.133988e-01, 1.573260e+00], E [ 8.788960e-01, 6.435378e-01, 1.427551e+00],... E DESIRED: array([[6.511487e-01, 2.011707e-01, 4.854133e-01], E [3.946492e-01, 2.946227e-02, 9.199342e-01], E [9.081628e-01, 6.576123e-01, 9.151971e-01],... a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) dtype = i = 0 lapack_driver = 'gelsy' n = 200 out = (array([[ 1.16941815e-01, -4.41372660e-02, -1.56384313e-01], [-4.88978140e-02, -7.47925726e-02, 6.09389124e-02...2, 2.61337346e-02], [-2.47566376e-02, 4.10865551e-02, 9.15438282e-02]]), array([], dtype=float64), 200, None) overwrite = True r = 200 rng = RandomState(MT19937) at 0x7FFB56A93A40 self = x = array([[ 1.16941815e-01, -4.41372660e-02, -1.56384313e-01], [-4.88978140e-02, -7.47925726e-02, 6.09389124e-02]... [ 3.16132795e-02, 2.91515641e-02, 2.61337346e-02], [-2.47566376e-02, 4.10865551e-02, 9.15438282e-02]]) ____________ TestLstsq.test_random_exact[True-gelsy-200-longdouble] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: gelsy E Mismatched elements: 600 / 600 (100%) E Max absolute difference among violations: 10.68855856 E Max relative difference among violations: 1582.76569645 E ACTUAL: array([[ 1.038243e+00, 3.570155e-01, 4.587448e-01], E [-4.676454e-01, -6.133988e-01, 1.573260e+00], E [ 8.788960e-01, 6.435378e-01, 1.427551e+00],... E DESIRED: array([[6.511487e-01, 2.011707e-01, 4.854133e-01], E [3.946492e-01, 2.946227e-02, 9.199342e-01], E [9.081628e-01, 6.576123e-01, 9.151971e-01],... a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) dtype = i = 0 lapack_driver = 'gelsy' n = 200 out = (array([[ 1.16941815e-01, -4.41372660e-02, -1.56384313e-01], [-4.88978140e-02, -7.47925726e-02, 6.09389124e-02...2, 2.61337346e-02], [-2.47566376e-02, 4.10865551e-02, 9.15438282e-02]]), array([], dtype=float64), 200, None) overwrite = True r = 200 rng = RandomState(MT19937) at 0x7FFB56F14140 self = x = array([[ 1.16941815e-01, -4.41372660e-02, -1.56384313e-01], [-4.88978140e-02, -7.47925726e-02, 6.09389124e-02]... [ 3.16132795e-02, 2.91515641e-02, 2.61337346e-02], [-2.47566376e-02, 4.10865551e-02, 9.15438282e-02]]) ______________ TestLstsq.test_random_exact[True-None-20-float64] _______________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: None E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 1749522.18264238 E Max relative difference among violations: 37196183.8376638 E ACTUAL: array([[-4.715653e+05, -5.586097e+05, -2.540758e+04], E [ 5.518218e+05, 6.536808e+05, 2.973170e+04], E [ 2.084688e+05, 2.469490e+05, 1.123219e+04],... E DESIRED: array([[0.714994, 0.724091, 0.018676], E [0.285813, 0.580486, 0.930787], E [0.338997, 0.120083, 0.516273],... a = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...56998481e-01, 9.31751942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]]) a1 = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...56998481e-01, 9.31751942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]]) b = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083...98, 0.9389873 , 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]]) b1 = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083...98, 0.9389873 , 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]]) dtype = i = 0 lapack_driver = None n = 20 out = (array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03....18394179e+00, 5.90675981e+00, 5.78582044e+00, 5.13313932e+00, 4.72311946e+00, 2.37144709e+00, 2.38704807e-06])) overwrite = True r = 20 rng = RandomState(MT19937) at 0x7FFB56F14740 self = x = array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03]... [-6.31981217e+03, -7.48639624e+03, -3.40455724e+02], [ 5.18676936e+02, 6.14395508e+02, 2.78750964e+01]]) _____________ TestLstsq.test_random_exact[True-None-20-longdouble] _____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: None E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 1749522.18264238 E Max relative difference among violations: 37196183.8376638 E ACTUAL: array([[-4.715653e+05, -5.586097e+05, -2.540758e+04], E [ 5.518218e+05, 6.536808e+05, 2.973170e+04], E [ 2.084688e+05, 2.469490e+05, 1.123219e+04],... E DESIRED: array([[0.714994, 0.724091, 0.018676], E [0.285813, 0.580486, 0.930787], E [0.338997, 0.120083, 0.516273],... a = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]], dtype=float64) a1 = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]], dtype=float64) b = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083... 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]], dtype=float64) b1 = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083... 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]], dtype=float64) dtype = i = 0 lapack_driver = None n = 20 out = (array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03....18394179e+00, 5.90675981e+00, 5.78582044e+00, 5.13313932e+00, 4.72311946e+00, 2.37144709e+00, 2.38704807e-06])) overwrite = True r = 20 rng = RandomState(MT19937) at 0x7FFB56F14D40 self = x = array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03]... [-6.31981217e+03, -7.48639624e+03, -3.40455724e+02], [ 5.18676936e+02, 6.14395508e+02, 2.78750964e+01]]) ______________ TestLstsq.test_random_exact[True-None-200-float64] ______________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1394: in test_random_exact out = lstsq(a1, b1, a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) dtype = i = 0 lapack_driver = None n = 200 overwrite = True rng = RandomState(MT19937) at 0x7FFB56F15340 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...1], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]])] array = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) arrays = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...1], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]])] batch_shapes = [(), ()] core_shapes = [(200, 200), (200, 3)] f = i = 1 kwargs = {'lapack_driver': None, 'overwrite_a': True, 'overwrite_b': True} n_arrays = 2 name = 'b' names = ('a', 'b') ndim = 2 ndims = (2, '1|2') other_args = [] shape = (200, 3) lib/python3.12/site-packages/scipy/linalg/_basic.py:1503: in lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) check_finite = True cond = np.float64(2.220446049250313e-16) driver = 'gelsd' info = 23 iwork = 4000 lapack_driver = None lapack_func = lapack_lwork = lwork = 18476 m = 200 n = 200 nrhs = 3 overwrite_a = True overwrite_b = True rank = 0 real_data = True s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,...nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) x = array([[-5.67837908, -4.76113741, -5.43202327], [-4.6611549 , -4.66030207, -4.49933094], [-0.342441 , -... nan, nan], [ nan, nan, nan], [ nan, nan, nan]]) ____________ TestLstsq.test_random_exact[True-None-200-longdouble] _____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1394: in test_random_exact out = lstsq(a1, b1, a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) dtype = i = 0 lapack_driver = None n = 200 overwrite = True rng = RandomState(MT19937) at 0x7FFB56F15940 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...5326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64)] array = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) arrays = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...5326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64)] batch_shapes = [(), ()] core_shapes = [(200, 200), (200, 3)] f = i = 1 kwargs = {'lapack_driver': None, 'overwrite_a': True, 'overwrite_b': True} n_arrays = 2 name = 'b' names = ('a', 'b') ndim = 2 ndims = (2, '1|2') other_args = [] shape = (200, 3) lib/python3.12/site-packages/scipy/linalg/_basic.py:1503: in lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) check_finite = True cond = np.float64(2.220446049250313e-16) driver = 'gelsd' info = 23 iwork = 4000 lapack_driver = None lapack_func = lapack_lwork = lwork = 18476 m = 200 n = 200 nrhs = 3 overwrite_a = True overwrite_b = True rank = 0 real_data = True s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,...nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) x = array([[-5.67837908, -4.76113741, -5.43202327], [-4.6611549 , -4.66030207, -4.49933094], [-0.342441 , -... nan, nan], [ nan, nan, nan], [ nan, nan, nan]]) _____________ TestLstsq.test_random_exact[False-gelsd-20-float64] ______________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: gelsd E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 1749522.18264238 E Max relative difference among violations: 37196183.8376638 E ACTUAL: array([[-4.715653e+05, -5.586097e+05, -2.540758e+04], E [ 5.518218e+05, 6.536808e+05, 2.973170e+04], E [ 2.084688e+05, 2.469490e+05, 1.123219e+04],... E DESIRED: array([[0.714994, 0.724091, 0.018676], E [0.285813, 0.580486, 0.930787], E [0.338997, 0.120083, 0.516273],... a = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...56998481e-01, 9.31751942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]]) a1 = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...56998481e-01, 9.31751942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]]) b = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083...98, 0.9389873 , 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]]) b1 = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083...98, 0.9389873 , 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]]) dtype = i = 0 lapack_driver = 'gelsd' n = 20 out = (array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03....18394179e+00, 5.90675981e+00, 5.78582044e+00, 5.13313932e+00, 4.72311946e+00, 2.37144709e+00, 2.38704807e-06])) overwrite = False r = 20 rng = RandomState(MT19937) at 0x7FFB56F15F40 self = x = array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03]... [-6.31981217e+03, -7.48639624e+03, -3.40455724e+02], [ 5.18676936e+02, 6.14395508e+02, 2.78750964e+01]]) ____________ TestLstsq.test_random_exact[False-gelsd-20-longdouble] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: gelsd E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 1749522.18264238 E Max relative difference among violations: 37196183.8376638 E ACTUAL: array([[-4.715653e+05, -5.586097e+05, -2.540758e+04], E [ 5.518218e+05, 6.536808e+05, 2.973170e+04], E [ 2.084688e+05, 2.469490e+05, 1.123219e+04],... E DESIRED: array([[0.714994, 0.724091, 0.018676], E [0.285813, 0.580486, 0.930787], E [0.338997, 0.120083, 0.516273],... a = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]], dtype=float64) a1 = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]], dtype=float64) b = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083... 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]], dtype=float64) b1 = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083... 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]], dtype=float64) dtype = i = 0 lapack_driver = 'gelsd' n = 20 out = (array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03....18394179e+00, 5.90675981e+00, 5.78582044e+00, 5.13313932e+00, 4.72311946e+00, 2.37144709e+00, 2.38704807e-06])) overwrite = False r = 20 rng = RandomState(MT19937) at 0x7FFB56F16540 self = x = array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03]... [-6.31981217e+03, -7.48639624e+03, -3.40455724e+02], [ 5.18676936e+02, 6.14395508e+02, 2.78750964e+01]]) _____________ TestLstsq.test_random_exact[False-gelsd-200-float64] _____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1394: in test_random_exact out = lstsq(a1, b1, a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) dtype = i = 0 lapack_driver = 'gelsd' n = 200 overwrite = False rng = RandomState(MT19937) at 0x7FFB56F16B40 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...1], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]])] array = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) arrays = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...1], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]])] batch_shapes = [(), ()] core_shapes = [(200, 200), (200, 3)] f = i = 1 kwargs = {'lapack_driver': 'gelsd', 'overwrite_a': False, 'overwrite_b': False} n_arrays = 2 name = 'b' names = ('a', 'b') ndim = 2 ndims = (2, '1|2') other_args = [] shape = (200, 3) lib/python3.12/site-packages/scipy/linalg/_basic.py:1503: in lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) check_finite = True cond = np.float64(2.220446049250313e-16) driver = 'gelsd' info = 23 iwork = 4000 lapack_driver = 'gelsd' lapack_func = lapack_lwork = lwork = 18476 m = 200 n = 200 nrhs = 3 overwrite_a = False overwrite_b = False rank = 0 real_data = True s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,...nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) x = array([[-5.67837908, -4.76113741, -5.43202327], [-4.6611549 , -4.66030207, -4.49933094], [-0.342441 , -... nan, nan], [ nan, nan, nan], [ nan, nan, nan]]) ___________ TestLstsq.test_random_exact[False-gelsd-200-longdouble] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1394: in test_random_exact out = lstsq(a1, b1, a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) dtype = i = 0 lapack_driver = 'gelsd' n = 200 overwrite = False rng = RandomState(MT19937) at 0x7FFB56F17140 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...5326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64)] array = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) arrays = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...5326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64)] batch_shapes = [(), ()] core_shapes = [(200, 200), (200, 3)] f = i = 1 kwargs = {'lapack_driver': 'gelsd', 'overwrite_a': False, 'overwrite_b': False} n_arrays = 2 name = 'b' names = ('a', 'b') ndim = 2 ndims = (2, '1|2') other_args = [] shape = (200, 3) lib/python3.12/site-packages/scipy/linalg/_basic.py:1503: in lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) check_finite = True cond = np.float64(2.220446049250313e-16) driver = 'gelsd' info = 23 iwork = 4000 lapack_driver = 'gelsd' lapack_func = lapack_lwork = lwork = 18476 m = 200 n = 200 nrhs = 3 overwrite_a = False overwrite_b = False rank = 0 real_data = True s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,...nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) x = array([[-5.67837908, -4.76113741, -5.43202327], [-4.6611549 , -4.66030207, -4.49933094], [-0.342441 , -... nan, nan], [ nan, nan, nan], [ nan, nan, nan]]) ----------------------------- Captured stdout call ----------------------------- ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to _____________ TestLstsq.test_random_exact[False-gelss-20-float64] ______________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: gelss E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 2056429.83187321 E Max relative difference among violations: 45617880.52197842 E ACTUAL: array([[-409312.308155, -484865.650362, -22053.281196], E [1018743.671719, 1206790.204581, 54890.555421], E [ 274091.002081, 324684.290016, 14768.064298],... E DESIRED: array([[0.714994, 0.724091, 0.018676], E [0.285813, 0.580486, 0.930787], E [0.338997, 0.120083, 0.516273],... a = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...56998481e-01, 9.31751942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]]) a1 = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...56998481e-01, 9.31751942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]]) b = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083...98, 0.9389873 , 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]]) b1 = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083...98, 0.9389873 , 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]]) dtype = i = 0 lapack_driver = 'gelss' n = 20 out = (array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 5.96699909e+04, 7.06842945e+04, 3.21504883e+03....18394179e+00, 5.90675981e+00, 5.78582044e+00, 5.13313932e+00, 4.72311946e+00, 2.37144709e+00, 2.38704807e-06])) overwrite = False r = 20 rng = RandomState(MT19937) at 0x7FFB56F17740 self = x = array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 5.96699909e+04, 7.06842945e+04, 3.21504883e+03]... [-3.61282593e+03, -4.27974062e+03, -1.94700101e+02], [ 7.83132788e+02, 9.27637412e+02, 4.21190763e+01]]) ____________ TestLstsq.test_random_exact[False-gelss-20-longdouble] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: gelss E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 2056429.83187321 E Max relative difference among violations: 45617880.52197842 E ACTUAL: array([[-409312.308155, -484865.650362, -22053.281196], E [1018743.671719, 1206790.204581, 54890.555421], E [ 274091.002081, 324684.290016, 14768.064298],... E DESIRED: array([[0.714994, 0.724091, 0.018676], E [0.285813, 0.580486, 0.930787], E [0.338997, 0.120083, 0.516273],... a = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]], dtype=float64) a1 = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]], dtype=float64) b = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083... 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]], dtype=float64) b1 = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083... 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]], dtype=float64) dtype = i = 0 lapack_driver = 'gelss' n = 20 out = (array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 5.96699909e+04, 7.06842945e+04, 3.21504883e+03....18394179e+00, 5.90675981e+00, 5.78582044e+00, 5.13313932e+00, 4.72311946e+00, 2.37144709e+00, 2.38704807e-06])) overwrite = False r = 20 rng = RandomState(MT19937) at 0x7FFB56F17D40 self = x = array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 5.96699909e+04, 7.06842945e+04, 3.21504883e+03]... [-3.61282593e+03, -4.27974062e+03, -1.94700101e+02], [ 7.83132788e+02, 9.27637412e+02, 4.21190763e+01]]) _____________ TestLstsq.test_random_exact[False-gelss-200-float64] _____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1394: in test_random_exact out = lstsq(a1, b1, a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) dtype = i = 0 lapack_driver = 'gelss' n = 200 overwrite = False rng = RandomState(MT19937) at 0x7FFB571A8440 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...1], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]])] array = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) arrays = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...1], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]])] batch_shapes = [(), ()] core_shapes = [(200, 200), (200, 3)] f = i = 1 kwargs = {'lapack_driver': 'gelss', 'overwrite_a': False, 'overwrite_b': False} n_arrays = 2 name = 'b' names = ('a', 'b') ndim = 2 ndims = (2, '1|2') other_args = [] shape = (200, 3) lib/python3.12/site-packages/scipy/linalg/_basic.py:1503: in lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) check_finite = True cond = np.float64(2.220446049250313e-16) driver = 'gelss' info = 199 lapack_driver = 'gelss' lapack_func = lapack_lwork = lwork = 13400 m = 200 n = 200 nrhs = 3 overwrite_a = False overwrite_b = False rank = 0 real_data = True s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,...nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) v = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na..., nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(200, 200)) work = array([13400., nan, nan, ..., nan, nan, nan], shape=(13400,)) x = array([[nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan]... [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan]]) ___________ TestLstsq.test_random_exact[False-gelss-200-longdouble] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1394: in test_random_exact out = lstsq(a1, b1, a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) dtype = i = 0 lapack_driver = 'gelss' n = 200 overwrite = False rng = RandomState(MT19937) at 0x7FFB571A8A40 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...5326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64)] array = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) arrays = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...5326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64)] batch_shapes = [(), ()] core_shapes = [(200, 200), (200, 3)] f = i = 1 kwargs = {'lapack_driver': 'gelss', 'overwrite_a': False, 'overwrite_b': False} n_arrays = 2 name = 'b' names = ('a', 'b') ndim = 2 ndims = (2, '1|2') other_args = [] shape = (200, 3) lib/python3.12/site-packages/scipy/linalg/_basic.py:1503: in lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) check_finite = True cond = np.float64(2.220446049250313e-16) driver = 'gelss' info = 199 lapack_driver = 'gelss' lapack_func = lapack_lwork = lwork = 13400 m = 200 n = 200 nrhs = 3 overwrite_a = False overwrite_b = False rank = 0 real_data = True s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,...nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) v = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na..., nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(200, 200)) work = array([13400., nan, nan, ..., nan, nan, nan], shape=(13400,)) x = array([[nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan]... [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan], [nan, nan, nan]]) _____________ TestLstsq.test_random_exact[False-gelsy-200-float64] _____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: gelsy E Mismatched elements: 600 / 600 (100%) E Max absolute difference among violations: 10.68855856 E Max relative difference among violations: 1582.76569645 E ACTUAL: array([[ 1.038243e+00, 3.570155e-01, 4.587448e-01], E [-4.676454e-01, -6.133988e-01, 1.573260e+00], E [ 8.788960e-01, 6.435378e-01, 1.427551e+00],... E DESIRED: array([[6.511487e-01, 2.011707e-01, 4.854133e-01], E [3.946492e-01, 2.946227e-02, 9.199342e-01], E [9.081628e-01, 6.576123e-01, 9.151971e-01],... a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) dtype = i = 0 lapack_driver = 'gelsy' n = 200 out = (array([[ 1.16941815e-01, -4.41372660e-02, -1.56384313e-01], [-4.88978140e-02, -7.47925726e-02, 6.09389124e-02...2, 2.61337346e-02], [-2.47566376e-02, 4.10865551e-02, 9.15438282e-02]]), array([], dtype=float64), 200, None) overwrite = False r = 200 rng = RandomState(MT19937) at 0x7FFB571A9040 self = x = array([[ 1.16941815e-01, -4.41372660e-02, -1.56384313e-01], [-4.88978140e-02, -7.47925726e-02, 6.09389124e-02]... [ 3.16132795e-02, 2.91515641e-02, 2.61337346e-02], [-2.47566376e-02, 4.10865551e-02, 9.15438282e-02]]) ___________ TestLstsq.test_random_exact[False-gelsy-200-longdouble] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: gelsy E Mismatched elements: 600 / 600 (100%) E Max absolute difference among violations: 10.68855856 E Max relative difference among violations: 1582.76569645 E ACTUAL: array([[ 1.038243e+00, 3.570155e-01, 4.587448e-01], E [-4.676454e-01, -6.133988e-01, 1.573260e+00], E [ 8.788960e-01, 6.435378e-01, 1.427551e+00],... E DESIRED: array([[6.511487e-01, 2.011707e-01, 4.854133e-01], E [3.946492e-01, 2.946227e-02, 9.199342e-01], E [9.081628e-01, 6.576123e-01, 9.151971e-01],... a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) dtype = i = 0 lapack_driver = 'gelsy' n = 200 out = (array([[ 1.16941815e-01, -4.41372660e-02, -1.56384313e-01], [-4.88978140e-02, -7.47925726e-02, 6.09389124e-02...2, 2.61337346e-02], [-2.47566376e-02, 4.10865551e-02, 9.15438282e-02]]), array([], dtype=float64), 200, None) overwrite = False r = 200 rng = RandomState(MT19937) at 0x7FFB571A9640 self = x = array([[ 1.16941815e-01, -4.41372660e-02, -1.56384313e-01], [-4.88978140e-02, -7.47925726e-02, 6.09389124e-02]... [ 3.16132795e-02, 2.91515641e-02, 2.61337346e-02], [-2.47566376e-02, 4.10865551e-02, 9.15438282e-02]]) ______________ TestLstsq.test_random_exact[False-None-20-float64] ______________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: None E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 1749522.18264238 E Max relative difference among violations: 37196183.8376638 E ACTUAL: array([[-4.715653e+05, -5.586097e+05, -2.540758e+04], E [ 5.518218e+05, 6.536808e+05, 2.973170e+04], E [ 2.084688e+05, 2.469490e+05, 1.123219e+04],... E DESIRED: array([[0.714994, 0.724091, 0.018676], E [0.285813, 0.580486, 0.930787], E [0.338997, 0.120083, 0.516273],... a = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...56998481e-01, 9.31751942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]]) a1 = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...56998481e-01, 9.31751942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]]) b = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083...98, 0.9389873 , 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]]) b1 = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083...98, 0.9389873 , 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]]) dtype = i = 0 lapack_driver = None n = 20 out = (array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03....18394179e+00, 5.90675981e+00, 5.78582044e+00, 5.13313932e+00, 4.72311946e+00, 2.37144709e+00, 2.38704807e-06])) overwrite = False r = 20 rng = RandomState(MT19937) at 0x7FFB571A9C40 self = x = array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03]... [-6.31981217e+03, -7.48639624e+03, -3.40455724e+02], [ 5.18676936e+02, 6.14395508e+02, 2.78750964e+01]]) ____________ TestLstsq.test_random_exact[False-None-20-longdouble] _____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1409: in test_random_exact assert_allclose( E AssertionError: E Not equal to tolerance rtol=2.22045e-13, atol=2.22045e-13 E driver: None E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 1749522.18264238 E Max relative difference among violations: 37196183.8376638 E ACTUAL: array([[-4.715653e+05, -5.586097e+05, -2.540758e+04], E [ 5.518218e+05, 6.536808e+05, 2.973170e+04], E [ 2.084688e+05, 2.469490e+05, 1.123219e+04],... E DESIRED: array([[0.714994, 0.724091, 0.018676], E [0.285813, 0.580486, 0.930787], E [0.338997, 0.120083, 0.516273],... a = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]], dtype=float64) a1 = array([[5.83038901e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...942e-01, 8.46024688e-01, 4.73329876e-01, 9.02555026e-01, 2.25995526e-01, 8.08307477e+00]], dtype=float64) b = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083... 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]], dtype=float64) b1 = array([[0.71499388, 0.72409148, 0.01867644], [0.2858131 , 0.58048634, 0.93078663], [0.3389969 , 0.120083... 0.19290141], [0.71284402, 0.6979398 , 0.2582965 ], [0.91580782, 0.53235819, 0.55796442]], dtype=float64) dtype = i = 0 lapack_driver = None n = 20 out = (array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03....18394179e+00, 5.90675981e+00, 5.78582044e+00, 5.13313932e+00, 4.72311946e+00, 2.37144709e+00, 2.38704807e-06])) overwrite = False r = 20 rng = RandomState(MT19937) at 0x7FFB571AA240 self = x = array([[-1.24349485e+05, -1.47302643e+05, -6.69991880e+03], [ 3.04122746e+04, 3.60259929e+04, 1.63856295e+03]... [-6.31981217e+03, -7.48639624e+03, -3.40455724e+02], [ 5.18676936e+02, 6.14395508e+02, 2.78750964e+01]]) _____________ TestLstsq.test_random_exact[False-None-200-float64] ______________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1394: in test_random_exact out = lstsq(a1, b1, a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) dtype = i = 0 lapack_driver = None n = 200 overwrite = False rng = RandomState(MT19937) at 0x7FFB571AA840 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...1], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]])] array = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) arrays = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...1], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]])] batch_shapes = [(), ()] core_shapes = [(200, 200), (200, 3)] f = i = 1 kwargs = {'lapack_driver': None, 'overwrite_a': False, 'overwrite_b': False} n_arrays = 2 name = 'b' names = ('a', 'b') ndim = 2 ndims = (2, '1|2') other_args = [] shape = (200, 3) lib/python3.12/site-packages/scipy/linalg/_basic.py:1503: in lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388... [ 0.95460964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200)) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...01], [1.65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]]) check_finite = True cond = np.float64(2.220446049250313e-16) driver = 'gelsd' info = 23 iwork = 4000 lapack_driver = None lapack_func = lapack_lwork = lwork = 18476 m = 200 n = 200 nrhs = 3 overwrite_a = False overwrite_b = False rank = 0 real_data = True s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,...nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) x = array([[-5.67837908, -4.76113741, -5.43202327], [-4.6611549 , -4.66030207, -4.49933094], [-0.342441 , -... nan, nan], [ nan, nan, nan], [ nan, nan, nan]]) ____________ TestLstsq.test_random_exact[False-None-200-longdouble] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1394: in test_random_exact out = lstsq(a1, b1, a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) dtype = i = 0 lapack_driver = None n = 200 overwrite = False rng = RandomState(MT19937) at 0x7FFB571AAE40 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...5326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64)] array = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) arrays = [array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.979038...5326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64)] batch_shapes = [(), ()] core_shapes = [(200, 200), (200, 3)] f = i = 1 kwargs = {'lapack_driver': None, 'overwrite_a': False, 'overwrite_b': False} n_arrays = 2 name = 'b' names = ('a', 'b') ndim = 2 ndims = (2, '1|2') other_args = [] shape = (200, 3) lib/python3.12/site-packages/scipy/linalg/_basic.py:1503: in lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares a = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) a1 = array([[ 5.83038901, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [ 0.9790388...60964, 0.77690903, 0.09878978, ..., 0.8496165 , 0.04426934, 4.6833026 ]], shape=(200, 200), dtype=float64) b = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) b1 = array([[6.51148728e-01, 2.01170653e-01, 4.85413298e-01], [3.94649183e-01, 2.94622713e-02, 9.19934200e-01], ...65326243e-01, 9.31017423e-01, 7.20047205e-01], [3.24786042e-03, 9.53475849e-02, 9.21313032e-01]], dtype=float64) check_finite = True cond = np.float64(2.220446049250313e-16) driver = 'gelsd' info = 23 iwork = 4000 lapack_driver = None lapack_func = lapack_lwork = lwork = 18476 m = 200 n = 200 nrhs = 3 overwrite_a = False overwrite_b = False rank = 0 real_data = True s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,...nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) x = array([[-5.67837908, -4.76113741, -5.43202327], [-4.6611549 , -4.66030207, -4.49933094], [-0.342441 , -... nan, nan], [ nan, nan, nan], [ nan, nan, nan]]) ________________________ TestLstsq.test_random_overdet _________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1474: in test_random_overdet assert_allclose( E AssertionError: E Not equal to tolerance rtol=5.55112e-15, atol=5.55112e-15 E driver: gelsd E Mismatched elements: 45 / 45 (100%) E Max absolute difference among violations: 29.60972448 E Max relative difference among violations: 1554.1196923 E ACTUAL: array([[ 1.484024e+00, -2.953525e+01, -1.093103e+01], E [-4.413877e-01, 7.680397e+00, 2.767979e+00], E [-2.738845e-01, 6.474705e+00, 2.420568e+00],... E DESIRED: array([[ 0.138878, 0.07447 , -0.023475], E [ 0.051817, 0.069976, 0.007987], E [-0.005361, 0.004163, 0.027854],... a = array([[5.42351903e+00, 2.01279313e-01, 3.63540625e-01, 3.99040645e-02, 1.90671615e-01, 4.39543439e-01, 9.0121...90316953e-01, 1.18804367e-01, 8.88572534e-01, 1.38315014e-01, 9.97858553e-01, 5.56005124e-02, 7.34880521e-01]]) a1 = array([[5.42351903e+00, 2.01279313e-01, 3.63540625e-01, 3.99040645e-02, 1.90671615e-01, 4.39543439e-01, 9.0121...90316953e-01, 1.18804367e-01, 8.88572534e-01, 1.38315014e-01, 9.97858553e-01, 5.56005124e-02, 7.34880521e-01]]) b = array([[8.33965522e-01, 5.63691708e-01, 6.72582902e-03], [7.79444476e-01, 9.54099035e-01, 2.01028950e-01], ...01], [4.45774984e-01, 1.32217800e-01, 2.83026095e-01], [4.45665724e-01, 5.27016578e-01, 6.87826807e-01]]) b1 = array([[8.33965522e-01, 5.63691708e-01, 6.72582902e-03], [7.79444476e-01, 9.54099035e-01, 2.01028950e-01], ...01], [4.45774984e-01, 1.32217800e-01, 2.83026095e-01], [4.45665724e-01, 5.27016578e-01, 6.87826807e-01]]) dtype = i = 0 lapack_driver = 'gelsd' m = 15 n = 20 out = (array([[ 1.48402357e+00, -2.95352541e+01, -1.09310330e+01], [-4.41387715e-01, 7.68039664e+00, 2.76797874e+00....31515691e+01, 1.15048487e+01, 9.33851236e+00, 7.73814016e+00, 7.35838071e+00, 4.24346091e+00, 1.27454572e-02])) overwrite = True r = 15 rng = RandomState(MT19937) at 0x7FFB570AC740 self = x = array([[ 1.48402357e+00, -2.95352541e+01, -1.09310330e+01], [-4.41387715e-01, 7.68039664e+00, 2.76797874e+00]... [ 1.05879745e-01, -1.50132048e+00, -5.62843206e-01], [ 1.97821690e-02, -2.01328518e-02, 2.80628086e-02]]) ___________________________ TestPinv.test_atol_rtol ____________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py:1637: in test_atol_rtol assert_allclose(np.linalg.norm(adiff1), 5e-4, atol=5.e-4) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0.0005 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 106.51700752 E Max relative difference among violations: 213034.01504815 E ACTUAL: array(106.517508) E DESIRED: array(0.0005) _ = array([[-1.97275578, -1.70535778, -1.21360346, -1.8589988 , -1.65580673, -0.9936684 , -1.46412248, -1.88910536.... , 0. , 0. , 0. , 0. , 0. , 0. , 0.12837564]]) a = array([[1.0e-03, 1.0e+00, 2.0e+00, 3.0e+00, 4.0e+00], [5.0e+00, 6.0e+00, 7.0e+00, 8.0e+00, 9.0e+00], [1.... 2.4e+01], [2.5e+01, 2.6e+01, 2.7e+01, 2.8e+01, 2.9e+01], [3.0e+01, 3.1e+01, 3.2e+01, 3.3e+01, 3.4e+01]]) a_m = array([[ 0., 1., 2., 3., 4.], [ 5., 6., 7., 8., 9.], [10., 11., 12., 13., 14.], [15., 16., 17., 18., 19.], [20., 21., 22., 23., 24.], [25., 26., 27., 28., 29.], [30., 31., 32., 33., 34.]]) a_p = array([[-0.26364616, 0.13509802, 0.02821989, -0.07865824, -0.18553638, 0.05285032, 0.11687491], [ 0...01175559], [ 0.1097848 , 0.11206517, 0.07235332, 0.03264147, -0.00707038, -0.01810779, -0.04362607]]) adiff1 = array([[ 0.28824707, 0.94648777, 1.60425041, 2.26201305, 2.9197757 ], [ 0.99534939, 3.27060346, 5.5458680...539, 21.3143585 , 30.05885161, 38.80334473], [ 4.53033261, 14.89468087, 25.25648112, 35.61828137, 45.98008161]]) adiff2 = array([[ 0.28783054, 0.94578798, 1.60374542, 2.26170285, 2.91966029], [ 0.99533889, 3.27060346, 5.5458680...539, 21.3143585 , 30.05885161, 38.80334473], [ 4.53288063, 14.89468087, 25.25648112, 35.61828137, 45.98008161]]) atol = 1e-05 n = 12 q = array([[-0.09708219, 0.29399697, 0.23723035, -0.305538 , -0.50426941, -0.175672 , 0.01014767, 0.38799239....405971 , -0.12337275, -0.46625081, -0.03243603, -0.00872701, 0.32185009, -0.0814381 , -0.11986238]]) rtol = 0.05 self = _________ TestBatch.test_two_generic_matrix_inputs[float64-fun_n_out5] _________ lib/python3.12/site-packages/scipy/linalg/tests/test_batch.py:350: in test_two_generic_matrix_inputs self.batch_test(fun, (A, B), n_out=n_out) A = array([[[[0.85613689, 0.37626303, 0.65392929, 0.16993556], [0.82135051, 0.78894143, 0.93787936, 0.88065902], ... [0.57154785, 0.74817712, 0.02090944, 0.21189474], [0.89705993, 0.27810415, 0.69971614, 0.40529013]]]]) B = array([[[[0.47256986, 0.9916849 , 0.0040285 , 0.0788852 ], [0.44466798, 0.504674 , 0.41792624, 0.17271535], ... [0.76345011, 0.89105535, 0.60293527, 0.91354722], [0.75729104, 0.69113546, 0.26321748, 0.18592642]]]]) dtype = fun = fun_n_out = (, 6) n_out = 6 rng = Generator(PCG64) at 0x7FFB56F44820 self = lib/python3.12/site-packages/scipy/linalg/tests/test_batch.py:48: in batch_test res2 = fun(*arrays, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^ arrays = (array([[[[0.85613689, 0.37626303, 0.65392929, 0.16993556], [0.82135051, 0.78894143, 0.93787936, 0.88065902],... [0.76345011, 0.89105535, 0.60293527, 0.91354722], [0.75729104, 0.69113546, 0.26321748, 0.18592642]]]])) broadcast = True check_kwargs = True core_dim = 2 dtype = None fun = kwargs = {} n_out = 6 parameters = ['A', 'B', 'sort', 'output', 'overwrite_a', 'overwrite_b', ...] self = lib/python3.12/site-packages/scipy/_lib/_util.py:1247: in wrapper result = f(*((array[index] if array is not None else None) args = [array([[[[0.85613689, 0.37626303, 0.65392929, 0.16993556], [0.82135051, 0.78894143, 0.93787936, 0.88065902],... [0.76345011, 0.89105535, 0.60293527, 0.91354722], [0.75729104, 0.69113546, 0.26321748, 0.18592642]]]])] array = array([[[[0.47256986, 0.9916849 , 0.0040285 , 0.0788852 ], [0.44466798, 0.504674 , 0.41792624, 0.17271535], ... [0.76345011, 0.89105535, 0.60293527, 0.91354722], [0.75729104, 0.69113546, 0.26321748, 0.18592642]]]]) arrays = [array([[[[0.85613689, 0.37626303, 0.65392929, 0.16993556], [0.82135051, 0.78894143, 0.93787936, 0.88065902],... [0.76345011, 0.89105535, 0.60293527, 0.91354722], [0.75729104, 0.69113546, 0.26321748, 0.18592642]]]])] batch_shape = (2, 3) batch_shapes = [(2, 3), (2, 3)] core_shape = (4, 4) core_shapes = [(4, 4), (4, 4)] f = i = 1 index = (0, 1) kwargs = {} n_arrays = 2 name = 'B' names = ('A', 'B') ndim = 2 ndims = (2, 2) other_args = [] result = (array([[-0.34690611, 0.31838923, 1.82763058, -0.28531667], [ 0. , -0.33918459, -0.06955555, 0.332654... [-0.47152335, -0.6229775 , -0.58962294, -0.20471826], [ 0.66013858, 0.11534819, -0.44302304, -0.59551863]])) results = [(array([[-0.34690611, 0.31838923, 1.82763058, -0.28531667], [ 0. , -0.33918459, -0.06955555, 0.33265... [-0.47152335, -0.6229775 , -0.58962294, -0.20471826], [ 0.66013858, 0.11534819, -0.44302304, -0.59551863]]))] shape = (2, 3, 4, 4) lib/python3.12/site-packages/scipy/linalg/_decomp_qz.py:446: in ordqz raise ValueError("Reordering of (A, B) failed because the transformed" E ValueError: Reordering of (A, B) failed because the transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is very ill-conditioned. (A, B) may have been partially reordered. A = array([[0.6597583 , 0.68012554, 0.0770149 , 0.01688697], [0.65333608, 0.98456767, 0.60113164, 0.94697004], [0.81812323, 0.51648987, 0.55334603, 0.77650201], [0.2490859 , 0.41459588, 0.69912879, 0.98460722]]) AA = array([[ 1.74403957, 0.40936405, 1.64246929, -0.45797245], [-0.39395118, 0.0346757 , 0.6096932 , -0.0193551... [ 0. , 0. , -0.51849165, 0.29757324], [ 0. , 0. , -0.22226027, -0.20933545]]) AAA = array([[ 1.74403957, 0.40936405, 1.64246929, -0.45797245], [-0.39395118, 0.0346757 , 0.6096932 , -0.0193551... [ 0. , 0. , -0.51849165, 0.29757324], [ 0. , 0. , -0.22226027, -0.20933545]]) B = array([[0.06707338, 0.65373688, 0.55279527, 0.16872182], [0.73369997, 0.75461695, 0.74886599, 0.70938705], [0.68045556, 0.66455831, 0.7694805 , 0.81591708], [0.36906639, 0.34927133, 0.180057 , 0.20997356]]) BB = array([[ 1.61112897, 0. , 1.53425568, -0.42676869], [ 0. , 0.32653641, 0.05224423, 0.3349880... [ 0. , 0. , 0.28287737, 0. ], [ 0. , 0. , 0. , 0.03873845]]) BBB = array([[ 1.61112897, 0. , 1.53425568, -0.42676869], [ 0. , 0.32653641, 0.05224423, 0.3349880... [ 0. , 0. , 0.28287737, 0. ], [ 0. , 0. , 0. , 0.03873845]]) Q = array([[ 0.32676554, -0.93120874, -0.06990864, -0.14555875], [ 0.66233998, 0.12600547, -0.10472213, 0.7310688... [ 0.59725099, 0.24451132, 0.5769828 , -0.50059596], [ 0.31276394, 0.23913829, -0.80699251, -0.44017575]]) QQ = array([[ 0.32676554, -0.93120874, -0.06990864, -0.14555875], [ 0.66233998, 0.12600547, -0.10472213, 0.7310688... [ 0.59725099, 0.24451132, 0.5769828 , -0.50059596], [ 0.31276394, 0.23913829, -0.80699251, -0.44017575]]) Z = array([[ 0.75543211, 0.24090889, 0.04685319, 0.60752778], [ 0.63047079, -0.01489369, -0.08182905, -0.7717439... [ 0.14627892, -0.74973928, 0.64198968, 0.06589954], [-0.10213413, 0.61614292, 0.76089292, -0.17600704]]) ZZ = array([[ 0.75543211, 0.24090889, 0.04685319, 0.60752778], [ 0.63047079, -0.01489369, -0.08182905, -0.7717439... [ 0.14627892, -0.74973928, 0.64198968, 0.06589954], [-0.10213413, 0.61614292, 0.76089292, -0.17600704]]) _ = array([0., 0.]) ab = [array([ 1.18868777, 1.18868777, -1.38177759, -1.38177759]), array([ 0.52249527, -0.52249527, 0.64442571, -0.64442571]), array([2. , 2. , 0.38187868, 0.38187868])] alpha = array([ 1.18868777+0.52249527j, 1.18868777-0.52249527j, -1.38177759+0.64442571j, -1.38177759-0.64442571j]) beta = array([2. , 2. , 0.38187868, 0.38187868]) check_finite = True info = 1 lwork = 32 output = 'real' overwrite_a = False overwrite_b = False select = array([False, False, True, True]) sfunction = sort = 'lhp' tgsen = typ = 'd' ________________________ TestBatch.test_cossin[float64] ________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_batch.py:359: in test_cossin res = linalg.cossin(X, p, q) ^^^^^^^^^^^^^^^^^^^^^^ X = array([[[[0.85613689, 0.37626303, 0.65392929, 0.16993556, 0.82135051, 0.78894143, 0.93787936, 0.88065902, 0....21004308, 0.11698459, 0.99625046, 0.09430387, 0.19474005, 0.47755161, 0.40635991, 0.76369812, 0.62147367]]]]) dtype = p = 3 q = 4 rng = Generator(PCG64) at 0x7FFB56F450E0 self = x11 = array([[[[0.85613689, 0.37626303, 0.65392929, 0.16993556], [0.78804417, 0.69236443, 0.31624769, 0.9063425 ], ... [0.26014745, 0.86274109, 0.99210338, 0.71335915], [0.04490747, 0.71690723, 0.51815661, 0.26162694]]]]) x12 = array([[[[0.82135051, 0.78894143, 0.93787936, 0.88065902, 0.08633962, 0.52790998], [0.79925672, 0.7... 0.27589484], [0.4736117 , 0.12920661, 0.5976119 , 0.32771885, 0.50527681, 0.81613645]]]]) x21 = array([[[[0.69912879, 0.98460722, 0.27930041, 0.17151796], [0.29656652, 0.81954879, 0.45237944, 0.14517338], ... [0.62936888, 0.37264969, 0.66639276, 0.2433842 ], [0.20477518, 0.21004308, 0.11698459, 0.99625046]]]]) x22 = array([[[[0.92572118, 0.76828426, 0.22180555, 0.12767455, 0.81135045, 0.00525878], [0.09549587, 0.0... 0.37265914], [0.09430387, 0.19474005, 0.47755161, 0.40635991, 0.76369812, 0.62147367]]]]) lib/python3.12/site-packages/scipy/linalg/_decomp_cossin.py:141: in cossin return _cossin(x11, x12, x21, x22, separate=separate, swap_sign=swap_sign, X = array([[[[0.85613689, 0.37626303, 0.65392929, 0.16993556, 0.82135051, 0.78894143, 0.93787936, 0.88065902, 0....21004308, 0.11698459, 0.99625046, 0.09430387, 0.19474005, 0.47755161, 0.40635991, 0.76369812, 0.62147367]]]]) compute_u = True compute_vh = True m = 10 p = 3 q = 4 separate = False swap_sign = False x11 = array([[[[0.85613689, 0.37626303, 0.65392929, 0.16993556], [0.78804417, 0.69236443, 0.31624769, 0.9063425 ], ... [0.26014745, 0.86274109, 0.99210338, 0.71335915], [0.04490747, 0.71690723, 0.51815661, 0.26162694]]]]) x12 = array([[[[0.82135051, 0.78894143, 0.93787936, 0.88065902, 0.08633962, 0.52790998], [0.79925672, 0.7... 0.27589484], [0.4736117 , 0.12920661, 0.5976119 , 0.32771885, 0.50527681, 0.81613645]]]]) x21 = array([[[[0.69912879, 0.98460722, 0.27930041, 0.17151796], [0.29656652, 0.81954879, 0.45237944, 0.14517338], ... [0.62936888, 0.37264969, 0.66639276, 0.2433842 ], [0.20477518, 0.21004308, 0.11698459, 0.99625046]]]]) x22 = array([[[[0.92572118, 0.76828426, 0.22180555, 0.12767455, 0.81135045, 0.00525878], [0.09549587, 0.0... 0.37265914], [0.09430387, 0.19474005, 0.47755161, 0.40635991, 0.76369812, 0.62147367]]]]) lib/python3.12/site-packages/scipy/_lib/_util.py:1247: in wrapper result = f(*((array[index] if array is not None else None) args = [array([[[[0.85613689, 0.37626303, 0.65392929, 0.16993556], [0.78804417, 0.69236443, 0.31624769, 0.9063425 ],... 0.37265914], [0.09430387, 0.19474005, 0.47755161, 0.40635991, 0.76369812, 0.62147367]]]])] array = array([[[[0.92572118, 0.76828426, 0.22180555, 0.12767455, 0.81135045, 0.00525878], [0.09549587, 0.0... 0.37265914], [0.09430387, 0.19474005, 0.47755161, 0.40635991, 0.76369812, 0.62147367]]]]) arrays = [array([[[[0.85613689, 0.37626303, 0.65392929, 0.16993556], [0.78804417, 0.69236443, 0.31624769, 0.9063425 ],... 0.37265914], [0.09430387, 0.19474005, 0.47755161, 0.40635991, 0.76369812, 0.62147367]]]])] batch_shape = (2, 3) batch_shapes = [(2, 3), (2, 3), (2, 3), (2, 3)] core_shape = (7, 6) core_shapes = [(3, 4), (3, 6), (7, 4), (7, 6)] f = i = 3 index = (0, 0) kwargs = {'compute_u': True, 'compute_vh': True, 'separate': False, 'swap_sign': False} n_arrays = 4 name = 'x22' names = ('x11', 'x12', 'x21', 'x22') ndim = 2 ndims = (2, 2, 2, 2) other_args = [] results = [] shape = (2, 3, 7, 6) lib/python3.12/site-packages/scipy/linalg/_decomp_cossin.py:191: in _cossin raise LinAlgError(f"{method_name} did not converge: {info}") E numpy.linalg.LinAlgError: dorcsd did not converge: 3 _ = [array([[ 1. , -1.26444061, -2.19754453, -0.57107239], [ 1. , 1. , nan, n... nan], [-1.25198463, nan, nan, nan, nan, 1. ]])] block = array([[0.92572118, 0.76828426, 0.22180555, 0.12767455, 0.81135045, 0.00525878], [0.09549587, 0.0935617...7154785, 0.74817712], [0.69971614, 0.40529013, 0.47256986, 0.9916849 , 0.0040285 , 0.0788852 ]]) compute_u = True compute_vh = True cplx = False csd = csd_lwork = driver = 'orcsd' info = 3 lwork = 247 lwork_args = {'lwork': 247} m = 10 method_name = 'dorcsd' mmp = 7 mmq = 6 name = 'x22' p = 3 q = 4 separate = False swap_sign = False theta = array([nan, nan, nan]) u1 = array([[nan, nan, nan], [nan, nan, nan], [nan, nan, nan]]) u2 = array([[nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, na...nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan]]) v1h = array([[nan, nan, nan, nan], [nan, nan, nan, nan], [nan, nan, nan, nan], [nan, nan, nan, nan]]) v2h = array([[nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan]]) x11 = array([[0.85613689, 0.37626303, 0.65392929, 0.16993556], [0.78804417, 0.69236443, 0.31624769, 0.9063425 ], [0.65333608, 0.98456767, 0.60113164, 0.94697004]]) x12 = array([[0.82135051, 0.78894143, 0.93787936, 0.88065902, 0.08633962, 0.52790998], [0.79925672, 0.7358338...770149 , 0.01688697], [0.81812323, 0.51648987, 0.55334603, 0.77650201, 0.2490859 , 0.41459588]]) x21 = array([[0.69912879, 0.98460722, 0.27930041, 0.17151796], [0.29656652, 0.81954879, 0.45237944, 0.14517338], ...77], [0.66691686, 0.68072341, 0.07396768, 0.9226159 ], [0.02090944, 0.21189474, 0.89705993, 0.27810415]]) x22 = array([[0.92572118, 0.76828426, 0.22180555, 0.12767455, 0.81135045, 0.00525878], [0.09549587, 0.0935617...7154785, 0.74817712], [0.69971614, 0.40529013, 0.47256986, 0.9916849 , 0.0040285 , 0.0788852 ]]) _______________ TestBatch.test_are[float32-solve_continuous_are] _______________ lib/python3.12/site-packages/scipy/linalg/tests/test_batch.py:393: in test_are self.batch_test(fun, (a, b, q, r)) a = array([[[[5.85613692e+00, 3.76263022e-01, 6.53929293e-01, 1.69935569e-01, 8.21350515e-01], [7.88941....16811705e-01], [4.66852725e-01, 5.68008542e-01, 5.03102064e-01, 6.57357574e-01, 5.25300851e+00]]]]) b = array([[[[5.05969837, 0.36519146, 0.40403795, 0.79370755, 0.39055431], [0.06359218, 5.59391564, 0.35745662, 0...3443915, 0.16054384, 5.53595579, 0.46897629], [0.74014401, 0.39551648, 0.68984717, 0.99627382, 5.86227924]]]]) dtype = e = array([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]]) fun = q = array([[[[5.09751339, 1.26895046, 1.7754128 , 1.25883782, 1.0831387 ], [1.26895046, 5.32843286, 1.25779867, 0...2278557, 1.69891739, 6.45693016, 0.88872182], [1.48826504, 1.39666605, 0.48325473, 0.88872182, 6.0374999 ]]]]) r = array([[[[5.0065498 , 1.06410408, 0.41057259, 1.04816818, 1.5633018 ], [1.06410408, 6.36095226, 0.29068857, 0...9671299, 0.89456904, 6.20156574, 0.38971087], [1.42079663, 1.15251088, 1.81672764, 0.38971087, 5.81377423]]]]) rng = Generator(PCG64) at 0x7FFB56F458C0 s = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) self = lib/python3.12/site-packages/scipy/linalg/tests/test_batch.py:48: in batch_test res2 = fun(*arrays, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^ arrays = (array([[[[5.85613692e+00, 3.76263022e-01, 6.53929293e-01, 1.69935569e-01, 8.21350515e-01], [7.8894...671299, 0.89456904, 6.20156574, 0.38971087], [1.42079663, 1.15251088, 1.81672764, 0.38971087, 5.81377423]]]])) broadcast = True check_kwargs = True core_dim = 2 dtype = None fun = kwargs = {} n_out = 1 parameters = ['a', 'b', 'q', 'r', 'e', 's', ...] self = lib/python3.12/site-packages/scipy/linalg/_solvers.py:466: in solve_continuous_are return _solve_continuous_are(a, b, q, r, e, s, balanced) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[[[5.85613692e+00, 3.76263022e-01, 6.53929293e-01, 1.69935569e-01, 8.21350515e-01], [7.88941....16811705e-01], [4.66852725e-01, 5.68008542e-01, 5.03102064e-01, 6.57357574e-01, 5.25300851e+00]]]]) b = array([[[[5.05969837, 0.36519146, 0.40403795, 0.79370755, 0.39055431], [0.06359218, 5.59391564, 0.35745662, 0...3443915, 0.16054384, 5.53595579, 0.46897629], [0.74014401, 0.39551648, 0.68984717, 0.99627382, 5.86227924]]]]) balanced = True e = None q = array([[[[5.09751339, 1.26895046, 1.7754128 , 1.25883782, 1.0831387 ], [1.26895046, 5.32843286, 1.25779867, 0...2278557, 1.69891739, 6.45693016, 0.88872182], [1.48826504, 1.39666605, 0.48325473, 0.88872182, 6.0374999 ]]]]) r = array([[[[5.0065498 , 1.06410408, 0.41057259, 1.04816818, 1.5633018 ], [1.06410408, 6.36095226, 0.29068857, 0...9671299, 0.89456904, 6.20156574, 0.38971087], [1.42079663, 1.15251088, 1.81672764, 0.38971087, 5.81377423]]]]) s = None lib/python3.12/site-packages/scipy/_lib/_util.py:1247: in wrapper result = f(*((array[index] if array is not None else None) args = [array([[[[5.85613692e+00, 3.76263022e-01, 6.53929293e-01, 1.69935569e-01, 8.21350515e-01], [7.8894...4, 6.20156574, 0.38971087], [1.42079663, 1.15251088, 1.81672764, 0.38971087, 5.81377423]]]]), None, None, ...] array = None arrays = [array([[[[5.85613692e+00, 3.76263022e-01, 6.53929293e-01, 1.69935569e-01, 8.21350515e-01], [7.8894...456904, 6.20156574, 0.38971087], [1.42079663, 1.15251088, 1.81672764, 0.38971087, 5.81377423]]]]), None, None] batch_shape = (2, 3) batch_shapes = [(2, 3), (2, 3), (2, 3), (2, 3), (), ()] core_shape = () core_shapes = [(5, 5), (5, 5), (5, 5), (5, 5), (), ()] f = i = 5 index = (0, 0) kwargs = {} n_arrays = 6 name = 's' names = ('a', 'b', 'q', 'r', 'e', 's') ndim = 2 ndims = (2, 2, 2, 2, 2, 2) other_args = [True] results = [] shape = () lib/python3.12/site-packages/scipy/linalg/_solvers.py:518: in _solve_continuous_are _, _, _, _, _, u = ordqz(H, J, sort='lhp', overwrite_a=True, H = array([[-5.09751339e+00, -1.26895046e+00, -1.77541280e+00, -1.25883782e+00, -1.08313870e+00, -5.85613692e+00, ...-4.04220828e+00, 1.06729046e-01, -3.19407932e-02, 5.31232394e-01, -4.91627597e-02, 4.12296756e+00]]) J = array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00, ...-6.89902858e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]) M = array([[0. , 0.37626302, 0.65392929, 0.16993557, 0.82135051, 0. , 0. , 0. , 0. ..., 0.2512899 , 0.55349606, 0.37102437, 5.84773362, 1.5633018 , 1.15485048, 0.39789546, 1.30498517, 0. ]]) _ = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) a = array([[5.85613692, 0.37626302, 0.65392929, 0.16993557, 0.82135051], [0.78894144, 5.93787938, 0.88065904, 0.086... 0.65975833, 0.68012553, 5.0770149 , 0.01688697], [0.65333611, 0.98456764, 0.60113162, 0.94697005, 5.81812322]]) b = array([[5.05969837, 0.36519146, 0.40403795, 0.79370755, 0.39055431], [0.06359218, 5.59391564, 0.35745662, 0.037... 0.17339946, 0.12760156, 5.48213205, 0.37102437], [0.90734524, 0.3366982 , 0.99526578, 0.05348242, 5.84773362]]) balanced = True e = None gen_are = False m = 5 n = 5 out_str = 'real' q = array([[-6.68455857e-01, 1.40366484e-01, 1.00760936e-01, 1.07650461e-01, 2.14848225e-01, 0.00000000e+00, ... 0.00000000e+00, -8.24740083e-02, -5.99840982e-02, 1.61726667e-02, -6.69762945e-02, 7.04778648e-01]]) r = array([[-7.56923336, -2.30203215, -1.87645247, -2.6943077 , -3.68071367], [ 0. , -8.36108007, -0.8005308... , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. ]]) r_or_c = s = None sca = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-5.09751339e+00, -1.26895046e+00, -1.77541280e+00, -1.25883782e+00, -1.08313870e+00, -5.85613692e+00,...6.89902858e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])] array = array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00, ...-6.89902858e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]) arrays = [array([[-5.09751339e+00, -1.26895046e+00, -1.77541280e+00, -1.25883782e+00, -1.08313870e+00, -5.85613692e+00,...6.89902858e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])] batch_shapes = [(), ()] core_shapes = [(10, 10), (10, 10)] f = i = 1 kwargs = {'check_finite': False, 'output': 'real', 'overwrite_a': True, 'overwrite_b': True, ...} n_arrays = 2 name = 'B' names = ('A', 'B') ndim = 2 ndims = (2, 2) other_args = [] shape = (10, 10) lib/python3.12/site-packages/scipy/linalg/_decomp_qz.py:446: in ordqz raise ValueError("Reordering of (A, B) failed because the transformed" E ValueError: Reordering of (A, B) failed because the transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is very ill-conditioned. (A, B) may have been partially reordered. A = array([[-5.09751339e+00, -1.26895046e+00, -1.77541280e+00, -1.25883782e+00, -1.08313870e+00, -5.85613692e+00, ...-4.04220828e+00, 1.06729046e-01, -3.19407932e-02, 5.31232394e-01, -4.91627597e-02, 4.12296756e+00]]) AA = array([[ 9.15910781, 0.74779845, 0.83449674, -0.02597344, 0.10658547, -5.52134676, 0.0508817 , -0.... , 0. , 0. , 0. , 0. , 0. , 0. , -6.82591523]]) AAA = array([[-1.10374598e+01, -4.39086593e-02, -5.01367818e+00, -5.49520431e-01, -1.60095097e+00, -4.33347026e-02, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -6.82591523e+00]]) B = array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00, ...-6.89902858e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]) BB = array([[ 8.11085288e-01, 7.58620093e-02, 9.65134458e-02, 2.40151031e-02, -2.07325471e-02, 2.07613185e-01, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 9.03659208e-01]]) BBB = array([[ 0.97742285, -0.02826979, -0.13207461, 0.03151508, 0.03608729, -0.00812418, 0.02424806, 0.00669984... , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.90365921]]) Q = array([[-0.2560779 , -0.12487523, 0.02862778, -0.00831966, -0.35831928, -0.42242086, 0.22139759, -0.56129387...3414, 0.27356082, -0.46507072, 0.44921656, 0.2138252 , -0.1770212 , -0.02234278, -0.31244786, -0.24947946]]) QQ = array([[ 0.49957785, -0.22522635, -0.09384524, -0.11480434, 0.03915006, -0.01162005, -0.33756156, -0.56129387...4884, -0.48618515, -0.30660734, 0.26771432, -0.46356066, 0.44191341, -0.02234278, -0.31244786, -0.24947946]]) Z = array([[ 0.396386 , 0.390025 , -0.08726933, 0.05998335, 0.75338542, -0.2275422 , 0.06093312, -0.17495397...9888, 0.16490638, -0.19483071, 0.14880768, -0.40796819, 0.4309228 , 0.10908145, 0.57471301, 0.41768145]]) ZZ = array([[ 0.1499131 , -0.05028211, 0.42759514, 0.39517438, -0.06878216, -0.06235996, -0.7555864 , -0.17495397...9169, -0.11798516, -0.07348274, 0.17187323, 0.21527339, -0.16054396, 0.10908145, 0.57471301, 0.41768145]]) _ = array([0., 0.]) ab = [array([-11.03745976, -5.75822352, 8.68539447, 4.71231077, 5.41569666, 1.95595461, 1.95595461, -1.9...5, 0.96329634, 0.76913558, 0.78832503, 0.71696527, 0.27538004, 0.27538004, 0.27538004, 0.27538004, 0.90365921])] alpha = array([-11.03745976+0.j , -5.75822352+0.j , 8.68539447+0.j , 4.71231077+0.j , ... 1.95595461-0.04404539j, -1.95595461+0.04404539j, -1.95595461-0.04404539j, -6.82591523+0.j ]) beta = array([0.97742285, 0.96329634, 0.76913558, 0.78832503, 0.71696527, 0.27538004, 0.27538004, 0.27538004, 0.27538004, 0.90365921]) check_finite = False info = 1 lwork = 56 output = 'real' overwrite_a = True overwrite_b = True select = array([False, False, False, False, False, True, True, True, True, True]) sfunction = sort = 'lhp' tgsen = typ = 'd' _______________ TestBatch.test_are[float64-solve_continuous_are] _______________ lib/python3.12/site-packages/scipy/linalg/tests/test_batch.py:393: in test_are self.batch_test(fun, (a, b, q, r)) a = array([[[[5.85613689e+00, 3.76263026e-01, 6.53929295e-01, 1.69935564e-01, 8.21350510e-01], [7.88941....16811696e-01], [4.66852717e-01, 5.68008549e-01, 5.03102080e-01, 6.57357597e-01, 5.25300853e+00]]]]) b = array([[[[5.05969837, 0.36519147, 0.40403795, 0.79370757, 0.3905543 ], [0.06359218, 5.59391565, 0.35745663, 0...3443914, 0.16054385, 5.53595581, 0.46897628], [0.740144 , 0.39551649, 0.68984719, 0.99627385, 5.86227922]]]]) dtype = e = array([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]]) fun = q = array([[[[5.09751338, 1.26895051, 1.77541274, 1.25883775, 1.08313866], [1.26895051, 5.32843287, 1.25779877, 0...2278559, 1.69891743, 6.45693018, 0.88872185], [1.48826505, 1.39666597, 0.48325474, 0.88872185, 6.03749994]]]]) r = array([[[[5.0065498 , 1.06410407, 0.41057261, 1.04816818, 1.56330185], [1.06410407, 6.36095227, 0.29068859, 0...9671303, 0.894569 , 6.20156577, 0.38971087], [1.42079672, 1.15251089, 1.81672762, 0.38971087, 5.81377422]]]]) rng = Generator(PCG64) at 0x7FFB56F460A0 s = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) self = lib/python3.12/site-packages/scipy/linalg/tests/test_batch.py:48: in batch_test res2 = fun(*arrays, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^ arrays = (array([[[[5.85613689e+00, 3.76263026e-01, 6.53929295e-01, 1.69935564e-01, 8.21350510e-01], [7.8894...671303, 0.894569 , 6.20156577, 0.38971087], [1.42079672, 1.15251089, 1.81672762, 0.38971087, 5.81377422]]]])) broadcast = True check_kwargs = True core_dim = 2 dtype = None fun = kwargs = {} n_out = 1 parameters = ['a', 'b', 'q', 'r', 'e', 's', ...] self = lib/python3.12/site-packages/scipy/linalg/_solvers.py:466: in solve_continuous_are return _solve_continuous_are(a, b, q, r, e, s, balanced) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[[[5.85613689e+00, 3.76263026e-01, 6.53929295e-01, 1.69935564e-01, 8.21350510e-01], [7.88941....16811696e-01], [4.66852717e-01, 5.68008549e-01, 5.03102080e-01, 6.57357597e-01, 5.25300853e+00]]]]) b = array([[[[5.05969837, 0.36519147, 0.40403795, 0.79370757, 0.3905543 ], [0.06359218, 5.59391565, 0.35745663, 0...3443914, 0.16054385, 5.53595581, 0.46897628], [0.740144 , 0.39551649, 0.68984719, 0.99627385, 5.86227922]]]]) balanced = True e = None q = array([[[[5.09751338, 1.26895051, 1.77541274, 1.25883775, 1.08313866], [1.26895051, 5.32843287, 1.25779877, 0...2278559, 1.69891743, 6.45693018, 0.88872185], [1.48826505, 1.39666597, 0.48325474, 0.88872185, 6.03749994]]]]) r = array([[[[5.0065498 , 1.06410407, 0.41057261, 1.04816818, 1.56330185], [1.06410407, 6.36095227, 0.29068859, 0...9671303, 0.894569 , 6.20156577, 0.38971087], [1.42079672, 1.15251089, 1.81672762, 0.38971087, 5.81377422]]]]) s = None lib/python3.12/site-packages/scipy/_lib/_util.py:1247: in wrapper result = f(*((array[index] if array is not None else None) args = [array([[[[5.85613689e+00, 3.76263026e-01, 6.53929295e-01, 1.69935564e-01, 8.21350510e-01], [7.8894... , 6.20156577, 0.38971087], [1.42079672, 1.15251089, 1.81672762, 0.38971087, 5.81377422]]]]), None, None, ...] array = None arrays = [array([[[[5.85613689e+00, 3.76263026e-01, 6.53929295e-01, 1.69935564e-01, 8.21350510e-01], [7.8894...4569 , 6.20156577, 0.38971087], [1.42079672, 1.15251089, 1.81672762, 0.38971087, 5.81377422]]]]), None, None] batch_shape = (2, 3) batch_shapes = [(2, 3), (2, 3), (2, 3), (2, 3), (), ()] core_shape = () core_shapes = [(5, 5), (5, 5), (5, 5), (5, 5), (), ()] f = i = 5 index = (0, 1) kwargs = {} n_arrays = 6 name = 's' names = ('a', 'b', 'q', 'r', 'e', 's') ndim = 2 ndims = (2, 2, 2, 2, 2, 2) other_args = [True] result = (array([[ 2.6058318 , 0.52633597, -0.08956044, 0.10912435, 0.42865016], [ 0.52633597, 2.77390381, -0.058120...2, 0.5720734 , 2.51000087, 0.37462286], [ 0.42865016, 0.44436792, -0.14533569, 0.37462286, 2.36781503]]),) results = [(array([[ 2.6058318 , 0.52633597, -0.08956044, 0.10912435, 0.42865016], [ 0.52633597, 2.77390381, -0.05812..., 0.5720734 , 2.51000087, 0.37462286], [ 0.42865016, 0.44436792, -0.14533569, 0.37462286, 2.36781503]]),)] shape = () lib/python3.12/site-packages/scipy/linalg/_solvers.py:518: in _solve_continuous_are _, _, _, _, _, u = ordqz(H, J, sort='lhp', overwrite_a=True, H = array([[-6.99540964e+00, -1.10833884e+00, -9.68716379e-01, -8.51995563e-01, -1.16695730e+00, -5.51648987e+00, ...-4.20735701e+00, 3.67279873e-01, 3.01686521e-01, 5.60510335e-01, 4.43732739e-01, 3.45128154e+00]]) J = array([[ 0. , 0. , 0. , 0. , 0. , 1. , 0. , 0. ...3348, 0.01146715, -0.01395908, -0.7266193 , 0. , 0. , 0. , 0. , 0. ]]) M = array([[0.00000000e+00, 5.53346029e-01, 7.76502014e-01, 2.49085900e-01, 4.14595877e-01, 0.00000000e+00, 0.0000...67612014e-01, 5.10628877e+00, 1.39190136e+00, 1.45056605e+00, 6.11920465e-01, 6.41665046e-01, 0.00000000e+00]]) _ = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) a = array([[5.51648987e+00, 5.53346029e-01, 7.76502014e-01, 2.49085900e-01, 4.14595877e-01], [6.99128786e-0... 9.54958740e-02], [9.35617440e-02, 2.18390947e-02, 1.50785163e-01, 1.12472490e-01, 5.63379923e+00]]) b = array([[5.67442418, 0.32442563, 0.16908051, 0.46852281, 0.64128335], [0.15876895, 5.57721091, 0.4893251 , 0.160... 0.18592642, 0.57857921, 5.63038058, 0.56761201], [0.64912179, 0.32872063, 0.72190366, 0.54016212, 5.10628877]]) balanced = True e = None gen_are = False m = 5 n = 5 out_str = 'real' q = array([[-6.10403181e-01, 1.82611186e-01, 9.52283919e-02, 1.05390551e-01, 9.59492076e-02, 0.00000000e+00, ... 0.00000000e+00, -5.20184246e-02, -6.53667495e-02, 1.02378315e-02, -1.87188646e-03, 6.75894930e-01]]) r = array([[-9.29619039, -2.78010973, -2.25845243, -2.65973659, -3.10716572], [ 0. , -7.51630949, -1.9835664... , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. ]]) r_or_c = s = None sca = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-6.99540964e+00, -1.10833884e+00, -9.68716379e-01, -8.51995563e-01, -1.16695730e+00, -5.51648987e+00,...348, 0.01146715, -0.01395908, -0.7266193 , 0. , 0. , 0. , 0. , 0. ]])] array = array([[ 0. , 0. , 0. , 0. , 0. , 1. , 0. , 0. ...3348, 0.01146715, -0.01395908, -0.7266193 , 0. , 0. , 0. , 0. , 0. ]]) arrays = [array([[-6.99540964e+00, -1.10833884e+00, -9.68716379e-01, -8.51995563e-01, -1.16695730e+00, -5.51648987e+00,...348, 0.01146715, -0.01395908, -0.7266193 , 0. , 0. , 0. , 0. , 0. ]])] batch_shapes = [(), ()] core_shapes = [(10, 10), (10, 10)] f = i = 1 kwargs = {'check_finite': False, 'output': 'real', 'overwrite_a': True, 'overwrite_b': True, ...} n_arrays = 2 name = 'B' names = ('A', 'B') ndim = 2 ndims = (2, 2) other_args = [] shape = (10, 10) lib/python3.12/site-packages/scipy/linalg/_decomp_qz.py:446: in ordqz raise ValueError("Reordering of (A, B) failed because the transformed" E ValueError: Reordering of (A, B) failed because the transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is very ill-conditioned. (A, B) may have been partially reordered. A = array([[-6.99540964e+00, -1.10833884e+00, -9.68716379e-01, -8.51995563e-01, -1.16695730e+00, -5.51648987e+00, ...-4.20735701e+00, 3.67279873e-01, 3.01686521e-01, 5.60510335e-01, 4.43732739e-01, 3.45128154e+00]]) AA = array([[ 8.97286448e+00, 7.88491477e-01, 2.68766176e-01, -1.08532234e-01, 5.15225764e-03, 6.23900885e+00, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -6.97417396e+00]]) AAA = array([[-1.02730272e+01, -1.05641144e-01, 5.95883542e+00, 1.20117812e+00, 8.24542014e-01, 6.74373972e-01, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -6.97417396e+00]]) B = array([[ 0. , 0. , 0. , 0. , 0. , 1. , 0. , 0. ...3348, 0.01146715, -0.01395908, -0.7266193 , 0. , 0. , 0. , 0. , 0. ]]) BB = array([[ 8.57855051e-01, 6.90495146e-02, -1.26699387e-02, -2.12519706e-02, -2.06858759e-02, -1.78529409e-01, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 9.28368320e-01]]) BBB = array([[ 9.82157734e-01, -6.82117822e-03, 1.04212705e-01, 1.52071371e-03, 3.42616557e-02, -2.35394437e-02, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 9.28368320e-01]]) Q = array([[-2.63068353e-01, -3.73152488e-01, 2.27071032e-01, 2.40715415e-01, -5.30526562e-03, 3.43677287e-01, ...-8.50682236e-02, -3.66167878e-01, 7.39389380e-02, -1.11851644e-02, 3.25622527e-02, 4.27374195e-01]]) QQ = array([[-4.18103824e-01, 5.61082786e-01, -1.16662957e-01, -2.25557422e-01, 2.40262463e-01, 2.28112072e-01, ...-7.11389983e-01, -2.59790851e-02, 8.26753484e-02, -1.11851644e-02, 3.25622527e-02, 4.27374195e-01]]) Z = array([[ 0.35284704, 0.57332334, -0.3992075 , -0.42184128, 0.05519751, 0.22434939, -0.24906224, 0.24836668...2741, -0.35140695, -0.02610068, 0.00593859, 0.44114915, -0.08626678, 0.07512617, -0.10833182, -0.76294298]]) ZZ = array([[-0.09251123, 0.26467807, 0.39505447, 0.56071757, -0.39031441, 0.4503446 , -0.04108718, 0.24836668...2127, -0.10350058, -0.14549003, -0.33948428, 0.05337367, -0.01086573, 0.07512617, -0.10833182, -0.76294298]]) _ = array([0., 0.]) ab = [array([-10.27302717, -7.41071614, 8.52673042, 5.3552278 , 5.78296285, 1.963316 , 1.963316 , -1.9...3, 0.92517614, 0.81520219, 0.66856278, 0.76980006, 0.29220712, 0.29220712, 0.29220712, 0.29220712, 0.92836832])] alpha = array([-10.27302717+0.j , -7.41071614+0.j , 8.52673042+0.j , 5.3552278 +0.j , ...036684j, 1.963316 -0.036684j, -1.963316 +0.036684j, -1.963316 -0.036684j, -6.97417396+0.j ]) beta = array([0.98215773, 0.92517614, 0.81520219, 0.66856278, 0.76980006, 0.29220712, 0.29220712, 0.29220712, 0.29220712, 0.92836832]) check_finite = False info = 1 lwork = 56 output = 'real' overwrite_a = True overwrite_b = True select = array([False, False, False, False, False, True, True, True, True, True]) sfunction = sort = 'lhp' tgsen = typ = 'd' _______________ TestEigh.test_various_drivers_generalized[gv-1] ________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:965: in test_various_drivers_generalized assert_allclose(a @ v - w*(b @ v), 0., atol=atol, rtol=0.) E AssertionError: E Not equal to tolerance rtol=0, atol=9.09495e-13 E E Mismatched elements: 320 / 400 (80%) E Max absolute difference among violations: 0.08868849 E Max relative difference among violations: inf E ACTUAL: array([[ 1.110223e-16, 1.387779e-17, 1.387779e-17, 8.326673e-17, E -4.510281e-17, 1.526557e-16, -6.938894e-18, -6.938894e-17, E -3.122502e-17, 1.552578e-16, 5.551115e-17, -6.982262e-17,... E DESIRED: array(0.) a = array([[0.02644363, 0.31300776, 0.72887515, 0.40623126, 0.92972034, 0.58000472, 0.35803926, 0.55461755, 0.7508..., 0.31184235, 0.4805812 , 0.82715223, 0.38379594, 0.88845044, 0.60049462, 0.05313581, 0.81966001, 0.16560957]]) atol = np.float64(9.094947017729282e-13) b = array([[6.4397416 , 0.35807626, 0.20120429, 0.46832505, 0.361767 , 0.34295145, 0.20087304, 0.74678032, 0.4542..., 0.29428397, 0.6597192 , 0.46077245, 0.46871722, 0.52103298, 0.4457587 , 0.22570515, 0.4519464 , 6.56442368]]) driver = 'gv' self = type = 1 v = array([[ 2.28248489e-01, 5.21286688e-02, -6.12899086e-02, 6.71961918e-02, -1.51633645e-02, -7.43347152e-02, ... 8.19047037e-03, -2.75282946e-02, -1.33268209e-01, -5.05762531e-02, -4.94742014e-02, -5.93928084e-02]]) w = array([-0.28717567, -0.19009032, -0.16673746, -0.15704385, -0.14713034, -0.12077249, -0.09305636, -0.0757746 , ...065542, 0.06856014, 0.07935122, 0.11186544, 0.14591962, 0.16603141, 0.20841328, 0.24470041, 0.61110336]) _______________ TestEigh.test_various_drivers_generalized[gv-2] ________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:967: in test_various_drivers_generalized assert_allclose(a @ b @ v - v * w, 0., atol=atol, rtol=0.) E AssertionError: E Not equal to tolerance rtol=0, atol=9.09495e-13 E E Mismatched elements: 400 / 400 (100%) E Max absolute difference among violations: 0.85505139 E Max relative difference among violations: inf E ACTUAL: array([[-5.412458e-02, 2.778611e-01, 2.367626e-01, -2.189223e-01, E 4.258836e-03, -2.597242e-01, 3.101016e-02, -4.948255e-02, E 9.099145e-02, -9.554729e-02, -1.254128e-02, 3.066643e-02,... E DESIRED: array(0.) a = array([[0.19079388, 0.45173738, 0.68591384, 0.75122591, 0.17786508, 0.6325659 , 0.1349526 , 0.51568975, 0.6532..., 0.67033769, 0.77396308, 0.04478554, 0.48337 , 0.41258225, 0.63943272, 0.3813999 , 0.19519141, 0.51361032]]) atol = np.float64(9.094947017729282e-13) b = array([[6.52918765, 0.18656235, 0.63439516, 0.78673233, 0.87053619, 0.19589363, 0.27773894, 0.23168865, 0.2250..., 0.80036023, 0.02905976, 0.88647127, 0.74011001, 0.52558943, 0.49162411, 0.79457561, 0.07533828, 6.87842531]]) driver = 'gv' self = type = 2 v = array([[-1.43407955e-01, -4.00015455e-02, -5.45130402e-02, -1.61918418e-01, -9.11039068e-02, -9.26858541e-04, ...-7.60106734e-02, 2.10109135e-02, 2.12505728e-01, -2.61203152e-02, -4.02502539e-02, 5.01362625e-02]]) w = array([-1.09878228e+01, -8.76826934e+00, -8.32148600e+00, -6.52635294e+00, -5.69146909e+00, -3.68735786e+00, -3...6729e+00, 4.81679106e+00, 6.57421923e+00, 7.57675960e+00, 8.26555359e+00, 9.80926471e+00, 1.81096172e+02]) _______________ TestEigh.test_various_drivers_generalized[gv-3] ________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:969: in test_various_drivers_generalized assert_allclose(b @ a @ v - v * w, 0., atol=atol, rtol=0.) E AssertionError: E Not equal to tolerance rtol=0, atol=9.09495e-13 E E Mismatched elements: 320 / 400 (80%) E Max absolute difference among violations: 30.64800128 E Max relative difference among violations: inf E ACTUAL: array([[-2.842171e-14, 9.769963e-15, -3.907985e-14, 1.765255e-14, E -3.907985e-14, 3.552714e-14, -2.942091e-15, 1.112305e-14, E 2.363387e-14, -6.106227e-16, 7.771561e-15, 2.398082e-14,... E DESIRED: array(0.) a = array([[0.32162152, 0.3861748 , 0.2936202 , 0.75175395, 0.50214207, 0.26061673, 0.74333784, 0.33565803, 0.1899..., 0.44622671, 0.7055427 , 0.57051338, 0.7061758 , 0.76333241, 0.10922021, 0.59078027, 0.16629537, 0.69604257]]) atol = np.float64(9.094947017729282e-13) b = array([[7.32302874, 0.89042889, 0.3424662 , 0.45282434, 0.52988794, 0.63073216, 0.23543848, 0.21050453, 0.8827..., 0.68444909, 0.40346404, 0.71475452, 0.2752306 , 0.05891055, 0.54595713, 0.34459503, 0.65544923, 6.33818784]]) driver = 'gv' self = type = 3 v = array([[-7.69757601e-01, -6.34662986e-01, -7.73806939e-01, -6.43078736e-02, -9.13281842e-01, 1.03207768e+00, ... 7.91743713e-01, 9.71714770e-01, 3.37330572e-01, -2.25477785e-01, 4.32328420e-01, 7.98287675e-01]]) w = array([-10.21912931, -9.35272995, -7.93219645, -5.88790425, -4.63856882, -2.57330832, -1.45465755, -0.20... 3.88587371, 4.2306458 , 5.50329349, 6.80469902, 7.71443175, 8.11522898, 11.42897541, 182.7309492 ]) _______________ TestEigh.test_various_drivers_generalized[gvd-1] _______________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:965: in test_various_drivers_generalized assert_allclose(a @ v - w*(b @ v), 0., atol=atol, rtol=0.) E AssertionError: E Not equal to tolerance rtol=0, atol=9.09495e-13 E E Mismatched elements: 320 / 400 (80%) E Max absolute difference among violations: 0.067262 E Max relative difference among violations: inf E ACTUAL: array([[-6.765422e-17, -2.775558e-17, 1.110223e-16, -4.163336e-17, E -1.457168e-16, -6.245005e-17, 1.040834e-16, 3.035766e-17, E -7.903834e-17, 8.673617e-18, 4.770490e-17, 3.469447e-17,... E DESIRED: array(0.) a = array([[0.26581963, 0.67307102, 0.35102499, 0.7648957 , 0.65063367, 0.7617467 , 0.61622772, 0.62958516, 0.5761..., 0.60077943, 0.06513911, 0.23314275, 0.50005017, 0.50354268, 0.72115923, 0.3519158 , 0.37322395, 0.39494351]]) atol = np.float64(9.094947017729282e-13) b = array([[6.72058451, 0.41634056, 0.45476752, 0.19658064, 0.25640438, 0.10273245, 0.45471587, 0.3416921 , 0.2723..., 0.55446486, 0.44790517, 0.5840418 , 0.81895364, 0.13645436, 0.66872293, 0.47761774, 0.32950484, 6.81400521]]) driver = 'gvd' self = type = 1 v = array([[ 7.86476285e-03, -1.34858985e-01, 1.64595009e-01, -1.34200616e-01, 2.88105617e-02, -8.46158443e-02, ... 1.58586565e-01, 3.71915243e-02, -1.52189316e-01, -2.77462153e-03, 1.53844472e-02, -4.91030531e-02]]) w = array([-0.26749743, -0.20425647, -0.18025678, -0.15074296, -0.13414686, -0.08927498, -0.07519719, -0.02251388, ...049343, 0.07660746, 0.09934954, 0.11841592, 0.1639165 , 0.18811176, 0.2108622 , 0.26573042, 0.58013157]) _______________ TestEigh.test_various_drivers_generalized[gvd-2] _______________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:967: in test_various_drivers_generalized assert_allclose(a @ b @ v - v * w, 0., atol=atol, rtol=0.) E AssertionError: E Not equal to tolerance rtol=0, atol=9.09495e-13 E E Mismatched elements: 400 / 400 (100%) E Max absolute difference among violations: 0.84167432 E Max relative difference among violations: inf E ACTUAL: array([[ 0.064824, -0.135623, 0.175389, -0.175272, 0.127374, -0.496585, E 0.323429, 0.114688, 0.09553 , 0.01543 , -0.157795, 0.030969, E -0.048413, -0.298398, 0.203843, 0.058196, 0.129401, -0.077087,... E DESIRED: array(0.) a = array([[0.91710741, 0.81068328, 0.36644069, 0.25539074, 0.26856142, 0.83495224, 0.61388032, 0.53749341, 0.2798..., 0.49131599, 0.55619762, 0.58906654, 0.46220841, 0.73933878, 0.96655283, 0.49898002, 0.52683244, 0.36262547]]) atol = np.float64(9.094947017729282e-13) b = array([[6.79922415, 0.22087184, 0.50257443, 0.30891305, 0.68725868, 0.51963646, 0.36578902, 0.45096819, 0.4915..., 0.35352847, 0.22439323, 0.56034911, 0.49252108, 0.57555321, 0.77529302, 0.65756567, 0.51277314, 6.41726641]]) driver = 'gvd' self = type = 2 v = array([[ 0.09683177, 0.06765534, 0.05243819, 0.00560455, 0.04741002, -0.08898065, 0.05383937, 0.0848278 ...6106, 0.10828946, -0.02723984, -0.10429832, 0.09544405, -0.15755422, -0.01410788, -0.04497928, 0.05581923]]) w = array([-1.12831254e+01, -8.62879537e+00, -7.41770615e+00, -6.25972820e+00, -5.33378515e+00, -3.77436898e+00, -3...1910e+00, 4.69658238e+00, 4.86298712e+00, 7.69609151e+00, 8.29427309e+00, 1.11965271e+01, 1.78025108e+02]) _______________ TestEigh.test_various_drivers_generalized[gvd-3] _______________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:969: in test_various_drivers_generalized assert_allclose(b @ a @ v - v * w, 0., atol=atol, rtol=0.) E AssertionError: E Not equal to tolerance rtol=0, atol=9.09495e-13 E E Mismatched elements: 320 / 400 (80%) E Max absolute difference among violations: 20.48079458 E Max relative difference among violations: inf E ACTUAL: array([[-8.881784e-15, -4.618528e-14, -7.993606e-15, 2.930989e-14, E 8.548717e-15, -1.421085e-14, 1.223327e-14, -3.952394e-14, E -1.404432e-14, -1.385003e-14, 3.885781e-15, -1.754152e-14,... E DESIRED: array(0.) a = array([[0.36297504, 0.22501471, 0.72657245, 0.79946014, 0.45018231, 0.49814508, 0.48561843, 0.68848525, 0.4002..., 0.27460959, 0.2155353 , 0.5207641 , 0.50454374, 0.52546106, 0.83365662, 0.93874866, 0.34805627, 0.09956329]]) atol = np.float64(9.094947017729282e-13) b = array([[7.09042761, 0.67863606, 0.34369239, 0.63915809, 0.04517149, 0.68793436, 0.91851229, 0.74291176, 0.4680..., 0.53028315, 0.27755058, 0.62868037, 0.86027024, 0.43114471, 0.74914606, 0.45624528, 0.60356769, 6.90135506]]) driver = 'gvd' self = type = 3 v = array([[ 4.53469982e-01, -1.13679489e+00, 1.71259754e-01, 7.66789900e-01, 9.97530833e-02, -4.63455976e-01, ... 8.89235886e-02, 7.15676758e-01, 2.43828956e-01, -3.85086509e-01, -8.39269633e-01, 9.12095215e-01]]) w = array([-10.36379524, -7.71366857, -7.19545947, -5.99483029, -4.37198788, -3.21733737, -2.95737501, -2.16... 3.19975868, 4.21249286, 5.7121791 , 6.18343271, 7.461666 , 9.22324748, 11.20159826, 171.64456961]) _______________ TestEigh.test_various_drivers_generalized[gvx-1] _______________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:965: in test_various_drivers_generalized assert_allclose(a @ v - w*(b @ v), 0., atol=atol, rtol=0.) E AssertionError: E Not equal to tolerance rtol=0, atol=9.09495e-13 E E Mismatched elements: 320 / 400 (80%) E Max absolute difference among violations: 0.07438596 E Max relative difference among violations: inf E ACTUAL: array([[ 4.857226e-17, 1.318390e-16, -9.020562e-17, -2.645453e-17, E 2.012279e-16, -9.714451e-17, -8.326673e-17, -3.122502e-17, E 1.457168e-16, -5.055093e-17, 3.122502e-17, -3.469447e-18,... E DESIRED: array(0.) a = array([[0.64933791, 0.59381121, 0.47264964, 0.57125877, 0.39632378, 0.47240347, 0.41972561, 0.15052152, 0.4299..., 0.30783928, 0.1912761 , 0.70708065, 0.21303845, 0.37856867, 0.58841735, 0.4473674 , 0.43227359, 0.17563821]]) atol = np.float64(9.094947017729282e-13) b = array([[6.94454386, 0.53278578, 0.56071209, 0.08283934, 0.12897579, 0.62394611, 0.77411463, 0.76552566, 0.3987..., 0.36331289, 0.59837385, 0.19366374, 0.73259486, 0.56972067, 0.23214303, 0.92866518, 0.8559502 , 7.13610609]]) driver = 'gvx' self = type = 1 v = array([[ 0.0107912 , 0.02689758, -0.01880921, 0.01001132, 0.09982244, 0.17107563, 0.08979458, -0.05051391...747 , -0.02745116, 0.11866088, -0.02576071, -0.10351139, -0.07400469, 0.0035959 , 0.10418202, -0.02353649]]) w = array([-0.28030621, -0.22511993, -0.17992618, -0.14332403, -0.09790595, -0.0742411 , -0.06647692, -0.04845967, ...854133, 0.06397621, 0.09713934, 0.1128997 , 0.1269874 , 0.18720834, 0.21235079, 0.29818146, 0.61361956]) _______________ TestEigh.test_various_drivers_generalized[gvx-2] _______________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:967: in test_various_drivers_generalized assert_allclose(a @ b @ v - v * w, 0., atol=atol, rtol=0.) E AssertionError: E Not equal to tolerance rtol=0, atol=9.09495e-13 E E Mismatched elements: 400 / 400 (100%) E Max absolute difference among violations: 0.75219025 E Max relative difference among violations: inf E ACTUAL: array([[-0.070854, 0.185021, -0.03602 , -0.096403, -0.196518, -0.177833, E -0.048164, -0.075676, -0.246056, 0.150723, 0.046747, -0.149488, E 0.050771, -0.218047, -0.132647, 0.346597, -0.061956, 0.242125,... E DESIRED: array(0.) a = array([[0.55426939, 0.51211983, 0.31190328, 0.43337098, 0.48360437, 0.39511716, 0.3838613 , 0.86210029, 0.3946..., 0.64047411, 0.40105705, 0.57039159, 0.75269687, 0.41468696, 0.41891703, 0.62064587, 0.7337188 , 0.13091655]]) atol = np.float64(9.094947017729282e-13) b = array([[6.56736615, 0.62671251, 0.77585668, 0.53777337, 0.7762236 , 0.52607661, 0.64794999, 0.69513281, 0.8001..., 0.34543994, 0.7925971 , 0.56716842, 0.17190002, 0.39129096, 0.64184383, 0.54600472, 0.3688313 , 7.10441097]]) driver = 'gvx' self = type = 2 v = array([[-1.32785415e-01, 4.09596934e-03, -6.39739117e-02, -5.18660227e-02, -1.22284306e-01, -9.70685821e-02, ... 8.61553245e-02, 6.06190424e-03, -4.40512405e-02, 5.84132821e-03, 1.06174087e-01, 5.67469043e-02]]) w = array([-1.24692073e+01, -1.07013360e+01, -7.83905900e+00, -7.27071747e+00, -5.04667774e+00, -4.26731889e+00, -3...2363e+00, 3.54929800e+00, 4.79514705e+00, 5.64850315e+00, 8.52559356e+00, 9.26054582e+00, 1.73083955e+02]) _______________ TestEigh.test_various_drivers_generalized[gvx-3] _______________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:969: in test_various_drivers_generalized assert_allclose(b @ a @ v - v * w, 0., atol=atol, rtol=0.) E AssertionError: E Not equal to tolerance rtol=0, atol=9.09495e-13 E E Mismatched elements: 320 / 400 (80%) E Max absolute difference among violations: 18.99447393 E Max relative difference among violations: inf E ACTUAL: array([[ 1.509903e-14, 2.575717e-14, 5.029310e-14, 1.776357e-15, E -2.886580e-14, 2.220446e-14, 2.575717e-14, 2.159384e-14, E 1.019324e-14, 1.343370e-14, 1.031814e-14, 3.330669e-14,... E DESIRED: array(0.) a = array([[0.8961685 , 0.86604604, 0.45922494, 0.26913386, 0.66819472, 0.8487221 , 0.29786699, 0.53068589, 0.5147..., 0.68136264, 0.50858444, 0.33383639, 0.39229792, 0.29289428, 0.46233898, 0.49617859, 0.69643074, 0.92204149]]) atol = np.float64(9.094947017729282e-13) b = array([[6.77169802, 0.77255639, 0.72475761, 0.6583979 , 0.6708118 , 0.60566096, 0.47866782, 0.71762358, 0.7784..., 0.31824096, 0.42194645, 0.6908411 , 0.09399523, 0.53293538, 0.42939916, 0.64473246, 0.44797702, 6.69220469]]) driver = 'gvx' self = type = 3 v = array([[-0.62094847, 0.67215791, 0.13046716, -0.48954101, -0.25533116, -0.44068094, 0.53884905, 0.42586682...3172, 1.13453544, -0.0705289 , -0.93920065, 0.64672944, -0.87024559, -0.16939148, -0.58136665, 0.87904592]]) w = array([ -9.53174407, -6.98551626, -5.80009326, -5.17003895, -4.58443601, -2.71071629, -1.5687086 , -1.07... 3.22149313, 5.07264173, 5.60129012, 6.49464332, 6.78399343, 8.14984161, 10.93196921, 171.17382019]) __________________________ TestSVD_GESDD.test_random ___________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:1065: in test_random u, s, vh = svd(a, full_matrices=full_matrices, a = array([[0.19151945, 0.62210877, 0.43772774, 0.78535858, 0.77997581, 0.27259261, 0.27646426, 0.80187218, 0.9581..., 0.69970326, 0.9015689 , 0.98369233, 0.64091281, 0.33000739, 0.60667522, 0.82215979, 0.62796507, 0.11792306]]) full_matrices = True i = 0 m = 15 n = 20 rng = RandomState(MT19937) at 0x7FFB560BEB40 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.19151945, 0.62210877, 0.43772774, 0.78535858, 0.77997581, 0.27259261, 0.27646426, 0.80187218, 0.958... 0.69970326, 0.9015689 , 0.98369233, 0.64091281, 0.33000739, 0.60667522, 0.82215979, 0.62796507, 0.11792306]])] array = array([[0.19151945, 0.62210877, 0.43772774, 0.78535858, 0.77997581, 0.27259261, 0.27646426, 0.80187218, 0.9581..., 0.69970326, 0.9015689 , 0.98369233, 0.64091281, 0.33000739, 0.60667522, 0.82215979, 0.62796507, 0.11792306]]) arrays = [array([[0.19151945, 0.62210877, 0.43772774, 0.78535858, 0.77997581, 0.27259261, 0.27646426, 0.80187218, 0.958... 0.69970326, 0.9015689 , 0.98369233, 0.64091281, 0.33000739, 0.60667522, 0.82215979, 0.62796507, 0.11792306]])] batch_shapes = [()] core_shapes = [(20, 15)] f = i = 0 kwargs = {'full_matrices': True, 'lapack_driver': 'gesdd'} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (20, 15) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.19151945, 0.62210877, 0.43772774, 0.78535858, 0.77997581, 0.27259261, 0.27646426, 0.80187218, 0.9581..., 0.69970326, 0.9015689 , 0.98369233, 0.64091281, 0.33000739, 0.60667522, 0.82215979, 0.62796507, 0.11792306]]) a1 = array([[0.19151945, 0.62210877, 0.43772774, 0.78535858, 0.77997581, 0.27259261, 0.27646426, 0.80187218, 0.9581..., 0.69970326, 0.9015689 , 0.98369233, 0.64091281, 0.33000739, 0.60667522, 0.82215979, 0.62796507, 0.11792306]]) check_finite = True compute_uv = True full_matrices = True funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 14 lapack_driver = 'gesdd' lwork = 1165 m = 20 max_mn = 20 min_mn = 15 n = 15 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan...n, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) __________________________ TestSVD_GESVD.test_random ___________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:1068: in test_random assert_array_almost_equal(vh @ vh.T, eye(vh.shape[0])) E AssertionError: E Arrays are not almost equal to 6 decimals E E Mismatched elements: 225 / 225 (100%) E Max absolute difference among violations: 2.08464566 E Max relative difference among violations: 2.08464566 E ACTUAL: array([[ 1.057676e+00, -5.141056e-01, 1.505921e-01, -2.071782e-01, E 1.535380e-02, -7.612492e-03, -2.498173e-01, -2.135203e-01, E -3.835344e-01, 1.921627e-01, 3.644557e-01, -3.275871e-01,... E DESIRED: array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], E [0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], E [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],... a = array([[0.19151945, 0.62210877, 0.43772774, 0.78535858, 0.77997581, 0.27259261, 0.27646426, 0.80187218, 0.9581..., 0.69970326, 0.9015689 , 0.98369233, 0.64091281, 0.33000739, 0.60667522, 0.82215979, 0.62796507, 0.11792306]]) full_matrices = True i = 0 m = 15 n = 20 rng = RandomState(MT19937) at 0x7FFB560BF340 s = array([8.35183677e+00, 2.40626451e+00, 1.97865388e+00, 1.82350511e+00, 1.67156294e+00, 1.39999239e+00, 1.205334...9.26385153e-01, 8.40529592e-01, 7.15494074e-01, 5.91796021e-01, 5.00850331e-01, 2.85863711e-01, 1.95954731e-03]) self = u = array([[-0.13746752, 0.32792888, -0.02295466, -0.18991994, 0.05621484, 0.23400358, 0.10044244, 0.03839351...7207, 0.13774483, -0.2133849 , -0.10437179, 0.04173467, -0.13738209, -0.16179576, -0.05540061, 0.13606936]]) vh = array([[-2.91992309e-01, -2.22804242e-01, -2.39155623e-01, -2.26450142e-01, -2.88439071e-01, -2.09573940e-01, ... 1.16508027e-01, -1.94043486e-01, 8.75073515e-04, -1.79194633e-02, -1.74249613e-01, -1.26330286e-01]]) ______________________________ TestRQ.test_random ______________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:1971: in test_random assert_array_almost_equal(q @ q.T, eye(n)) E AssertionError: E Arrays are not almost equal to 6 decimals E E Mismatched elements: 384 / 400 (96%) E Max absolute difference among violations: 0.80139703 E Max relative difference among violations: 0.37360306 E ACTUAL: array([[ 1.373603e+00, 3.195681e-01, 7.093183e-03, 1.630033e-01, E 3.667440e-01, -1.646265e-01, -5.453052e-01, -1.092347e-01, E 2.362573e-01, 1.613654e-01, 8.013970e-01, 1.314180e-01,... E DESIRED: array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., E 0., 0., 0., 0.], E [0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,... a = array([[0.19151945, 0.62210877, 0.43772774, 0.78535858, 0.77997581, 0.27259261, 0.27646426, 0.80187218, 0.9581..., 0.17873977, 0.01220009, 0.45699848, 0.93175194, 0.84602469, 0.47332988, 0.90255503, 0.22599553, 0.30415374]]) k = 0 n = 20 q = array([[ 2.69498384e-01, -8.66857318e-01, 1.15132322e-01, -3.37326146e-01, -9.99868774e-02, 5.06360895e-01, ...-3.47082924e-01, -3.15149032e-01, -1.76318084e-01, -3.36206906e-01, -8.41846253e-02, -1.13299006e-01]]) r = array([[-0.21175731, -0.96984196, 0.53176507, 0.04748379, 0.01153947, 0.35993267, 0.33259775, -0.36154501... , 0. , 0. , 0. , 0. , 0. , 0. , 0. , -2.68452257]]) rng = RandomState(MT19937) at 0x7FFB560BFD40 self = ___________________________ TestRQ.test_random_tall ____________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:2005: in test_random_tall assert_array_almost_equal(q @ q.T, eye(n)) E AssertionError: E Arrays are not almost equal to 6 decimals E E Mismatched elements: 9984 / 10000 (99.8%) E Max absolute difference among violations: 0.71780607 E Max relative difference among violations: 0.37768159 E ACTUAL: array([[ 1.045700e+00, -7.878657e-02, -1.866286e-01, ..., 8.158118e-02, E 2.053039e-01, -5.186127e-02], E [-7.878657e-02, 1.086648e+00, 1.138351e-01, ..., -1.994992e-02,... E DESIRED: array([[1., 0., 0., ..., 0., 0., 0.], E [0., 1., 0., ..., 0., 0., 0.], E [0., 0., 1., ..., 0., 0., 0.],... a = array([[0.19151945, 0.62210877, 0.43772774, ..., 0.81920207, 0.05711564, 0.66942174], [0.76711663, 0.70...7263], [0.04373334, 0.32839769, 0.35004613, ..., 0.98482789, 0.98926689, 0.81155077]], shape=(200, 100)) k = 0 m = 200 n = 100 q = array([[ 0.24244244, 0.20786597, 0.26528812, ..., -0.02065961, 0.09700875, 0.01734564], [-0.1664665... [-0.00759007, -0.05699458, -0.06075174, ..., -0.17092036, -0.17169076, -0.1408475 ]], shape=(100, 100)) r = array([[ 0.03031295, -0.11596708, -1.00135872, ..., -0.45004291, 0.63238973, -0.25584718], [ 0.4852274... [ 0. , 0. , 0. , ..., 0. , 0. , -5.7619111 ]], shape=(200, 100)) rng = RandomState(MT19937) at 0x7FFB56C00540 self = ___________________________ TestRQ.test_random_trap ____________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:2015: in test_random_trap assert_array_almost_equal(q @ q.T, eye(n)) E AssertionError: E Arrays are not almost equal to 6 decimals E E Mismatched elements: 34359 / 40000 (85.9%) E Max absolute difference among violations: 0.44405747 E Max relative difference among violations: 0.36343564 E ACTUAL: array([[ 1.363436e+000, -1.668044e-001, -4.822176e-002, ..., E -4.761382e-002, -1.239824e-001, 2.514598e-001], E [-1.668044e-001, 1.000000e+000, -5.708256e-310, ...,... E DESIRED: array([[1., 0., 0., ..., 0., 0., 0.], E [0., 1., 0., ..., 0., 0., 0.], E [0., 0., 1., ..., 0., 0., 0.],... a = array([[0.19151945, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [0.97903882, 0.88...5711], [0.96025085, 0.84166885, 0.6709539 , ..., 0.98482789, 0.98926689, 0.81155077]], shape=(100, 200)) k = 0 m = 100 n = 200 q = array([[ 5.31920484e-001, -1.66804431e-001, -4.82217646e-002, ..., -8.02923386e-002, -1.33597661e-002, -4.1336...42e-001, -8.16002790e-002, ..., -1.19773103e-001, -1.20312966e-001, -9.86994331e-002]], shape=(200, 200)) r = array([[ 0. , 0. , 0. , ..., -0.09462576, 0.66146999, -0.53497846], [ 0. ... [ 0. , 0. , 0. , ..., 0. , 0. , -8.22244616]], shape=(100, 200)) rng = RandomState(MT19937) at 0x7FFB56C00C40 self = _______________________ TestRQ.test_random_trap_economic _______________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:2025: in test_random_trap_economic assert_array_almost_equal(q @ q.T, eye(m)) E AssertionError: E Arrays are not almost equal to 6 decimals E E Mismatched elements: 9984 / 10000 (99.8%) E Max absolute difference among violations: 0.44405747 E Max relative difference among violations: 0.2568795 E ACTUAL: array([[ 9.233953e-01, -4.184818e-02, 4.179615e-02, ..., -5.826710e-02, E -4.462183e-02, 9.369243e-02], E [-4.184818e-02, 9.150350e-01, 8.787761e-02, ..., 6.570544e-02,... E DESIRED: array([[1., 0., 0., ..., 0., 0., 0.], E [0., 1., 0., ..., 0., 0., 0.], E [0., 0., 1., ..., 0., 0., 0.],... a = array([[0.19151945, 0.62210877, 0.43772774, ..., 0.10310444, 0.80237418, 0.94555324], [0.97903882, 0.88...5711], [0.96025085, 0.84166885, 0.6709539 , ..., 0.98482789, 0.98926689, 0.81155077]], shape=(100, 200)) k = 0 m = 100 n = 200 q = array([[ 0.07736711, 0.13296007, 0.02475708, ..., 0.01450525, -0.01984509, -0.01049211], [-0.105539 ... [-0.11678409, -0.10236234, -0.08160028, ..., -0.1197731 , -0.12031297, -0.09869943]], shape=(100, 200)) r = array([[-3.72674537, -0.89080964, 0.07206417, ..., -0.09462576, 0.66146999, -0.53497846], [ 0. ... [ 0. , 0. , 0. , ..., 0. , 0. , -8.22244616]], shape=(100, 100)) rng = RandomState(MT19937) at 0x7FFB56C01340 self = ____________________ TestOrdQZWorkspaceSize.test_decompose _____________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:2714: in test_decompose _ = ordqz(A, B, sort=lambda alpha, beta: alpha < beta, A = array([[0.38890303, 0.32616784, 0.1720763 , ..., 0.79505141, 0.73674798, 0.39579419], [0.14819737, 0.39...0827], [0.5852234 , 0.02396806, 0.106866 , ..., 0.26714202, 0.92660347, 0.21636344]], shape=(202, 202)) B = array([[0.71756448, 0.45753173, 0.06831933, ..., 0.8825091 , 0.38685156, 0.02061358], [0.23292145, 0.59...908 ], [0.43619185, 0.81558903, 0.90150605, ..., 0.20644437, 0.33727252, 0.50366199]], shape=(202, 202)) N = 202 _ = (array([[-3.4903092 , -2.06675 , 0.11652076, ..., 0.8364757 , -1.5165702 , 0.08241284], [ 2.017703...7427, -0.04549868, 0.07643209, ..., 0.06661455, 0.08457283, 0.02797085]], shape=(202, 202), dtype=float32)) ddtype = rng = RandomState(MT19937) at 0x7FFB56C01B40 self = lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.38890303, 0.32616784, 0.1720763 , ..., 0.79505141, 0.73674798, 0.39579419], [0.14819737, 0.3...08 ], [0.43619185, 0.81558903, 0.90150605, ..., 0.20644437, 0.33727252, 0.50366199]], shape=(202, 202))] array = array([[0.71756448, 0.45753173, 0.06831933, ..., 0.8825091 , 0.38685156, 0.02061358], [0.23292145, 0.59...908 ], [0.43619185, 0.81558903, 0.90150605, ..., 0.20644437, 0.33727252, 0.50366199]], shape=(202, 202)) arrays = [array([[0.38890303, 0.32616784, 0.1720763 , ..., 0.79505141, 0.73674798, 0.39579419], [0.14819737, 0.3...08 ], [0.43619185, 0.81558903, 0.90150605, ..., 0.20644437, 0.33727252, 0.50366199]], shape=(202, 202))] batch_shapes = [(), ()] core_shapes = [(202, 202), (202, 202)] f = i = 1 kwargs = {'output': 'real', 'sort': . at 0x7ffb56c27920>} n_arrays = 2 name = 'B' names = ('A', 'B') ndim = 2 ndims = (2, 2) other_args = [] shape = (202, 202) lib/python3.12/site-packages/scipy/linalg/_decomp_qz.py:446: in ordqz raise ValueError("Reordering of (A, B) failed because the transformed" E ValueError: Reordering of (A, B) failed because the transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is very ill-conditioned. (A, B) may have been partially reordered. A = array([[0.38890303, 0.32616784, 0.1720763 , ..., 0.79505141, 0.73674798, 0.39579419], [0.14819737, 0.39...0827], [0.5852234 , 0.02396806, 0.106866 , ..., 0.26714202, 0.92660347, 0.21636344]], shape=(202, 202)) AA = array([[ 4.11348623, -0.0876959 , -0.21843416, ..., 0.54464776, 0.23957018, 0.30143577], [ 0. ... [ 0. , 0. , 0. , ..., 0. , 0. , 0.03156593]], shape=(202, 202)) AAA = array([[-4.07674921, 0.36575855, -0.0068447 , ..., -0.15197039, 0.04480113, -0.42453354], [ 0. ... [ 0. , 0. , 0. , ..., 0. , 0. , 0.03156593]], shape=(202, 202)) B = array([[0.71756448, 0.45753173, 0.06831933, ..., 0.8825091 , 0.38685156, 0.02061358], [0.23292145, 0.59...908 ], [0.43619185, 0.81558903, 0.90150605, ..., 0.20644437, 0.33727252, 0.50366199]], shape=(202, 202)) BB = array([[ 0.05405329, 0.56307505, 0.21938807, ..., 0.3497386 , -0.48316039, -0.61094439], [ 0. ... [ 0. , 0. , 0. , ..., 0. , 0. , 4.07983194]], shape=(202, 202)) BBB = array([[ 0.52436528, 0.02013754, -0.0826529 , ..., 0.0092515 , 0.2927665 , 0.6764781 ], [ 0. ... [ 0. , 0. , 0. , ..., 0. , 0. , 4.07983194]], shape=(202, 202)) Q = array([[ 0.13683074, -0.02413039, -0.07503981, ..., 0.09505249, -0.02853819, -0.15060918], [-0.0222714... [-0.03169011, 0.01625303, -0.10741551, ..., 0.11912145, 0.11097576, 0.0275264 ]], shape=(202, 202)) QQ = array([[-0.17143004, 0.06671899, -0.10246145, ..., 0.09505249, -0.02853819, -0.15060918], [-0.0285193... [ 0.0122806 , 0.01583156, -0.0731617 , ..., 0.11912145, 0.11097576, 0.0275264 ]], shape=(202, 202)) Z = array([[-0.0207455 , -0.00912288, 0.01450224, ..., 0.00688018, 0.09029163, -0.00693864], [ 0.0739280... [ 0.07144044, 0.05778584, 0.09093355, ..., 0.00657923, -0.0785728 , 0.00318294]], shape=(202, 202)) ZZ = array([[ 0.02126954, 0.00321635, 0.05256574, ..., 0.00688018, 0.09029163, -0.00693864], [-0.0039548... [-0.02071906, 0.03215941, 0.04681432, ..., 0.00657923, -0.0785728 , 0.00318294]], shape=(202, 202)) _ = array([0., 0.]) ab = [array([-4.07674921, -0.32800076, -0.32800076, 4.07561966, 0.35652389, 0.35652389, 4.47762278, 1.20914482,...653583, 6.73653583, 7.47344166, 7.47344166, 7.84672448, 7.84672448, 3.47454979, 4.39344637, 4.07983194])] alpha = array([-4.07674921+0.j , -0.32800076+1.67199924j, -0.32800076-1.67199924j, 4.07561966+0.j , ...34j, 0.8283966 -0.99194034j, 0.54446733+0.j , 0.43911724+0.j , 0.03156593+0.j ]) beta = array([0.52436528, 0.30750305, 0.30750305, 0.0535557 , 0.10776874, 0.10776874, 0.50551976, 0.2687964 , 0.268796...3653583, 6.73653583, 7.47344166, 7.47344166, 7.84672448, 7.84672448, 3.47454979, 4.39344637, 4.07983194]) check_finite = True info = 1 lwork = 824 output = 'real' overwrite_a = False overwrite_b = False select = array([False, False, False, False, True, True, True, False, False, True, True, True, True, True, False,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) sfunction = . at 0x7ffb56c27920> sort = . at 0x7ffb56c27920> tgsen = typ = 'd' __________________________________ test_orth ___________________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:2959: in test_orth _check_orth(n, dt) dt = dtypes = [, , , ] n = 10 sizes = [1, 2, 3, 10, 100] lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:2932: in _check_orth assert_equal(Y.shape, (n, 5)) E AssertionError: E Items are not equal: E item=1 E E ACTUAL: 9 E DESIRED: 5 X = array([[0.36579125, 0.90926379, 0.88155503, 0.5995628 , 0.38253164, 0.71395694, 0.9797001 , 0.80803963, 1.1272..., 1.02357186, 1.04130639, 0.90800057, 0.51307809, 0.84807372, 1.37332845, 0.98799764, 1.53401603, 1.31868935]]) Y = array([[-0.15173023, 0.13167439, -0.53761239, 0.22674391, -0.22865215, -0.32108462, 0.54141477, 0.23982413...3029, 0.15657716, -0.41994068, 0.18329629, 0.10078827, -0.18665259, -0.72618522, 0.30313564, 0.17301928]]) dtype = eps = np.float64(2.220446049250313e-16) n = 10 rng = RandomState(MT19937) at 0x7FFB56C02840 skip_big = False tol = np.float64(2.220446049250313e-13) ________________________ TestNullSpace.test_null_space _________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:2995: in test_null_space assert_allclose(X @ Y, 0, atol=tol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0.000119209 E E Mismatched elements: 22 / 24 (91.7%) E Max absolute difference among violations: 1.64863511 E Max relative difference among violations: inf E ACTUAL: array([[-5.804193e-01, 7.127500e-01, -1.295354e-16, -5.118815e-17], E [-1.196464e+00, 6.995831e-01, 2.126951e-01, 1.355382e-01], E [ 4.110259e-01, 1.133274e+00, 2.096094e-01, 1.011338e-01],... E DESIRED: array(0) X = array([[-2.06014071, -0.3224172 , -0.38405435, 1.13376944, -1.09989127, -0.17242821, -0.87785842, 0.04221375...2982, -0.29809284, 0.48851815, -0.07557171, 1.13162939, 1.51981682, 2.18557541, -1.39649634, -1.44411381]]) Y = array([[-0.1122243 , 0.10498579, -0.09186756, -0.15594778], [ 0.105916 , -0.03480567, 0.62446311, 0.3044830... [-0.13191461, 0.24311902, 0.41404327, 0.29180314], [ 0.14857936, -0.06443625, 0.0854801 , 0.33731446]]) dt = dtypes = [, , , ] eps = np.float32(1.1920929e-07) n = 10 rng = RandomState(MT19937) at 0x7FFB56C03140 self = sizes = [1, 2, 3, 10, 100] tol = np.float32(0.00011920929) ____________ TestNullSpace.test_null_space_options[gesdd-True-True] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:3027: in test_null_space_options assert_allclose(X @ Y, 0, atol=np.finfo(X.dtype).eps*100) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 22 / 24 (91.7%) E Max absolute difference among violations: 1.61958812 E Max relative difference among violations: inf E ACTUAL: array([[-6.842780e-01, -2.411524e-01, -1.828996e-16, 1.830320e-16], E [ 6.647441e-01, 1.226333e+00, 1.477591e-01, -1.155208e-01], E [ 1.768874e-01, 3.574653e-02, 4.591763e-01, -4.620051e-01],... E DESIRED: array(0) X = array([[-0.1358444 , -0.72732114, 0.93313538, -0.53818704, -0.57688657, -0.49154752, -0.73961001, 0.01383596...5689, -1.70972619, -1.8287671 , 0.94790153, 1.79693875, -0.77086845, -0.66980433, -0.10967342, 1.10951583]]) Y = array([[ 9.19512521e-04, -4.43248172e-02, 3.00776885e-01, -2.95468456e-01], [-1.23015652e-03, -2.45394...34e-01, 2.26122118e-01], [-4.30099390e-02, 7.22168817e-02, 1.62913511e-01, 4.03485369e-01]]) check_finite = True lapack_driver = 'gesdd' n = 10 overwrite_a = True rng = Generator(PCG64) at 0x7FFB56C3BCA0 self = ___________ TestNullSpace.test_null_space_options[gesdd-True-False] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:3027: in test_null_space_options assert_allclose(X @ Y, 0, atol=np.finfo(X.dtype).eps*100) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 22 / 24 (91.7%) E Max absolute difference among violations: 1.61958812 E Max relative difference among violations: inf E ACTUAL: array([[-6.842780e-01, -2.411524e-01, -1.828996e-16, 1.830320e-16], E [ 6.647441e-01, 1.226333e+00, 1.477591e-01, -1.155208e-01], E [ 1.768874e-01, 3.574653e-02, 4.591763e-01, -4.620051e-01],... E DESIRED: array(0) X = array([[-0.1358444 , -0.72732114, 0.93313538, -0.53818704, -0.57688657, -0.49154752, -0.73961001, 0.01383596...5689, -1.70972619, -1.8287671 , 0.94790153, 1.79693875, -0.77086845, -0.66980433, -0.10967342, 1.10951583]]) Y = array([[ 9.19512521e-04, -4.43248172e-02, 3.00776885e-01, -2.95468456e-01], [-1.23015652e-03, -2.45394...34e-01, 2.26122118e-01], [-4.30099390e-02, 7.22168817e-02, 1.62913511e-01, 4.03485369e-01]]) check_finite = True lapack_driver = 'gesdd' n = 10 overwrite_a = False rng = Generator(PCG64) at 0x7FFB56CA4580 self = ___________ TestNullSpace.test_null_space_options[gesdd-False-True] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:3027: in test_null_space_options assert_allclose(X @ Y, 0, atol=np.finfo(X.dtype).eps*100) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 22 / 24 (91.7%) E Max absolute difference among violations: 1.61958812 E Max relative difference among violations: inf E ACTUAL: array([[-6.842780e-01, -2.411524e-01, -1.828996e-16, 1.830320e-16], E [ 6.647441e-01, 1.226333e+00, 1.477591e-01, -1.155208e-01], E [ 1.768874e-01, 3.574653e-02, 4.591763e-01, -4.620051e-01],... E DESIRED: array(0) X = array([[-0.1358444 , -0.72732114, 0.93313538, -0.53818704, -0.57688657, -0.49154752, -0.73961001, 0.01383596...5689, -1.70972619, -1.8287671 , 0.94790153, 1.79693875, -0.77086845, -0.66980433, -0.10967342, 1.10951583]]) Y = array([[ 9.19512521e-04, -4.43248172e-02, 3.00776885e-01, -2.95468456e-01], [-1.23015652e-03, -2.45394...34e-01, 2.26122118e-01], [-4.30099390e-02, 7.22168817e-02, 1.62913511e-01, 4.03485369e-01]]) check_finite = False lapack_driver = 'gesdd' n = 10 overwrite_a = True rng = Generator(PCG64) at 0x7FFB56CA4D60 self = ___________ TestNullSpace.test_null_space_options[gesdd-False-False] ___________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:3027: in test_null_space_options assert_allclose(X @ Y, 0, atol=np.finfo(X.dtype).eps*100) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 22 / 24 (91.7%) E Max absolute difference among violations: 1.61958812 E Max relative difference among violations: inf E ACTUAL: array([[-6.842780e-01, -2.411524e-01, -1.828996e-16, 1.830320e-16], E [ 6.647441e-01, 1.226333e+00, 1.477591e-01, -1.155208e-01], E [ 1.768874e-01, 3.574653e-02, 4.591763e-01, -4.620051e-01],... E DESIRED: array(0) X = array([[-0.1358444 , -0.72732114, 0.93313538, -0.53818704, -0.57688657, -0.49154752, -0.73961001, 0.01383596...5689, -1.70972619, -1.8287671 , 0.94790153, 1.79693875, -0.77086845, -0.66980433, -0.10967342, 1.10951583]]) Y = array([[ 9.19512521e-04, -4.43248172e-02, 3.00776885e-01, -2.95468456e-01], [-1.23015652e-03, -2.45394...34e-01, 2.26122118e-01], [-4.30099390e-02, 7.22168817e-02, 1.62913511e-01, 4.03485369e-01]]) check_finite = False lapack_driver = 'gesdd' n = 10 overwrite_a = False rng = Generator(PCG64) at 0x7FFB56CA5540 self = ____________ TestNullSpace.test_null_space_options[gesvd-True-True] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:3027: in test_null_space_options assert_allclose(X @ Y, 0, atol=np.finfo(X.dtype).eps*100) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 23 / 24 (95.8%) E Max absolute difference among violations: 1.56964625 E Max relative difference among violations: inf E ACTUAL: array([[-8.866289e-01, -2.147357e-01, 2.152027e-01, 6.871800e-17], E [ 5.321316e-01, 1.569646e+00, 4.567201e-01, -1.183092e+00], E [ 5.252915e-01, 1.903121e-01, -1.166426e-01, 2.018902e-01],... E DESIRED: array(0) X = array([[-0.1358444 , -0.72732114, 0.93313538, -0.53818704, -0.57688657, -0.49154752, -0.73961001, 0.01383596...5689, -1.70972619, -1.8287671 , 0.94790153, 1.79693875, -0.77086845, -0.66980433, -0.10967342, 1.10951583]]) Y = array([[ 2.92338191e-02, -7.00251156e-02, -5.06898268e-02, 2.31827740e-01], [ 3.30081938e-02, -4.25272...70e-01, -3.11580357e-03], [-5.74261654e-02, -2.48673074e-02, 1.46774559e-01, 4.35648280e-01]]) check_finite = True lapack_driver = 'gesvd' n = 10 overwrite_a = True rng = Generator(PCG64) at 0x7FFB56CA5D20 self = ___________ TestNullSpace.test_null_space_options[gesvd-True-False] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:3027: in test_null_space_options assert_allclose(X @ Y, 0, atol=np.finfo(X.dtype).eps*100) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 23 / 24 (95.8%) E Max absolute difference among violations: 1.56964625 E Max relative difference among violations: inf E ACTUAL: array([[-8.866289e-01, -2.147357e-01, 2.152027e-01, 6.871800e-17], E [ 5.321316e-01, 1.569646e+00, 4.567201e-01, -1.183092e+00], E [ 5.252915e-01, 1.903121e-01, -1.166426e-01, 2.018902e-01],... E DESIRED: array(0) X = array([[-0.1358444 , -0.72732114, 0.93313538, -0.53818704, -0.57688657, -0.49154752, -0.73961001, 0.01383596...5689, -1.70972619, -1.8287671 , 0.94790153, 1.79693875, -0.77086845, -0.66980433, -0.10967342, 1.10951583]]) Y = array([[ 2.92338191e-02, -7.00251156e-02, -5.06898268e-02, 2.31827740e-01], [ 3.30081938e-02, -4.25272...70e-01, -3.11580357e-03], [-5.74261654e-02, -2.48673074e-02, 1.46774559e-01, 4.35648280e-01]]) check_finite = True lapack_driver = 'gesvd' n = 10 overwrite_a = False rng = Generator(PCG64) at 0x7FFB56CA6500 self = ___________ TestNullSpace.test_null_space_options[gesvd-False-True] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:3027: in test_null_space_options assert_allclose(X @ Y, 0, atol=np.finfo(X.dtype).eps*100) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 23 / 24 (95.8%) E Max absolute difference among violations: 1.56964625 E Max relative difference among violations: inf E ACTUAL: array([[-8.866289e-01, -2.147357e-01, 2.152027e-01, 6.871800e-17], E [ 5.321316e-01, 1.569646e+00, 4.567201e-01, -1.183092e+00], E [ 5.252915e-01, 1.903121e-01, -1.166426e-01, 2.018902e-01],... E DESIRED: array(0) X = array([[-0.1358444 , -0.72732114, 0.93313538, -0.53818704, -0.57688657, -0.49154752, -0.73961001, 0.01383596...5689, -1.70972619, -1.8287671 , 0.94790153, 1.79693875, -0.77086845, -0.66980433, -0.10967342, 1.10951583]]) Y = array([[ 2.92338191e-02, -7.00251156e-02, -5.06898268e-02, 2.31827740e-01], [ 3.30081938e-02, -4.25272...70e-01, -3.11580357e-03], [-5.74261654e-02, -2.48673074e-02, 1.46774559e-01, 4.35648280e-01]]) check_finite = False lapack_driver = 'gesvd' n = 10 overwrite_a = True rng = Generator(PCG64) at 0x7FFB56CA6CE0 self = ___________ TestNullSpace.test_null_space_options[gesvd-False-False] ___________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py:3027: in test_null_space_options assert_allclose(X @ Y, 0, atol=np.finfo(X.dtype).eps*100) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 23 / 24 (95.8%) E Max absolute difference among violations: 1.56964625 E Max relative difference among violations: inf E ACTUAL: array([[-8.866289e-01, -2.147357e-01, 2.152027e-01, 6.871800e-17], E [ 5.321316e-01, 1.569646e+00, 4.567201e-01, -1.183092e+00], E [ 5.252915e-01, 1.903121e-01, -1.166426e-01, 2.018902e-01],... E DESIRED: array(0) X = array([[-0.1358444 , -0.72732114, 0.93313538, -0.53818704, -0.57688657, -0.49154752, -0.73961001, 0.01383596...5689, -1.70972619, -1.8287671 , 0.94790153, 1.79693875, -0.77086845, -0.66980433, -0.10967342, 1.10951583]]) Y = array([[ 2.92338191e-02, -7.00251156e-02, -5.06898268e-02, 2.31827740e-01], [ 3.30081938e-02, -4.25272...70e-01, -3.11580357e-03], [-5.74261654e-02, -2.48673074e-02, 1.46774559e-01, 4.35648280e-01]]) check_finite = False lapack_driver = 'gesvd' n = 10 overwrite_a = False rng = Generator(PCG64) at 0x7FFB56CA74C0 self = ___________________________ TestCholesky.test_random ___________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cholesky.py:54: in test_random assert_array_almost_equal(cholesky(a, lower=1), c) E AssertionError: E Arrays are not almost equal to 6 decimals E E Mismatched elements: 132 / 400 (33%) E Max absolute difference among violations: 2.96232998 E Max relative difference among violations: 16.3454148 E ACTUAL: array([[ 1.599656e+01, 0.000000e+00, 0.000000e+00, 0.000000e+00, E 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, E 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,... E DESIRED: array([[ 1.599656e+01, 0.000000e+00, 0.000000e+00, 0.000000e+00, E 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, E 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,... a = array([[255.88999675, 5.94710531, 20.25452511, 10.36671251, 7.84921945, 31.71206574, 8.79351482, 9....3.79302481, 14.4907354 , 24.59539096, 7.67182143, 11.11502379, 22.95340293, 16.79255457, 196.24489809]]) a1 = array([[255.88999675, 5.94710531, 20.25452511, 10.36671251, 7.84921945, 31.71206574, 8.79351482, 9....3.79302481, 14.4907354 , 24.59539096, 7.67182143, 11.11502379, 22.95340293, 16.79255457, 196.24489809]]) c = array([[ 1.59965620e+01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ... 1.30493065e+00, 6.90310119e-01, -3.59398457e-01, 7.21243777e-01, -3.47905866e-01, 1.32523819e+01]]) i = 19 k = 0 m = array([[1.58851284e+01, 9.21686304e-02, 9.66305759e-01, 4.85322408e-01, 3.01749008e-01, 9.40168836e-01, 3.6270...59329320e-01, 5.61688385e-01, 1.93230888e-01, 2.20637835e-01, 2.74389271e-01, 7.10523004e-01, 1.37422415e+01]]) n = 20 self = ______________________ test_cossin[True-40-12-20-float64] ______________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py:40: in test_cossin assert_allclose(x, u @ cs @ vh, rtol=0., atol=m*1e3*np.finfo(dtype_).eps) E AssertionError: E Not equal to tolerance rtol=0, atol=8.88178e-12 E E Mismatched elements: 1560 / 1600 (97.5%) E Max absolute difference among violations: 0.5434886 E Max relative difference among violations: 2976.50390747 E ACTUAL: array([[-0.023675, 0.401194, -0.053686, ..., 0.173375, 0.375826, E 0.015858], E [ 0.013268, -0.070994, -0.066108, ..., -0.156254, -0.061194,... E DESIRED: array([[-0.023675, 0.401194, -0.053686, ..., 0.173375, 0.375826, E 0.015858], E [ 0.000881, -0.020079, 0.027631, ..., -0.024289, -0.214636,... cs = array([[0.98494805, 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0.97... ], [0. , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(40, 40)) dtype_ = m = 40 p = 12 q = 20 rng = Generator(PCG64) at 0x7FFB56C4C900 swap_sign = True u = array([[ 0.17258873, 0.08652083, 0.71834568, ..., 0. , 0. , 0. ], [ 0.3587475...], [ 0. , 0. , 0. , ..., -0.06349466, 0.17789515, -0.02098862]], shape=(40, 40)) vh = array([[ 0.04116502, 0.30348394, 0.11287337, ..., 0. , 0. , 0. ], [-0.0216861...], [ 0. , 0. , 0. , ..., -0.14692358, 0.03922157, -0.15658491]], shape=(40, 40)) x = array([[-0.02367539, 0.40119369, -0.05368597, ..., 0.17337501, 0.37582623, 0.01585775], [ 0.0132678...], [ 0.15149911, 0.17614881, -0.08100508, ..., -0.14594388, -0.35172258, -0.04196982]], shape=(40, 40)) ______________________ test_cossin[True-40-30-1-float64] _______________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py:40: in test_cossin assert_allclose(x, u @ cs @ vh, rtol=0., atol=m*1e3*np.finfo(dtype_).eps) E AssertionError: E Not equal to tolerance rtol=0, atol=8.88178e-12 E E Mismatched elements: 1560 / 1600 (97.5%) E Max absolute difference among violations: 0.64522611 E Max relative difference among violations: 912.45887561 E ACTUAL: array([[-0.023675, 0.401194, -0.053686, ..., 0.173375, 0.375826, E 0.015858], E [ 0.013268, -0.070994, -0.066108, ..., -0.156254, -0.061194,... E DESIRED: array([[-0.023675, 0.102132, -0.04859 , ..., -0.029886, 0.303727, E 0.008516], E [ 0.013268, -0.047373, -0.064221, ..., -0.157195, -0.059154,... cs = array([[ 0.91110333, 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ...], [-0.41217803, 0. , 0. , ..., 0. , 0. , 0. ]], shape=(40, 40)) dtype_ = m = 40 p = 30 q = 1 rng = Generator(PCG64) at 0x7FFB56C4D0E0 swap_sign = True u = array([[-0.02598541, 0.01456243, -0.07645213, ..., 0. , 0. , 0. ], [ 0.0145624...], [ 0. , 0. , 0. , ..., -0.20129659, 0.87947866, -0.36755746]], shape=(40, 40)) vh = array([[ 1. , 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ...], [ 0. , 0.00123783, 0.04570412, ..., -0.09414284, -0.01125577, 0.24576818]], shape=(40, 40)) x = array([[-0.02367539, 0.40119369, -0.05368597, ..., 0.17337501, 0.37582623, 0.01585775], [ 0.0132678...], [ 0.15149911, 0.17614881, -0.08100508, ..., -0.14594388, -0.35172258, -0.04196982]], shape=(40, 40)) ______________________ test_cossin[True-40-1-30-float64] _______________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py:40: in test_cossin assert_allclose(x, u @ cs @ vh, rtol=0., atol=m*1e3*np.finfo(dtype_).eps) E AssertionError: E Not equal to tolerance rtol=0, atol=8.88178e-12 E E Mismatched elements: 1560 / 1600 (97.5%) E Max absolute difference among violations: 0.38826137 E Max relative difference among violations: 307.25205519 E ACTUAL: array([[-0.023675, 0.401194, -0.053686, ..., 0.173375, 0.375826, E 0.015858], E [ 0.013268, -0.070994, -0.066108, ..., -0.156254, -0.061194,... E DESIRED: array([[-0.023675, 0.401194, -0.053686, ..., 0.173375, 0.375826, E 0.015858], E [-0.011092, -0.059959, -0.067585, ..., -0.157103, -0.063033,... cs = array([[ 0.861906 , 0. , 0. , ..., 0. , 0. , 0.50706809], [ 0. ...], [ 0. , -0. , -0. , ..., 0. , 0. , 0. ]], shape=(40, 40)) dtype_ = m = 40 p = 1 q = 30 rng = Generator(PCG64) at 0x7FFB56C4D8C0 swap_sign = True u = array([[ 1. , 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ...], [ 0. , 0.04562895, -0.12622148, ..., 0.01213185, 0.16977495, -0.13421545]], shape=(40, 40)) vh = array([[-2.74686471e-002, 4.65472676e-001, -6.22875050e-002, ..., 0.00000000e+000, 0.00000000e+000, 0.0000...0000e+000, 0.00000000e+000, ..., 3.41916628e-001, 7.41175066e-001, 3.12734133e-002]], shape=(40, 40)) x = array([[-0.02367539, 0.40119369, -0.05368597, ..., 0.17337501, 0.37582623, 0.01585775], [ 0.0132678...], [ 0.15149911, 0.17614881, -0.08100508, ..., -0.14594388, -0.35172258, -0.04196982]], shape=(40, 40)) ______________________ test_cossin[True-100-50-1-float64] ______________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py:40: in test_cossin assert_allclose(x, u @ cs @ vh, rtol=0., atol=m*1e3*np.finfo(dtype_).eps) E AssertionError: E Not equal to tolerance rtol=0, atol=2.22045e-11 E E Mismatched elements: 9900 / 10000 (99%) E Max absolute difference among violations: 0.52224937 E Max relative difference among violations: 5411.36002388 E ACTUAL: array([[-0.015377, 0.215435, -0.114384, ..., -0.10823 , -0.126455, E -0.056313], E [ 0.103618, -0.040978, 0.135694, ..., -0.047162, 0.025084,... E DESIRED: array([[-0.015377, 0.066363, -0.034301, ..., -0.063861, -0.051164, E -0.06415 ], E [ 0.103618, 0.013788, 0.10654 , ..., -0.046959, 0.010562,... cs = array([[ 0.66471537, 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ... [-0.7470967 , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(100, 100)) dtype_ = m = 100 p = 50 q = 1 rng = Generator(PCG64) at 0x7FFB56C4E0A0 swap_sign = True u = array([[-0.02313306, 0.15588329, 0.34875221, ..., 0. , 0. , 0. ], [ 0.1558832... [ 0. , 0. , 0. , ..., 0.00968584, 0.99686694, 0.05313448]], shape=(100, 100)) vh = array([[ 1. , 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ... [ 0. , 0.00433458, -0.03746319, ..., 0.26069566, 0.21907132, 0.00348133]], shape=(100, 100)) x = array([[-0.0153769 , 0.21543488, -0.11438388, ..., -0.10823024, -0.12645484, -0.05631288], [ 0.1036180... [-0.0396966 , -0.15392758, -0.03238665, ..., 0.10875294, 0.11165119, 0.03410254]], shape=(100, 100)) _____________________ test_cossin[True-100-50-50-float64] ______________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py:40: in test_cossin assert_allclose(x, u @ cs @ vh, rtol=0., atol=m*1e3*np.finfo(dtype_).eps) E AssertionError: E Not equal to tolerance rtol=0, atol=2.22045e-11 E E Mismatched elements: 9900 / 10000 (99%) E Max absolute difference among violations: 0.47222134 E Max relative difference among violations: 4448.14892404 E ACTUAL: array([[-0.015377, 0.215435, -0.114384, ..., -0.10823 , -0.126455, E -0.056313], E [ 0.103618, -0.040978, 0.135694, ..., -0.047162, 0.025084,... E DESIRED: array([[-0.015377, -0.048979, -0.069057, ..., -0.100605, 0.030863, E -0.05647 ], E [ 0.103618, -0.025601, 0.161992, ..., -0.051862, -0.115355,... cs = array([[ 0.99993388, 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ... [-0. , -0. , -0. , ..., 0. , 0. , 0.00917519]], shape=(100, 100)) dtype_ = m = 100 p = 50 q = 50 rng = Generator(PCG64) at 0x7FFB56C4E880 swap_sign = True u = array([[-0.07863081, -0.00515287, -0.13416801, ..., 0. , 0. , 0. ], [-0.1081250... [ 0. , 0. , 0. , ..., -0.13462062, 0.1259641 , -0.14198264]], shape=(100, 100)) vh = array([[ 0.07767641, 0.03503222, -0.05458625, ..., 0. , 0. , 0. ], [ 0.0028076... [ 0. , 0. , 0. , ..., -0.0509635 , -0.19824661, -0.07925312]], shape=(100, 100)) x = array([[-0.0153769 , 0.21543488, -0.11438388, ..., -0.10823024, -0.12645484, -0.05631288], [ 0.1036180... [-0.0396966 , -0.15392758, -0.03238665, ..., 0.10875294, 0.11165119, 0.03410254]], shape=(100, 100)) _____________________ test_cossin[False-40-12-20-float64] ______________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py:40: in test_cossin assert_allclose(x, u @ cs @ vh, rtol=0., atol=m*1e3*np.finfo(dtype_).eps) E AssertionError: E Not equal to tolerance rtol=0, atol=8.88178e-12 E E Mismatched elements: 1560 / 1600 (97.5%) E Max absolute difference among violations: 0.61257256 E Max relative difference among violations: 919.9935062 E ACTUAL: array([[-0.023675, 0.401194, -0.053686, ..., 0.173375, 0.375826, E 0.015858], E [ 0.013268, -0.070994, -0.066108, ..., -0.156254, -0.061194,... E DESIRED: array([[-0.023675, 0.401194, -0.053686, ..., 0.173375, 0.375826, E 0.015858], E [-0.009326, -0.02292 , -0.08024 , ..., 0.060879, -0.003062,... cs = array([[ 0.98460346, 0. , 0. , ..., -0. , -0. , -0. ], [ 0. ...], [ 0. , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(40, 40)) dtype_ = m = 40 p = 12 q = 20 rng = Generator(PCG64) at 0x7FFB56C4F060 swap_sign = False u = array([[-0.08528196, -0.74156411, 0.03692927, ..., 0. , 0. , 0. ], [-0.5874805...], [ 0. , 0. , 0. , ..., 0.01983286, -0.04980485, 0.04769705]], shape=(40, 40)) vh = array([[-0.02109614, -0.12147598, -0.05423779, ..., 0. , 0. , 0. ], [ 0.0347116...], [ 0. , 0. , 0. , ..., 0.20337198, 0.00683562, -0.08531878]], shape=(40, 40)) x = array([[-0.02367539, 0.40119369, -0.05368597, ..., 0.17337501, 0.37582623, 0.01585775], [ 0.0132678...], [ 0.15149911, 0.17614881, -0.08100508, ..., -0.14594388, -0.35172258, -0.04196982]], shape=(40, 40)) ______________________ test_cossin[False-40-30-1-float64] ______________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py:40: in test_cossin assert_allclose(x, u @ cs @ vh, rtol=0., atol=m*1e3*np.finfo(dtype_).eps) E AssertionError: E Not equal to tolerance rtol=0, atol=8.88178e-12 E E Mismatched elements: 1560 / 1600 (97.5%) E Max absolute difference among violations: 0.5833698 E Max relative difference among violations: 23180.35178302 E ACTUAL: array([[-0.023675, 0.401194, -0.053686, ..., 0.173375, 0.375826, E 0.015858], E [ 0.013268, -0.070994, -0.066108, ..., -0.156254, -0.061194,... E DESIRED: array([[-0.023675, -0.023555, 0.103206, ..., 0.153094, 0.157345, E -0.056663], E [ 0.013268, 0.02928 , -0.059712, ..., -0.169267, -0.053356,... cs = array([[ 0.91110333, 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ...], [ 0.41217803, 0. , 0. , ..., 0. , 0. , 0. ]], shape=(40, 40)) dtype_ = m = 40 p = 30 q = 1 rng = Generator(PCG64) at 0x7FFB56C4F840 swap_sign = False u = array([[-0.02598541, 0.01456243, -0.07645213, ..., 0. , 0. , 0. ], [ 0.0145624...], [ 0. , 0. , 0. , ..., -0.25669046, 0.84631295, 0.36755746]], shape=(40, 40)) vh = array([[ 1. , 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ...], [ 0. , -0.05103806, 0.04959294, ..., -0.09986921, -0.22120028, 0.06900072]], shape=(40, 40)) x = array([[-0.02367539, 0.40119369, -0.05368597, ..., 0.17337501, 0.37582623, 0.01585775], [ 0.0132678...], [ 0.15149911, 0.17614881, -0.08100508, ..., -0.14594388, -0.35172258, -0.04196982]], shape=(40, 40)) ______________________ test_cossin[False-40-1-30-float64] ______________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py:40: in test_cossin assert_allclose(x, u @ cs @ vh, rtol=0., atol=m*1e3*np.finfo(dtype_).eps) E AssertionError: E Not equal to tolerance rtol=0, atol=8.88178e-12 E E Mismatched elements: 1560 / 1600 (97.5%) E Max absolute difference among violations: 0.38826137 E Max relative difference among violations: 307.25205519 E ACTUAL: array([[-0.023675, 0.401194, -0.053686, ..., 0.173375, 0.375826, E 0.015858], E [ 0.013268, -0.070994, -0.066108, ..., -0.156254, -0.061194,... E DESIRED: array([[-0.023675, 0.401194, -0.053686, ..., 0.173375, 0.375826, E 0.015858], E [-0.011092, -0.059959, -0.067585, ..., -0.173751, -0.099121,... cs = array([[ 0.861906 , 0. , 0. , ..., 0. , 0. , -0.50706809], [ 0. ...], [ 0. , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(40, 40)) dtype_ = m = 40 p = 1 q = 30 rng = Generator(PCG64) at 0x7FFB56224120 swap_sign = False u = array([[ 1. , 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ...], [ 0. , 0.06635964, -0.12669743, ..., -0.01213185, -0.16977495, 0.13421545]], shape=(40, 40)) vh = array([[-2.74686471e-002, 4.65472676e-001, -6.22875050e-002, ..., 0.00000000e+000, 0.00000000e+000, 0.0000...0000e+000, 0.00000000e+000, ..., -3.41916628e-001, -7.41175066e-001, -3.12734133e-002]], shape=(40, 40)) x = array([[-0.02367539, 0.40119369, -0.05368597, ..., 0.17337501, 0.37582623, 0.01585775], [ 0.0132678...], [ 0.15149911, 0.17614881, -0.08100508, ..., -0.14594388, -0.35172258, -0.04196982]], shape=(40, 40)) _____________________ test_cossin[False-100-50-1-float64] ______________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py:40: in test_cossin assert_allclose(x, u @ cs @ vh, rtol=0., atol=m*1e3*np.finfo(dtype_).eps) E AssertionError: E Not equal to tolerance rtol=0, atol=2.22045e-11 E E Mismatched elements: 9900 / 10000 (99%) E Max absolute difference among violations: 0.55463243 E Max relative difference among violations: 5009.98389796 E ACTUAL: array([[-0.015377, 0.215435, -0.114384, ..., -0.10823 , -0.126455, E -0.056313], E [ 0.103618, -0.040978, 0.135694, ..., -0.047162, 0.025084,... E DESIRED: array([[-0.015377, -0.016002, -0.039713, ..., 0.062285, -0.095592, E 0.040009], E [ 0.103618, -0.042799, 0.101793, ..., -0.063882, 0.016336,... cs = array([[ 0.66471537, 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ... [ 0.7470967 , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(100, 100)) dtype_ = m = 100 p = 50 q = 1 rng = Generator(PCG64) at 0x7FFB56224900 swap_sign = False u = array([[-0.02313306, 0.15588329, 0.34875221, ..., 0. , 0. , 0. ], [ 0.1558832... [ 0. , 0. , 0. , ..., 0.0079428 , 0.99743076, -0.05313448]], shape=(100, 100)) vh = array([[ 1. , 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ... [ 0. , 0.0140291 , -0.0899826 , ..., -0.2715448 , 0.04009434, -0.01561184]], shape=(100, 100)) x = array([[-0.0153769 , 0.21543488, -0.11438388, ..., -0.10823024, -0.12645484, -0.05631288], [ 0.1036180... [-0.0396966 , -0.15392758, -0.03238665, ..., 0.10875294, 0.11165119, 0.03410254]], shape=(100, 100)) _____________________ test_cossin[False-100-50-50-float64] _____________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py:40: in test_cossin assert_allclose(x, u @ cs @ vh, rtol=0., atol=m*1e3*np.finfo(dtype_).eps) E AssertionError: E Not equal to tolerance rtol=0, atol=2.22045e-11 E E Mismatched elements: 9900 / 10000 (99%) E Max absolute difference among violations: 0.45640141 E Max relative difference among violations: 21579.04601264 E ACTUAL: array([[-0.015377, 0.215435, -0.114384, ..., -0.10823 , -0.126455, E -0.056313], E [ 0.103618, -0.040978, 0.135694, ..., -0.047162, 0.025084,... E DESIRED: array([[-1.537690e-02, -5.429947e-03, -6.437348e-02, ..., -1.041001e-01, E -8.071787e-02, -3.348859e-02], E [ 1.036180e-01, -7.497993e-03, 8.955798e-02, ..., -1.599115e-01,... cs = array([[ 0.99973588, 0. , 0. , ..., -0. , -0. , -0. ], [ 0. ... [ 0. , 0. , 0. , ..., 0. , 0. , 0.00527139]], shape=(100, 100)) dtype_ = m = 100 p = 50 q = 50 rng = Generator(PCG64) at 0x7FFB562250E0 swap_sign = False u = array([[ 0.13609349, 0.10037819, -0.17593772, ..., 0. , 0. , 0. ], [-0.0254394... [ 0. , 0. , 0. , ..., 0.05928273, -0.17887583, 0.01855445]], shape=(100, 100)) vh = array([[-0.01220258, -0.04548196, 0.01550174, ..., 0. , 0. , 0. ], [-0.0859941... [ 0. , 0. , 0. , ..., 0.09430726, -0.0551408 , 0.02413377]], shape=(100, 100)) x = array([[-0.0153769 , 0.21543488, -0.11438388, ..., -0.10823024, -0.12645484, -0.05631288], [ 0.1036180... [-0.0396966 , -0.15392758, -0.03238665, ..., 0.10875294, 0.11165119, 0.03410254]], shape=(100, 100)) ______________ test_ldl_type_size_combinations_real[150-float64] _______________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_ldl.py:107: in test_ldl_type_size_combinations_real assert_allclose(l.dot(d1).dot(l.T), x, rtol=rtol, err_msg=msg) E AssertionError: E Not equal to tolerance rtol=1e-10, atol=0 E Failed for size: 150, dtype: E Mismatched elements: 20652 / 22500 (91.8%) E Max absolute difference among violations: 7.28825114e+129 E Max relative difference among violations: 6.07816677e+130 E ACTUAL: array([[ 7.664474e+005, 1.596604e+000, 7.236054e-001, ..., E 7.095941e-001, 1.146546e+000, 3.071553e-001], E [ 1.596604e+000, 7.664483e+005, 1.242401e+000, ...,... E DESIRED: array([[7.664474e+05, 1.596604e+00, 7.236054e-01, ..., 7.095941e-01, E 1.146546e+00, 3.071553e-01], E [1.596604e+00, 7.664483e+05, 1.242401e+00, ..., 1.304825e+00,... d1 = array([[ 7.66447383e+005, 0.00000000e+000, 0.00000000e+000, ..., 0.00000000e+000, 0.00000000e+000, 0.0000...00e+000, 0.00000000e+000, ..., 0.00000000e+000, 0.00000000e+000, 1.43906621e+114]], shape=(150, 150)) d2 = array([[766447.38229809, 0. , 0. , ..., 0. , 0. , 0. ... 0. , 0. , ..., 0. , 0. , 766447.76947676]], shape=(150, 150)) dtype = l = array([[1.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], ...3e-07, 1.26896892e-06, 1.31203232e-06, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(150, 150)) msg = "Failed for size: 150, dtype: " n = 150 p = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,...129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149]) rtol = 1e-10 u = array([[1.00000000e+00, 2.08213755e-06, 9.43094454e-07, ..., 9.25818910e-07, 1.49592255e-06, 4.00751821e-07], ...0e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]], shape=(150, 150)) x = array([[7.66447383e+05, 1.59660391e+00, 7.23605412e-01, ..., 7.09594085e-01, 1.14654608e+00, 3.07155340e-01], ...0e-01, 9.72599758e-01, 1.00560623e+00, ..., 1.23536945e+00, 1.23924391e+00, 7.66447769e+05]], shape=(150, 150)) _____________ TestQRupdate_d.test_non_unit_strides_economic_rank_p _____________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py:1422: in test_non_unit_strides_economic_rank_p self.base_non_simple_strides(make_strided, 'economic', 3, False) self = lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py:1405: in base_non_simple_strides check_qr(q5, r5, aup, self.rtol, self.atol, assert_sqr) a = array([[0.36852295, 0.97637554, 0.73179659, 0.68487472, 0.39762759, 0.31758111, 0.77389198], [0.6182157...649, 0.42460085], [0.21673536, 0.20183498, 0.96869672, 0.1716864 , 0.29238511, 0.08459105, 0.83912041]]) adjust_strides = assert_sqr = False aup = array([[1.19770016, 2.32531952, 2.01820061, 1.83289654, 1.34782921, 1.04815176, 2.47621035], [1.1607477...801, 1.67791058], [0.66354591, 1.29090141, 2.04983379, 0.8534488 , 0.98355769, 0.65590383, 2.19178185]]) mode = 'economic' overwriteable = False p = 3 q = array([[-0.19536641, 0.5839469 , 0.1641222 , -0.07520373, -0.14374926, 0.31768146, -0.07468878], [-0...29674395], [-0.1148987 , 0.02502751, 0.63623053, 0.13134287, -0.11954062, 0.21595429, -0.08744109]]) q0 = array([[-0.19536641, 0.5839469 , 0.1641222 , -0.07520373, -0.14374926, 0.31768146, -0.07468878], [-0...29674395], [-0.1148987 , 0.02502751, 0.63623053, 0.13134287, -0.11954062, 0.21595429, -0.08744109]]) q1 = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q1o = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q2 = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q2o = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q3 = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q3o = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q4 = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q4o = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q5 = array([[-0.45999677, 0.62945397, -0.0531228 , -0.22693306, -0.10635576, -0.25732745, -0.13018574], [-0...54105798], [-0.26733207, 0.32588207, -0.54089851, 0.15584035, -0.13731683, -0.25995968, -0.00960405]]) q5o = array([[ 2.87035292e-01, 3.33909410e-01, 3.13139999e-01, -2.75583900e-01, -1.33094282e-01, 6.10164362e-01, ...-6.09176616e-01, 3.51824804e-01, 4.30953478e-01, 2.79060332e-01, 1.15322892e-01, -6.02737510e-03]]) qs = array([[-0.19536641, 0.5839469 , 0.1641222 , -0.07520373, -0.14374926, 0.31768146, -0.07468878], [-0...29674395], [-0.1148987 , 0.02502751, 0.63623053, 0.13134287, -0.11954062, 0.21595429, -0.08744109]]) r = array([[-1.88631691, -1.50187849, -1.08719907, -1.90400052, -1.87680516, -1.36335782, -1.29216278], [ 0...41657993], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.82530083]]) r0 = array([[-1.88631691, -1.50187849, -1.08719907, -1.90400052, -1.87680516, -1.36335782, -1.29216278], [ 0...41657993], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.82530083]]) r1 = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r1o = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r2 = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r2o = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r3 = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r3o = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r4 = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r4o = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r5 = array([[-2.93452693, -3.69015638, -3.36146966, -3.4704844 , -3.28800915, -2.58589074, -4.09753052], [ 0...55661442], [ 0. , 0. , 0. , 0. , 0. , 0. , 0.98695697]]) r5o = array([[ 4.40127729, 2.79219014, 3.65585453, 2.77582636, 4.14437392, 2.40015303, 2.93988329, 3.28789028... [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.23928321]]) rs = array([[-1.88631691, -1.50187849, -1.08719907, -1.90400052, -1.87680516, -1.36335782, -1.29216278], [ 0...41657993], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.82530083]]) self = type = 'tall' u = array([[0.70656594, 0.88157274, 0.53904779], [0.25772088, 0.65126979, 0.8511807 ], [0.83206935, 0.941030...67, 0.04557503, 0.61123504], [0.07201753, 0.94491971, 0.41217337], [0.33603469, 0.29620111, 0.98399711]]) u0 = array([[0.70656594, 0.88157274, 0.53904779], [0.25772088, 0.65126979, 0.8511807 ], [0.83206935, 0.941030...67, 0.04557503, 0.61123504], [0.07201753, 0.94491971, 0.41217337], [0.33603469, 0.29620111, 0.98399711]]) us = array([[0.70656594, 0.88157274, 0.53904779], [0.25772088, 0.65126979, 0.8511807 ], [0.83206935, 0.941030...67, 0.04557503, 0.61123504], [0.07201753, 0.94491971, 0.41217337], [0.33603469, 0.29620111, 0.98399711]]) v = array([[0.51555576, 0.43797517, 0.14617645], [0.41391233, 0.74526508, 0.74108876], [0.96201566, 0.266236...06, 0.42612341, 0.40090086], [0.5327176 , 0.19360553, 0.34040244], [0.6170145 , 0.888258 , 0.89656783]]) v0 = array([[0.51555576, 0.43797517, 0.14617645], [0.41391233, 0.74526508, 0.74108876], [0.96201566, 0.266236...06, 0.42612341, 0.40090086], [0.5327176 , 0.19360553, 0.34040244], [0.6170145 , 0.888258 , 0.89656783]]) vs = array([[0.51555576, 0.43797517, 0.14617645], [0.41391233, 0.74526508, 0.74108876], [0.96201566, 0.266236...06, 0.42612341, 0.40090086], [0.5327176 , 0.19360553, 0.34040244], [0.6170145 , 0.888258 , 0.89656783]]) lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py:30: in check_qr assert_unitary(q, rtol, atol, assert_sqr) a = array([[1.19770016, 2.32531952, 2.01820061, 1.83289654, 1.34782921, 1.04815176, 2.47621035], [1.1607477...801, 1.67791058], [0.66354591, 1.29090141, 2.04983379, 0.8534488 , 0.98355769, 0.65590383, 2.19178185]]) assert_sqr = False atol = np.float64(2.220446049250313e-15) q = array([[-0.45999677, 0.62945397, -0.0531228 , -0.22693306, -0.10635576, -0.25732745, -0.13018574], [-0...54105798], [-0.26733207, 0.32588207, -0.54089851, 0.15584035, -0.13731683, -0.25995968, -0.00960405]]) r = array([[-2.93452693, -3.69015638, -3.36146966, -3.4704844 , -3.28800915, -2.58589074, -4.09753052], [ 0...55661442], [ 0. , 0. , 0. , 0. , 0. , 0. , 0.98695697]]) rtol = 1e-13 lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py:19: in assert_unitary assert_allclose(aTa, np.eye(a.shape[1]), rtol=rtol, atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-13, atol=2.22045e-15 E E Mismatched elements: 49 / 49 (100%) E Max absolute difference among violations: 1.21660006 E Max relative difference among violations: 1.21660006 E ACTUAL: array([[ 2.2166 , -0.891745, 0.23428 , 0.182291, -0.238281, 0.300868, E -0.349724], E [-0.891745, 1.103648, -0.045623, -0.184881, 0.064795, -0.023812,... E DESIRED: array([[1., 0., 0., 0., 0., 0., 0.], E [0., 1., 0., 0., 0., 0., 0.], E [0., 0., 1., 0., 0., 0., 0.],... a = array([[-0.45999677, 0.62945397, -0.0531228 , -0.22693306, -0.10635576, -0.25732745, -0.13018574], [-0...54105798], [-0.26733207, 0.32588207, -0.54089851, 0.15584035, -0.13731683, -0.25995968, -0.00960405]]) aTa = array([[ 2.21660006, -0.89174456, 0.23427982, 0.18229097, -0.23828081, 0.30086789, -0.34972399], [-0...06108737], [-0.34972399, -0.05284836, -0.05379353, -0.10384951, -0.02701865, 0.06108737, 0.92065883]]) assert_sqr = False atol = np.float64(2.220446049250313e-15) rtol = 1e-13 ___________ TestQRupdate_d.test_non_itemsize_strides_economic_rank_p ___________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py:1446: in test_non_itemsize_strides_economic_rank_p self.base_non_simple_strides(nonitemsize_strides, 'economic', 3, False) self = lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py:1405: in base_non_simple_strides check_qr(q5, r5, aup, self.rtol, self.atol, assert_sqr) a = array([[0.36852295, 0.97637554, 0.73179659, 0.68487472, 0.39762759, 0.31758111, 0.77389198], [0.6182157...649, 0.42460085], [0.21673536, 0.20183498, 0.96869672, 0.1716864 , 0.29238511, 0.08459105, 0.83912041]]) adjust_strides = assert_sqr = False aup = array([[1.19770016, 2.32531952, 2.01820061, 1.83289654, 1.34782921, 1.04815176, 2.47621035], [1.1607477...801, 1.67791058], [0.66354591, 1.29090141, 2.04983379, 0.8534488 , 0.98355769, 0.65590383, 2.19178185]]) mode = 'economic' overwriteable = False p = 3 q = array([[-0.19536641, 0.5839469 , 0.1641222 , -0.07520373, -0.14374926, 0.31768146, -0.07468878], [-0...29674395], [-0.1148987 , 0.02502751, 0.63623053, 0.13134287, -0.11954062, 0.21595429, -0.08744109]]) q0 = array([[-0.19536641, 0.5839469 , 0.1641222 , -0.07520373, -0.14374926, 0.31768146, -0.07468878], [-0...29674395], [-0.1148987 , 0.02502751, 0.63623053, 0.13134287, -0.11954062, 0.21595429, -0.08744109]]) q1 = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q1o = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q2 = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q2o = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q3 = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q3o = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q4 = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q4o = array([[-0.31408532, -0.46030638, -0.0301603 , 0.1678616 , 0.206904 , -0.2473477 , 0.1075525 ], [-0...3772518 ], [-0.17400852, -0.25675701, -0.53916725, -0.19858206, 0.17656867, -0.26476594, -0.07102443]]) q5 = array([[-0.45999677, 0.62945397, -0.0531228 , -0.22693306, -0.10635576, -0.25732745, -0.13018574], [-0...54105798], [-0.26733207, 0.32588207, -0.54089851, 0.15584035, -0.13731683, -0.25995968, -0.00960405]]) q5o = array([[ 2.87035292e-01, 3.33909410e-01, 3.13139999e-01, -2.75583900e-01, -1.33094282e-01, 6.10164362e-01, ...-6.09176616e-01, 3.51824804e-01, 4.30953478e-01, 2.79060332e-01, 1.15322892e-01, -6.02737510e-03]]) qs = array([[-0.19536641, 0.5839469 , 0.1641222 , -0.07520373, -0.14374926, 0.31768146, -0.07468878], [-0...29674395], [-0.1148987 , 0.02502751, 0.63623053, 0.13134287, -0.11954062, 0.21595429, -0.08744109]]) r = array([[-1.88631691, -1.50187849, -1.08719907, -1.90400052, -1.87680516, -1.36335782, -1.29216278], [ 0...41657993], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.82530083]]) r0 = array([[-1.88631691, -1.50187849, -1.08719907, -1.90400052, -1.87680516, -1.36335782, -1.29216278], [ 0...41657993], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.82530083]]) r1 = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r1o = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r2 = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r2o = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r3 = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r3o = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r4 = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r4o = array([[-3.81329559, -5.1831177 , -4.6806124 , -4.69178856, -4.37407888, -3.37750757, -5.85220752], [ 0...3371864 ], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.87089933]]) r5 = array([[-2.93452693, -3.69015638, -3.36146966, -3.4704844 , -3.28800915, -2.58589074, -4.09753052], [ 0...55661442], [ 0. , 0. , 0. , 0. , 0. , 0. , 0.98695697]]) r5o = array([[ 4.40127729, 2.79219014, 3.65585453, 2.77582636, 4.14437392, 2.40015303, 2.93988329, 3.28789028... [ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.23928321]]) rs = array([[-1.88631691, -1.50187849, -1.08719907, -1.90400052, -1.87680516, -1.36335782, -1.29216278], [ 0...41657993], [ 0. , 0. , 0. , 0. , 0. , 0. , -0.82530083]]) self = type = 'tall' u = array([[0.70656594, 0.88157274, 0.53904779], [0.25772088, 0.65126979, 0.8511807 ], [0.83206935, 0.941030...67, 0.04557503, 0.61123504], [0.07201753, 0.94491971, 0.41217337], [0.33603469, 0.29620111, 0.98399711]]) u0 = array([[0.70656594, 0.88157274, 0.53904779], [0.25772088, 0.65126979, 0.8511807 ], [0.83206935, 0.941030...67, 0.04557503, 0.61123504], [0.07201753, 0.94491971, 0.41217337], [0.33603469, 0.29620111, 0.98399711]]) us = array([[0.70656594, 0.88157274, 0.53904779], [0.25772088, 0.65126979, 0.8511807 ], [0.83206935, 0.941030...67, 0.04557503, 0.61123504], [0.07201753, 0.94491971, 0.41217337], [0.33603469, 0.29620111, 0.98399711]]) v = array([[0.51555576, 0.43797517, 0.14617645], [0.41391233, 0.74526508, 0.74108876], [0.96201566, 0.266236...06, 0.42612341, 0.40090086], [0.5327176 , 0.19360553, 0.34040244], [0.6170145 , 0.888258 , 0.89656783]]) v0 = array([[0.51555576, 0.43797517, 0.14617645], [0.41391233, 0.74526508, 0.74108876], [0.96201566, 0.266236...06, 0.42612341, 0.40090086], [0.5327176 , 0.19360553, 0.34040244], [0.6170145 , 0.888258 , 0.89656783]]) vs = array([[0.51555576, 0.43797517, 0.14617645], [0.41391233, 0.74526508, 0.74108876], [0.96201566, 0.266236...06, 0.42612341, 0.40090086], [0.5327176 , 0.19360553, 0.34040244], [0.6170145 , 0.888258 , 0.89656783]]) lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py:30: in check_qr assert_unitary(q, rtol, atol, assert_sqr) a = array([[1.19770016, 2.32531952, 2.01820061, 1.83289654, 1.34782921, 1.04815176, 2.47621035], [1.1607477...801, 1.67791058], [0.66354591, 1.29090141, 2.04983379, 0.8534488 , 0.98355769, 0.65590383, 2.19178185]]) assert_sqr = False atol = np.float64(2.220446049250313e-15) q = array([[-0.45999677, 0.62945397, -0.0531228 , -0.22693306, -0.10635576, -0.25732745, -0.13018574], [-0...54105798], [-0.26733207, 0.32588207, -0.54089851, 0.15584035, -0.13731683, -0.25995968, -0.00960405]]) r = array([[-2.93452693, -3.69015638, -3.36146966, -3.4704844 , -3.28800915, -2.58589074, -4.09753052], [ 0...55661442], [ 0. , 0. , 0. , 0. , 0. , 0. , 0.98695697]]) rtol = 1e-13 lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py:19: in assert_unitary assert_allclose(aTa, np.eye(a.shape[1]), rtol=rtol, atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-13, atol=2.22045e-15 E E Mismatched elements: 49 / 49 (100%) E Max absolute difference among violations: 1.21660006 E Max relative difference among violations: 1.21660006 E ACTUAL: array([[ 2.2166 , -0.891745, 0.23428 , 0.182291, -0.238281, 0.300868, E -0.349724], E [-0.891745, 1.103648, -0.045623, -0.184881, 0.064795, -0.023812,... E DESIRED: array([[1., 0., 0., 0., 0., 0., 0.], E [0., 1., 0., 0., 0., 0., 0.], E [0., 0., 1., 0., 0., 0., 0.],... a = array([[-0.45999677, 0.62945397, -0.0531228 , -0.22693306, -0.10635576, -0.25732745, -0.13018574], [-0...54105798], [-0.26733207, 0.32588207, -0.54089851, 0.15584035, -0.13731683, -0.25995968, -0.00960405]]) aTa = array([[ 2.21660006, -0.89174456, 0.23427982, 0.18229097, -0.23828081, 0.30086789, -0.34972399], [-0...06108737], [-0.34972399, -0.05284836, -0.05379353, -0.10384951, -0.02701865, 0.06108737, 0.92065883]]) assert_sqr = False atol = np.float64(2.220446049250313e-15) rtol = 1e-13 ________________________________ test_form_qTu _________________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py:1669: in test_form_qTu check_form_qTu(qo, qs, uo, us, 2, d) d = 'd' dtype = ['f', 'd', 'F', 'D'] q_order = ['F', 'C'] q_shape = [(8, 8)] qo = 'C' qs = (8, 8) u_order = ['F', 'C', 'A'] u_shape = [1, 3] uo = 'A' us = 1 lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py:1701: in check_form_qTu assert_allclose(res, expected, rtol=rtol, atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-13, atol=4.44089e-16 E E Mismatched elements: 8 / 8 (100%) E Max absolute difference among violations: 2.17880466 E Max relative difference among violations: 19.33091804 E ACTUAL: array([[2.126787], E [2.942011], E [2.676388],... E DESIRED: array([[0.104609], E [1.250817], E [0.933376],... atol = np.float64(4.440892098500626e-16) dtype = dtype('float64') expected = array([[0.10460853], [1.250817 ], [0.9333758 ], [0.72843306], [0.95415332], [0.82265896], [0.7291663 ], [0.5990516 ]]) q = array([[0.11348847, 0.97448309, 0.72873463, 0.35146781, 0.70760514, 0.7996046 , 0.64556185, 0.41459961], ...609], [0.38630638, 0.08472205, 0.56199918, 0.64807168, 0.66193395, 0.18924281, 0.95410895, 0.05902446]]) q_order = 'C' q_shape = (8, 8) res = array([[2.12678745], [2.94201131], [2.67638781], [2.58092131], [2.44247149], [2.07785884], [2.90797096], [2.04253441]]) rtol = 1e-13 u = array([[0.88020624], [0.78375816], [0.25247741], [0.92709052], [0.4447506 ], [0.37715133], [0.89382348], [0.75405387]]) u_ndim = 2 u_order = 'A' u_shape = (8, 1) _________________________________ test_cython __________________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_extending.py:25: in test_cython extensions, extensions_cpp = _test_cython_extension(tmp_path, srcdir) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ srcdir = '/home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.testenv/lib/python3.12/site-packages/scipy/linalg' tmp_path = PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython0') lib/python3.12/site-packages/scipy/_lib/_testutils.py:320: in _test_cython_extension subprocess.check_call(["meson", "compile", "-vv"], cwd=target_dir) build_dir = PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython0/140735883390096/linalg/tests/_cython_examples') f = <_io.TextIOWrapper name='/tmp/pytest-of-buildozer/pytest-53/test_cython0/140735883390096/linalg/tests/_cython_examples/interpreter-native-file.ini' mode='w' encoding='UTF-8'> mod_name = 'linalg' native_file = '/tmp/pytest-of-buildozer/pytest-53/test_cython0/140735883390096/linalg/tests/_cython_examples/interpreter-native-file.ini' pytest = srcdir = '/home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.testenv/lib/python3.12/site-packages/scipy/linalg' target_dir = PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython0/140735883390096/linalg/tests/_cython_examples/build') tmp_path = PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython0/140735883390096') /usr/lib/python3.12/subprocess.py:413: in check_call raise CalledProcessError(retcode, cmd) E subprocess.CalledProcessError: Command '['meson', 'compile', '-vv']' returned non-zero exit status 1. cmd = ['meson', 'compile', '-vv'] kwargs = {'cwd': PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython0/140735883390096/linalg/tests/_cython_examples/build')} popenargs = (['meson', 'compile', '-vv'],) retcode = 1 ----------------------------- Captured stdout call ----------------------------- 1.9.1 The Meson build system Version: 1.9.1 Source dir: /tmp/pytest-of-buildozer/pytest-53/test_cython0/140735883390096/linalg/tests/_cython_examples Build dir: /tmp/pytest-of-buildozer/pytest-53/test_cython0/140735883390096/linalg/tests/_cython_examples/build Build type: native build Project name: random-build-examples Project version: undefined C compiler for the host machine: cc (gcc 15.2.0 "cc (Alpine 15.2.0) 15.2.0") C linker for the host machine: cc ld.bfd 2.45 C++ compiler for the host machine: c++ (gcc 15.2.0 "c++ (Alpine 15.2.0) 15.2.0") C++ linker for the host machine: c++ ld.bfd 2.45 Cython compiler for the host machine: cython (cython 3.1.6) Host machine cpu family: ppc64 Host machine cpu: ppc64le Program python found: YES (/home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.testenv/bin/python) Found pkg-config: YES (/usr/bin/pkg-config) 2.5.1 Run-time dependency python found: YES 3.12 Build targets in project: 3 random-build-examples undefined User defined options Native files: /tmp/pytest-of-buildozer/pytest-53/test_cython0/140735883390096/linalg/tests/_cython_examples/interpreter-native-file.ini Found ninja-1.9 at /usr/bin/ninja [1/7] /usr/bin/meson --internal copy ../extending.pyx extending_cpp.pyx [2/7] cython -M --fast-fail -3 -Xfreethreading_compatible=True /tmp/pytest-of-buildozer/pytest-53/test_cython0/140735883390096/linalg/tests/_cython_examples/extending.pyx -o extending.cpython-312-powerpc64le-linux-musl.so.p/extending.pyx.c [3/7] cython -M --fast-fail -3 --cplus -Xfreethreading_compatible=True extending_cpp.pyx -o extending_cpp.cpython-312-powerpc64le-linux-musl.so.p/extending_cpp.pyx.cpp Error compiling Cython file: ------------------------------------------------------------ ... #!/usr/bin/env python3 #cython: language_level=3 #cython: boundscheck=False #cython: wraparound=False cimport scipy.linalg ^ ------------------------------------------------------------ /tmp/pytest-of-buildozer/pytest-53/test_cython0/140735883390096/linalg/tests/_cython_examples/extending.pyx:6:8: 'scipy/linalg.pxd' not found Error compiling Cython file: ------------------------------------------------------------ ... #!/usr/bin/env python3 #cython: language_level=3 #cython: boundscheck=False #cython: wraparound=False cimport scipy.linalg ^ ------------------------------------------------------------ extending_cpp.pyx:6:8: 'scipy/linalg.pxd' not found INFO: autodetecting backend as ninja INFO: calculating backend command to run: /usr/bin/ninja -v ----------------------------- Captured stderr call ----------------------------- ninja: job failed: cython -M --fast-fail -3 -Xfreethreading_compatible=True /tmp/pytest-of-buildozer/pytest-53/test_cython0/140735883390096/linalg/tests/_cython_examples/extending.pyx -o extending.cpython-312-powerpc64le-linux-musl.so.p/extending.pyx.c ninja: job failed: cython -M --fast-fail -3 --cplus -Xfreethreading_compatible=True extending_cpp.pyx -o extending_cpp.cpython-312-powerpc64le-linux-musl.so.p/extending_cpp.pyx.cpp ninja: subcommands failed _ TestInterpolativeDecomposition.test_real_id_fixed_precision[float64-False-False] _ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:86: in test_real_id_fixed_precision assert_allclose(A, B, rtol=eps, atol=1e-08) E AssertionError: E Not equal to tolerance rtol=1e-12, atol=1e-08 E E Mismatched elements: 300 / 90000 (0.333%) E Max absolute difference among violations: 44249.68733913 E Max relative difference among violations: 1.00000008 E ACTUAL: array([[1. , 0.5 , 0.333333, ..., 0.003356, 0.003344, 0.003333], E [0.5 , 0.333333, 0.25 , ..., 0.003344, 0.003333, 0.003322], E [0.333333, 0.25 , 0.2 , ..., 0.003333, 0.003322, 0.003311],... E DESIRED: array([[ 1.000000e+00, 5.000000e-01, 3.333333e-01, ..., -4.424968e+04, E 3.344482e-03, 3.333333e-03], E [ 5.000000e-01, 3.333333e-01, 2.500000e-01, ..., -4.407919e+04,... A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) A_or_L = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) B = array([[ 1.00000000e+00, 5.00000000e-01, 3.33333333e-01, ..., -4.42496840e+04, 3.34448161e-03, 3.33333333e...2225914e-03, 3.31125828e-03, ..., -2.05409276e+04, 1.67224080e-03, 1.66944908e-03]], shape=(300, 300)) L = <300x300 MatrixLinearOperator with dtype=float64> eps = 1e-12 idx = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,...279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 297]) k = 299 lin_op = False proj = array([[ 4.08265970e-02], [ 6.99233060e-02], [ 9.02990051e-02], [ 1.04857211e-01], [ 6.856...39561015e+02], [-1.05753668e-01], [ 1.61762902e+04], [ 3.92683664e-01], [-5.61305223e-02]]) rand = False rng = Generator(PCG64) at 0x7FFB572B9C40 self = _ TestInterpolativeDecomposition.test_real_id_fixed_precision[float64-True-False] _ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:86: in test_real_id_fixed_precision assert_allclose(A, B, rtol=eps, atol=1e-08) E AssertionError: E Not equal to tolerance rtol=1e-12, atol=1e-08 E E Mismatched elements: 82500 / 90000 (91.7%) E Max absolute difference among violations: 0.04773578 E Max relative difference among violations: 5252.31403062 E ACTUAL: array([[1. , 0.5 , 0.333333, ..., 0.003356, 0.003344, 0.003333], E [0.5 , 0.333333, 0.25 , ..., 0.003344, 0.003333, 0.003322], E [0.333333, 0.25 , 0.2 , ..., 0.003333, 0.003322, 0.003311],... E DESIRED: array([[ 1. , 0.5 , 0.333333, ..., -0.024788, -0.03206 , E -0.044402], E [ 0.5 , 0.333333, 0.25 , ..., -0.021072, -0.02759 ,... A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) A_or_L = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) B = array([[ 1. , 0.5 , 0.33333333, ..., -0.02478828, -0.03205959, -0.04440245], [ 0.5 ... [ 0.00333333, 0.00332226, 0.00331126, ..., 0.00252544, 0.0028153 , 0.0033141 ]], shape=(300, 300)) L = <300x300 MatrixLinearOperator with dtype=float64> eps = 1e-12 idx = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,...279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299]) k = 25 lin_op = False proj = array([[ 2.18014087e-07, 8.03436102e-07, 1.85419386e-06, ..., 1.10092684e-02, 1.12764748e-02, 1.17454081e...26959608e+00, 1.05570705e+01, ..., 1.74803478e+03, 2.05982382e+03, 2.80926111e+03]], shape=(25, 275)) rand = True rng = Generator(PCG64) at 0x7FFB572BA500 self = _ TestInterpolativeDecomposition.test_real_id_fixed_precision[float64-True-True] _ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:86: in test_real_id_fixed_precision assert_allclose(A, B, rtol=eps, atol=1e-08) E AssertionError: E Not equal to tolerance rtol=1e-12, atol=1e-08 E E Mismatched elements: 83952 / 90000 (93.3%) E Max absolute difference among violations: 0.10291876 E Max relative difference among violations: 6.32487964 E ACTUAL: array([[1. , 0.5 , 0.333333, ..., 0.003356, 0.003344, 0.003333], E [0.5 , 0.333333, 0.25 , ..., 0.003344, 0.003333, 0.003322], E [0.333333, 0.25 , 0.2 , ..., 0.003333, 0.003322, 0.003311],... E DESIRED: array([[ 1. , 0.5 , 0.333333, ..., -0.077565, -0.077552, E -0.077431], E [ 0.5 , 0.333333, 0.25 , ..., -0.099574, -0.099575,... A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) A_or_L = <300x300 MatrixLinearOperator with dtype=float64> B = array([[ 1. , 0.5 , 0.33333333, ..., -0.07756464, -0.07755218, -0.0774306 ], [ 0.5 ... [ 0.00333333, 0.00332226, 0.00331126, ..., 0.00270948, 0.00270613, 0.00270114]], shape=(300, 300)) L = <300x300 MatrixLinearOperator with dtype=float64> eps = 1e-12 idx = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,...279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299]) k = 20 lin_op = True proj = array([[-4.60872928e-09, 3.50122379e-09, 5.10310584e-08, ..., 1.06085802e-01, 1.05814013e-01, 1.05553209e...18289917e+00, 8.06171831e+00, ..., -8.18146001e+02, -8.22857582e+02, -8.23004018e+02]], shape=(20, 280)) rand = True rng = Generator(PCG64) at 0x7FFB572BACE0 self = _ TestInterpolativeDecomposition.test_svd_fixed_precision[float64-False-False] _ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:117: in test_svd_fixed_precision U, S, V = pymatrixid.svd(A_or_L, eps, rand=rand, rng=rng) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) A_or_L = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) L = <300x300 MatrixLinearOperator with dtype=float64> eps = 1e-12 lin_op = False rand = False rng = Generator(PCG64) at 0x7FFB572BB840 self = lib/python3.12/site-packages/scipy/linalg/interpolative.py:893: in svd U, S, V = _backend.iddp_svd(A, eps) ^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46328358e-02, 1.45882689e-02, 1.46776806e...3477065e-02, -1.22602469e-02, ..., 1.15826794e-01, 2.38372134e+00, 5.14917459e-14]], shape=(300, 300)) LinearOperator = eps = 1e-12 eps_or_k = 1e-12 rand = False real = True rng = Generator(PCG64) at 0x7FFB572BB840 scipy/linalg/_decomp_interpolative.pyx:721: in scipy.linalg._decomp_interpolative.iddp_svd ??? lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689...000000e+00, 0.00000000e+00, ..., -9.81651642e-10, 0.00000000e+00, 1.74887316e-08]], shape=(299, 300))] array = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689e...0000000e+00, 0.00000000e+00, ..., -9.81651642e-10, 0.00000000e+00, 1.74887316e-08]], shape=(299, 300)) arrays = [array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689...000000e+00, 0.00000000e+00, ..., -9.81651642e-10, 0.00000000e+00, 1.74887316e-08]], shape=(299, 300))] batch_shapes = [()] core_shapes = [(299, 300)] f = i = 0 kwargs = {'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (299, 300) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689e...0000000e+00, 0.00000000e+00, ..., -9.81651642e-10, 0.00000000e+00, 1.74887316e-08]], shape=(299, 300)) a1 = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689e...0000000e+00, 0.00000000e+00, ..., -9.81651642e-10, 0.00000000e+00, 1.74887316e-08]], shape=(299, 300)) check_finite = True compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 17 lapack_driver = 'gesdd' lwork = 270296 m = 299 max_mn = 300 min_mn = 299 n = 300 overwrite_a = False s = array([ 2.06913137e-01, 3.13312670e-01, 5.35770291e-01, 6.76286543e-01, 8.34876429e-01, 8.58403931e-01, 1... nan, nan, nan, nan, nan, nan, nan]) sz = 89700 u = array([[-0.00036674, -0.00023464, 0.00684998, ..., 0. , 0. , 0. ], [ na... [ nan, nan, nan, ..., nan, nan, nan]], shape=(299, 299)) v = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na..., nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(299, 300)) ----------------------------- Captured stdout call ----------------------------- DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 5 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 5 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 5 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 5 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 5 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL _ TestInterpolativeDecomposition.test_svd_fixed_precision[float64-True-False] __ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:119: in test_svd_fixed_precision assert_allclose(A, B, rtol=eps, atol=1e-08) E AssertionError: E Not equal to tolerance rtol=1e-12, atol=1e-08 E E Mismatched elements: 90000 / 90000 (100%) E Max absolute difference among violations: 2486.99964443 E Max relative difference among violations: 10135.49091128 E ACTUAL: array([[1. , 0.5 , 0.333333, ..., 0.003356, 0.003344, 0.003333], E [0.5 , 0.333333, 0.25 , ..., 0.003344, 0.003333, 0.003322], E [0.333333, 0.25 , 0.2 , ..., 0.003333, 0.003322, 0.003311],... E DESIRED: array([[-2.486000e+03, 2.488781e+00, 3.231200e+00, ..., -3.289242e+02, E -3.889016e+02, -5.321443e+02], E [ 1.787554e+03, -3.219796e+00, -1.148318e+00, ..., 2.695753e+02,... A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) A_or_L = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) B = array([[-2.48599964e+03, 2.48878067e+00, 3.23119976e+00, ..., -3.28924202e+02, -3.88901600e+02, -5.32144259e...5682690e-02, 3.97988268e-02, ..., -4.56452370e+00, -5.39398019e+00, -7.37502087e+00]], shape=(300, 300)) L = <300x300 MatrixLinearOperator with dtype=float64> S = array([6.30167387e+03, 6.44105185e+02, 1.77277596e+01, 2.52957340e+00, 5.71200690e-01, 2.92584237e-01, 1.870027...312e-02, 2.00883363e-02, 1.74998642e-02, 1.39562288e-02, 1.75544449e-03, 7.49422388e-04, 1.95388814e-09]) U = array([[-5.55260554e-01, 6.75382514e-02, 3.48671697e-01, ..., 9.78283490e-02, 6.39371861e-03, 2.30070936e...17287770e-02, 8.20402061e-03, ..., 1.46894014e-04, -1.36398017e-02, 7.33140835e-03]], shape=(300, 25)) V = array([[ 7.19108788e-01, 6.94883187e-01, -1.83601523e-03, ..., 1.68512927e-04, -2.15895188e-04, -6.92917271e...59973399e-01, -1.30001662e-02, ..., -3.34930673e-01, 3.04128969e-02, -7.83963085e-02]], shape=(300, 25)) eps = 1e-12 lin_op = False rand = True rng = Generator(PCG64) at 0x7FFB572BBE60 self = __ TestInterpolativeDecomposition.test_svd_fixed_precision[float64-True-True] __ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:119: in test_svd_fixed_precision assert_allclose(A, B, rtol=eps, atol=1e-08) E AssertionError: E Not equal to tolerance rtol=1e-12, atol=1e-08 E E Mismatched elements: 90000 / 90000 (100%) E Max absolute difference among violations: 44.97789222 E Max relative difference among violations: 619.84560328 E ACTUAL: array([[1. , 0.5 , 0.333333, ..., 0.003356, 0.003344, 0.003333], E [0.5 , 0.333333, 0.25 , ..., 0.003344, 0.003333, 0.003322], E [0.333333, 0.25 , 0.2 , ..., 0.003333, 0.003322, 0.003311],... E DESIRED: array([[-5.170245e-01, -1.436056e-01, 1.177328e-01, ..., -1.065733e+01, E -1.071090e+01, -1.070593e+01], E [-5.312726e-01, -3.306283e-01, 6.303597e-01, ..., 4.469981e+01,... A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) A_or_L = <300x300 MatrixLinearOperator with dtype=float64> B = array([[-5.17024516e-01, -1.43605584e-01, 1.17732823e-01, ..., -1.06573255e+01, -1.07108973e+01, -1.07059250e...8161767e-02, 1.20848440e-02, ..., -2.37144566e-01, -2.38538529e-01, -2.38431298e-01]], shape=(300, 300)) L = <300x300 MatrixLinearOperator with dtype=float64> S = array([2.56312167e+02, 1.08653421e+01, 5.21009290e+00, 1.01210049e+00, 4.64614112e-01, 4.06742111e-01, 3.243770...7.63535556e-02, 5.05234461e-02, 4.50707842e-02, 2.74394945e-02, 1.20040002e-02, 2.89230973e-03, 1.53813095e-10]) U = array([[-0.16231845, -0.03181061, 0.00149418, ..., 0.01541698, 0.0062875 , 0.01446895], [ 0.6738028..., [-0.00361329, -0.00282605, -0.01123967, ..., -0.03043326, -0.00904474, -0.03102331]], shape=(300, 20)) V = array([[-5.34682838e-04, 1.93960063e-03, 1.41331201e-01, ..., -4.41482061e-01, -2.10787069e-01, -5.13431674e...56591770e-01, -2.12874877e-01, ..., 5.39376054e-02, -6.38963871e-02, 7.05894515e-02]], shape=(300, 20)) eps = 1e-12 lin_op = True rand = True rng = Generator(PCG64) at 0x7FFB546EC740 self = ___ TestInterpolativeDecomposition.test_svd_fixed_rank[float64-False-False] ____ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:128: in test_svd_fixed_rank U, S, V = pymatrixid.svd(A_or_L, k, rand=rand, rng=rng) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) A_or_L = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) L = <300x300 MatrixLinearOperator with dtype=float64> eps = 1e-12 k = 300 lin_op = False rand = False rank = 300 rng = Generator(PCG64) at 0x7FFB546ECC80 self = lib/python3.12/site-packages/scipy/linalg/interpolative.py:910: in svd U, S, V = _backend.iddr_svd(A, k) ^^^^^^^^^^^^^^^^^^^^^^^ A = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46328358e-02, 1.45882689e-02, 1.46776806e...3477065e-02, -1.22602469e-02, ..., 1.15826794e-01, 2.38372134e+00, 5.14917459e-14]], shape=(300, 300)) LinearOperator = eps_or_k = 300 k = 300 rand = False real = True rng = Generator(PCG64) at 0x7FFB546ECC80 scipy/linalg/_decomp_interpolative.pyx:1093: in scipy.linalg._decomp_interpolative.iddr_svd ??? lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689...000000e+00, 0.00000000e+00, ..., 5.14917459e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300))] array = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689e...0000000e+00, 0.00000000e+00, ..., 5.14917459e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300)) arrays = [array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689...000000e+00, 0.00000000e+00, ..., 5.14917459e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300))] batch_shapes = [()] core_shapes = [(300, 300)] f = i = 0 kwargs = {'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (300, 300) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689e...0000000e+00, 0.00000000e+00, ..., 5.14917459e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300)) a1 = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689e...0000000e+00, 0.00000000e+00, ..., 5.14917459e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300)) check_finite = True compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 16 lapack_driver = 'gesdd' lwork = 272100 m = 300 max_mn = 300 min_mn = 300 n = 300 overwrite_a = False s = array([ 3.68739479e-02, 1.14074569e-01, 1.67690307e-01, 2.89262555e-01, 3.26821719e-01, 4.53966485e-01, 4... nan, nan, nan, nan, nan, nan, nan]) sz = 90000 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na..., nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(300, 300)) v = array([[-0.0085296 , nan, nan, ..., nan, nan, nan], [ 0.0250395... [ 0. , nan, nan, ..., nan, nan, nan]], shape=(300, 300)) ____ TestInterpolativeDecomposition.test_svd_fixed_rank[float64-True-False] ____ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:128: in test_svd_fixed_rank U, S, V = pymatrixid.svd(A_or_L, k, rand=rand, rng=rng) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) A_or_L = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) L = <300x300 MatrixLinearOperator with dtype=float64> eps = 1e-12 k = 300 lin_op = False rand = True rank = 300 rng = Generator(PCG64) at 0x7FFB546ED700 self = lib/python3.12/site-packages/scipy/linalg/interpolative.py:905: in svd U, S, V = _backend.iddr_asvd(A, k, rng=rng) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) LinearOperator = eps_or_k = 300 k = 300 rand = True real = True rng = Generator(PCG64) at 0x7FFB546ED700 scipy/linalg/_decomp_interpolative.pyx:933: in scipy.linalg._decomp_interpolative.iddr_asvd ??? lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46328358e-02, 1.45882689e-02, 1.46776806...000000e+00, 0.00000000e+00, ..., 5.16479609e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300))] array = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46328358e-02, 1.45882689e-02, 1.46776806e...0000000e+00, 0.00000000e+00, ..., 5.16479609e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300)) arrays = [array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46328358e-02, 1.45882689e-02, 1.46776806...000000e+00, 0.00000000e+00, ..., 5.16479609e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300))] batch_shapes = [()] core_shapes = [(300, 300)] f = i = 0 kwargs = {'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (300, 300) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46328358e-02, 1.45882689e-02, 1.46776806e...0000000e+00, 0.00000000e+00, ..., 5.16479609e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300)) a1 = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46328358e-02, 1.45882689e-02, 1.46776806e...0000000e+00, 0.00000000e+00, ..., 5.16479609e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300)) check_finite = True compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 16 lapack_driver = 'gesdd' lwork = 272100 m = 300 max_mn = 300 min_mn = 300 n = 300 overwrite_a = False s = array([ 3.68935340e-02, 1.13952565e-01, 1.67325730e-01, 2.89342585e-01, 3.26631503e-01, 4.53947528e-01, 4... nan, nan, nan, nan, nan, nan, nan]) sz = 90000 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na..., nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(300, 300)) v = array([[-0.008548 , nan, nan, ..., nan, nan, nan], [ 0.0250862... [ 0. , nan, nan, ..., nan, nan, nan]], shape=(300, 300)) ____ TestInterpolativeDecomposition.test_svd_fixed_rank[float64-True-True] _____ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:128: in test_svd_fixed_rank U, S, V = pymatrixid.svd(A_or_L, k, rand=rand, rng=rng) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) A_or_L = <300x300 MatrixLinearOperator with dtype=float64> L = <300x300 MatrixLinearOperator with dtype=float64> eps = 1e-12 k = 300 lin_op = True rand = True rank = 300 rng = Generator(PCG64) at 0x7FFB546EDEE0 self = lib/python3.12/site-packages/scipy/linalg/interpolative.py:925: in svd U, S, V = _backend.iddr_rsvd(A, k, rng=rng) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = <300x300 MatrixLinearOperator with dtype=float64> LinearOperator = eps_or_k = 300 k = 300 rand = True real = True rng = Generator(PCG64) at 0x7FFB546EDEE0 scipy/linalg/_decomp_interpolative.pyx:1074: in scipy.linalg._decomp_interpolative.iddr_rsvd ??? scipy/linalg/_decomp_interpolative.pyx:411: in scipy.linalg._decomp_interpolative.idd_id2svd ??? lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689...000000e+00, 0.00000000e+00, ..., 5.14917459e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300))] array = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689e...0000000e+00, 0.00000000e+00, ..., 5.14917459e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300)) arrays = [array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689...000000e+00, 0.00000000e+00, ..., 5.14917459e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300))] batch_shapes = [()] core_shapes = [(300, 300)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (300, 300) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689e...0000000e+00, 0.00000000e+00, ..., 5.14917459e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300)) a1 = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46776806e-02, 1.46328358e-02, 1.45882689e...0000000e+00, 0.00000000e+00, ..., 5.14917459e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 16 lapack_driver = 'gesdd' lwork = 272100 m = 300 max_mn = 300 min_mn = 300 n = 300 overwrite_a = False s = array([ 3.68739479e-02, 1.14074569e-01, 1.67690307e-01, 2.89262555e-01, 3.26821719e-01, 4.53966485e-01, 4... nan, nan, nan, nan, nan, nan, nan]) sz = 90000 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na..., nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(300, 300)) v = array([[-0.0085296 , nan, nan, ..., nan, nan, nan], [ 0.0250395... [ 0. , nan, nan, ..., nan, nan, nan]], shape=(300, 300)) ____________ TestInterpolativeDecomposition.test_id_to_svd[float64] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:136: in test_id_to_svd U, S, V = pymatrixid.id_to_svd(A[:, idx[:k]], idx, proj) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) eps = 1e-12 idx = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,...279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 297]) k = 300 proj = array([], shape=(300, 0), dtype=float64) rank = 300 self = lib/python3.12/site-packages/scipy/linalg/interpolative.py:738: in id_to_svd U, S, V = _backend.idd_id2svd(B, idx, proj) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ B = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.45882689e-02, 1.46776806e-02, 1.46328358e...3477065e-02, -1.22602469e-02, ..., 1.15826152e-01, 2.38372051e+00, 5.16479609e-14]], shape=(300, 300)) idx = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,...279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 297]) proj = array([], shape=(300, 0), dtype=float64) scipy/linalg/_decomp_interpolative.pyx:411: in scipy.linalg._decomp_interpolative.idd_id2svd ??? lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46328358e-02, 1.45882689e-02, 1.46776806...000000e+00, 0.00000000e+00, ..., 5.16479609e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300))] array = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46328358e-02, 1.45882689e-02, 1.46776806e...0000000e+00, 0.00000000e+00, ..., 5.16479609e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300)) arrays = [array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46328358e-02, 1.45882689e-02, 1.46776806...000000e+00, 0.00000000e+00, ..., 5.16479609e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300))] batch_shapes = [()] core_shapes = [(300, 300)] f = i = 0 kwargs = {'check_finite': False, 'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (300, 300) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46328358e-02, 1.45882689e-02, 1.46776806e...0000000e+00, 0.00000000e+00, ..., 5.16479609e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300)) a1 = array([[ 1.28125184e+00, 4.41092957e-01, 3.05846005e-01, ..., 1.46328358e-02, 1.45882689e-02, 1.46776806e...0000000e+00, 0.00000000e+00, ..., 5.16479609e-14, 0.00000000e+00, 0.00000000e+00]], shape=(300, 300)) check_finite = False compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 16 lapack_driver = 'gesdd' lwork = 272100 m = 300 max_mn = 300 min_mn = 300 n = 300 overwrite_a = False s = array([ 3.68935340e-02, 1.13952565e-01, 1.67325730e-01, 2.89342585e-01, 3.26631503e-01, 4.53947528e-01, 4... nan, nan, nan, nan, nan, nan, nan]) sz = 90000 u = array([[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., na..., nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], shape=(300, 300)) v = array([[-0.008548 , nan, nan, ..., nan, nan, nan], [ 0.0250862... [ 0. , nan, nan, ..., nan, nan, nan]], shape=(300, 300)) ----------------------------- Captured stdout call ----------------------------- parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 5 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 5 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 5 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 5 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number _____ TestInterpolativeDecomposition.test_estimate_spectral_norm[float64] ______ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:143: in test_estimate_spectral_norm assert_allclose(norm_2_est, s[0], rtol=1e-6, atol=1e-8) E AssertionError: E Not equal to tolerance rtol=1e-06, atol=1e-08 E E nan location mismatch: E ACTUAL: array(2.32202) E DESIRED: array(nan) A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) norm_2_est = 2.322019936917351 rng = Generator(PCG64) at 0x7FFB546EEEA0 s = array([ nan, nan, nan, nan, nan, nan, ... nan, nan, nan, nan, nan, nan, nan]) self = ______ TestInterpolativeDecomposition.test_rank_estimates_array[float64] _______ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:160: in test_rank_estimates_array assert_(rank_est <= rank_np + 10) E AssertionError A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) B = array([[1., 1., 0.], [0., 0., 1.], [0., 0., 1.]]) M = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) rank_est = 21 rank_np = np.int64(0) rank_tol = 1e-09 rng = Generator(PCG64) at 0x7FFB546EF4C0 self = ______ TestInterpolativeDecomposition.test_rank_estimates_lin_op[float64] ______ lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py:171: in test_rank_estimates_lin_op assert_(rank_est <= rank_np + 4) E AssertionError A = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) B = array([[1., 1., 0.], [0., 0., 1.], [0., 0., 1.]]) M = array([[1. , 0.5 , 0.33333333, ..., 0.0033557 , 0.00334448, 0.00333333], [0.5 , 0.33...7224], [0.00333333, 0.00332226, 0.00331126, ..., 0.00167504, 0.00167224, 0.00166945]], shape=(300, 300)) ML = <300x300 MatrixLinearOperator with dtype=float64> rank_est = 14 rank_np = np.int64(0) rank_tol = 1e-09 rng = Generator(PCG64) at 0x7FFB546EFCA0 self = __________________________________ test_gglse __________________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1027: in test_gglse assert_array_almost_equal(result, expected, decimal=4) E AssertionError: E Arrays are not almost equal to 4 decimals E E Mismatched elements: 4 / 4 (100%) E Max absolute difference among violations: 0.41992527 E Max relative difference among violations: 0.42095752 E ACTUAL: array([0.5719, 0.5776, 0.5719, 0.5776]) E DESIRED: array([0.489 , 0.9975, 0.489 , 0.9975]) _ = 0 a = array([[-0.57, -1.28, -0.39, 0.25], [-1.93, 1.08, -0.31, -2.14], [ 2.3 , 0.24, 0.4 , -0.35], [-1.93, 0.64, -0.66, 0.08], [ 0.15, 0.3 , 0.15, -2.13], [-0.02, 1.03, -1.43, 0.5 ]]) b = array([[ 1., 0., -1., 0.], [ 0., 1., 0., -1.]]) c = array([-1.5 , -2.14, 1.23, -0.54, -1.68, 0.82]) d = array([0., 0.]) dtype = expected = array([0.48904455, 0.99754786, 0.48904455, 0.99754786]) func = func_lwork = ind = 1 lwork = 198 result = array([0.57189447, 0.57762259, 0.57189447, 0.57762259]) __________________________________ test_sygst __________________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1085: in test_sygst assert_allclose(eig, eig_gvd, rtol=1.2e-4) E AssertionError: E Not equal to tolerance rtol=0.00012, atol=0 E E Mismatched elements: 10 / 10 (100%) E Max absolute difference among violations: 0.02243232 E Max relative difference among violations: 0.04389264 E ACTUAL: array([-0.409402, -0.244396, -0.087017, -0.073613, 0.110133, 0.275119, E 0.326892, 0.366116, 0.58703 , 0.798012]) E DESIRED: array([-0.410166, -0.248899, -0.091011, -0.073388, 0.111714, 0.282077, E 0.325895, 0.352598, 0.609463, 0.795755]) A = array([[0.97903882, 0.48237963, 0.50055281, 0.50169838, 0.36348969, 0.51150754, 0.33528506, 0.38642886, 0.1619..., 0.84151342, 0.66056634, 0.70549805, 0.74798375, 0.44283039, 0.63570928, 0.61611887, 0.45279003, 0.11792306]]) B = array([[2.28587767, 0.85038024, 0.64220154, 0.31310282, 0.74024148, 0.46144617, 0.3943353 , 0.65965212, 0.7387..., 0.40806561, 0.03559733, 0.51306853, 0.53520563, 0.51535226, 0.39531714, 0.69771144, 0.39652497, 2.30415374]]) _ = array([[-0.05209771, -0.17898843, -0.11324659, 0.18501164, 0.07429529, -0.43991966, -0.43754038, -0.10309025...3774, -0.10745487, 0.32222163, -0.01440957, 0.23981931, 0.11509119, 0.16304347, -0.09216881, 0.33910646]]) a = array([[ 0.42829887, 0.05731259, 0.09163698, 0.12523192, -0.00252358, 0.10521691, 0.00277567, 0.00888941...1342, 0.66056634, 0.70549805, 0.74798375, 0.44283039, 0.63570928, 0.61611887, 0.45279003, -0.15051242]]) b = array([[ 1.51191193, 0.56245356, 0.42476121, 0.20709065, 0.48960622, 0.30520704, 0.26081896, 0.43630327... , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1.36972903]]) dtype = eig = array([-0.40940216, -0.24439628, -0.08701654, -0.07361342, 0.11013279, 0.27511902, 0.32689233, 0.36611613, 0.58703046, 0.79801173]) eig_gvd = array([-0.4101664 , -0.24889927, -0.09101126, -0.07338802, 0.11171447, 0.28207676, 0.32589491, 0.35259767, 0.60946277, 0.79575514]) ind = 1 info = 0 n = 10 potrf = syevd = sygst = sygvd = __________________________________ test_tzrzf __________________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1149: in test_tzrzf assert_allclose(R.dot(Z) - A, zeros_like(A, dtype=dtype), E AssertionError: E Not equal to tolerance rtol=0, atol=2.22045e-15 E E Mismatched elements: 72 / 150 (48%) E Max absolute difference among violations: 1.03001514 E Max relative difference among violations: inf E ACTUAL: array([[ 3.330669e-16, 0.000000e+00, -5.551115e-17, -8.326673e-17, E 2.884058e-01, -7.862991e-01, -2.808611e-01, -9.760164e-01, E -4.531502e-01, -7.070609e-01, -1.782871e-01, -3.217828e-01,... E DESIRED: array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], E [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], E [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],... A = array([[0.97449514, 0.66778691, 0.25565329, 0.10831149, 0.77618072, 0.78247799, 0.76160391, 0.91440311, 0.6586..., 0. , 0. , 0. , 0.64091281, 0.33000739, 0.60667522, 0.82215979, 0.62796507, 0.11792306]]) Id = array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0... 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]) R = array([[-1.13361835, -1.09094635, -0.42200962, 0.06467264, -0.65045996, -0.17219244, -0.18395911, -0.44175651... , 0. , 0. , -1.40425127, 0. , 0. , 0. , 0. , 0. ]]) V = array([[ 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ... , 0. , 0. , 1. , 0.16135986, 0.2966389 , 0.40200187, 0.30704875, 0.05765946]]) Z = array([[-0.85963247, -0.18794543, -0.05209793, 0.11839507, -0.04015236, -0.02072772, -0.24080123, 0.04407366...5927, 0.06563888, -0.44841014, -0.31747205, 0.04232316, -0.04099279, -0.08884072, 0.40819079, 0.26361229]]) dtype = ind = 1 info = 0 lwork = 320 m = 10 n = 15 ref = [array([[-8.59632469e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,... 0. , 0. , 0. , -0.0998272 , -0.11953249, 0.2116345 , 0.21619868, 0.85369312]]), ...] rng = RandomState(MT19937) at 0x7FFB55298140 rz = array([[-1.13361835, -1.09094635, -0.42200962, 0.06467264, -0.65045996, -0.17219244, -0.18395911, -0.44175651... , 0. , 0. , -1.40425127, 0.16135986, 0.2966389 , 0.40200187, 0.30704875, 0.05765946]]) tau = array([1.85963247, 1.41682023, 1.71737618, 1.74083787, 1.75218048, 1.06231188, 1.07060709, 1.18173457, 1.12940227, 1.45640893]) tzrzf = tzrzf_lw = _______________________________ test_ormrz_unmrz _______________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1244: in test_ormrz_unmrz assert_allclose(cq - C.dot(Q), zeros_like(C), atol=tol, rtol=0.) E AssertionError: E Not equal to tolerance rtol=0, atol=2.22045e-15 E E Mismatched elements: 180 / 225 (80%) E Max absolute difference among violations: 1.38239172 E Max relative difference among violations: inf E ACTUAL: array([[ 1.116371e-01, 4.047004e-01, 7.242446e-01, -4.328221e-02, E 3.202509e-01, 8.471790e-02, -5.272467e-02, 6.229295e-01, E 4.634776e-01, -3.019651e-02, 3.716954e-02, 8.737149e-01,... E DESIRED: array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], E [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], E [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],... A = array([[0.23881999, 0.83024573, 0.74476418, 0.586479 , 0.49286785, 0.48735588, 0.2667407 , 0.6050111 , 0.7535..., 0. , 0. , 0. , 0.92656545, 0.93526291, 0.8104269 , 0.18834308, 0.58731822, 0.90351056]]) C = array([[0.96734226, 0.06753921, 0.31758607, 0.69686297, 0.64026538, 0.63262331, 0.82875065, 0.71311043, 0.3354..., 0.13850475, 0.00154376, 0.61283435, 0.54170293, 0.78063066, 0.82149395, 0.95340976, 0.60995609, 0.29008182]]) Id = array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0... 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]) Q = array([[-0.19214407, -0.65684738, -0.57517099, -0.1938723 , 0.05627546, 0.08889763, 0.0374079 , 0.03093966...0893, 0.04016687, -0.07069421, -0.52511834, -0.14000788, -0.02449718, 0.15446993, 0.05109342, 0.64000627]]) V = array([[ 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ... , 0. , 0. , 1. , 0.33160121, 0.2873401 , 0.06677779, 0.20823603, 0.32034328]]) cn = 15 cq = array([[ 1.23384591e-02, -2.83025952e-01, -5.90228484e-01, -5.38643529e-01, -2.66952390e-01, -7.64332482e-01, ... -2.23174919e-01, -7.09747576e-01, -1.92179908e-01, -1.92284926e-01, -3.63635085e-01, 2.76919345e-01]]) dtype = ind = 1 info = 0 lwork_mrz = 4640 lwork_rz = 320 orun_mrz = orun_mrz_lw = qm = 10 qn = 15 ref = [array([[-0.19214407, 0. , 0. , 0. , 0. , 0. , 0. , 0. ... 0. , 0. , 0. , -0.00841393, 0.00705681, 0.00156338, -0.00277188, 0.99969345]]), ...] rng = RandomState(MT19937) at 0x7FFB55298940 rz = array([[-1.24292149, -0.05318522, -0.32255671, -0.57844458, -0.33972165, -0.55030363, -0.3335589 , -0.12283281... , 0. , 0. , -1.89387939, 0.33160121, 0.2873401 , 0.06677779, 0.20823603, 0.32034328]]) tau = array([1.19214407, 1.26014766, 1.10796142, 1.38420354, 1.76507621, 1.57327563, 1.7122259 , 1.02322129, 1.12955062, 1.48924206]) tol = np.float64(2.220446049250313e-15) trans = 'T' tzrzf = tzrzf_lw = __________________________________ test_pftrf __________________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1375: in test_pftrf assert_array_almost_equal(A_chol_r, Achol) E AssertionError: E Arrays are not almost equal to 6 decimals E E Mismatched elements: 124 / 400 (31%) E Max absolute difference among violations: 0.03450221 E Max relative difference among violations: 5.62184877 E ACTUAL: array([[ 4.629253e+00, 2.633381e-01, 1.686342e-01, 1.314651e-01, E 1.539672e-01, 3.920152e-01, 2.752625e-01, 3.485378e-02, E 1.227863e-01, 3.343883e-01, 2.513629e-01, 3.665100e-01,... E DESIRED: array([[ 4.629253e+00, 2.633381e-01, 1.686342e-01, 1.314651e-01, E 1.539672e-01, 3.920152e-01, 2.752625e-01, 3.485378e-02, E 1.227863e-01, 3.343883e-01, 2.513629e-01, 3.665100e-01,... A = array([[21.42998776, 1.21905884, 0.78065033, 0.60858537, 0.71275324, 1.8147378 , 1.27425981, 0.161347 ...8539, 0.90382879, 1.11485812, 0.5171436 , 1.70649143, 0.72985418, 0.45215896, 1.35472225, 20.61236782]]) A_chol_r = array([[ 4.62925348e+00, 2.63338104e-01, 1.68634173e-01, 1.31465122e-01, 1.53967209e-01, 3.92015215e-01, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.45785652e+00]]) Achol = array([[ 4.62925348e+00, 2.63338104e-01, 1.68634173e-01, 1.31465122e-01, 1.53967209e-01, 3.92015215e-01, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.45763341e+00]]) Achol_rfp = array([ 2.51362875e-01, 2.42798667e-01, 1.39283130e-01, 1.81547640e-01, -2.35104519e-02, 2.44461938e-01, 1...2, 2.85536825e-01, 5.32760045e-02, -1.13703682e-02, 1.79042107e-01, 4.45785652e+00, 4.43334551e+00]) Afp = array([ 1.16362247, 1.19332357, 0.7377129 , 0.94617284, 0.08589751, 1.33407452, 0.79495767, 0.38867033, ...382879, 1.11485812, 0.5171436 , 1.70649143, 0.72985418, 0.45215896, 1.35472225, 20.61236782, 20.08391163]) _ = 0 dtype = ind = 1 info = 0 n = 20 pftrf = rng = RandomState(MT19937) at 0x7FFB55298C40 tfttr = trttf = __________________________________ test_pftri __________________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1406: in test_pftri assert_array_almost_equal(A_inv_r, triu(Ainv), E AssertionError: E Arrays are not almost equal to 6 decimals E E Mismatched elements: 168 / 400 (42%) E Max absolute difference among violations: 0.00031273 E Max relative difference among violations: 1.38187161 E ACTUAL: array([[ 4.880183e-02, -1.468409e-03, -5.740476e-04, -1.510178e-04, E -1.863843e-04, -3.120562e-03, -1.788033e-03, 1.192026e-03, E 2.278561e-05, -2.595142e-03, -1.132026e-03, -2.935391e-03,... E DESIRED: array([[ 4.880460e-02, -1.463563e-03, -5.717260e-04, -1.491578e-04, E -2.131086e-04, -3.139147e-03, -1.801433e-03, 1.179392e-03, E 1.276686e-05, -2.613719e-03, -1.131125e-03, -2.931595e-03,... A = array([[21.42998776, 1.21905884, 0.78065033, 0.60858537, 0.71275324, 1.8147378 , 1.27425981, 0.161347 ...8539, 0.90382879, 1.11485812, 0.5171436 , 1.70649143, 0.72985418, 0.45215896, 1.35472225, 20.61236782]]) A_chol_rfp = array([ 2.51362875e-01, 2.42798667e-01, 1.39283130e-01, 1.81547640e-01, -2.35104519e-02, 2.44461938e-01, 1...2, 2.85536825e-01, 5.32760045e-02, -1.13703682e-02, 1.79042107e-01, 4.45785652e+00, 4.43334551e+00]) A_inv_r = array([[ 4.88018302e-02, -1.46840885e-03, -5.74047551e-04, -1.51017782e-04, -1.86384333e-04, -3.12056207e-03, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 5.03208336e-02]]) A_inv_rfp = array([-1.13202649e-03, -1.72302163e-03, -7.30423983e-04, -1.18048977e-03, 1.17005047e-03, -2.09770169e-03, -8...4, -3.11561088e-03, -5.24447994e-04, 1.66907651e-04, -1.98264869e-03, 5.03208336e-02, 5.13657966e-02]) Afp = array([ 1.16362247, 1.19332357, 0.7377129 , 0.94617284, 0.08589751, 1.33407452, 0.79495767, 0.38867033, ...382879, 1.11485812, 0.5171436 , 1.70649143, 0.72985418, 0.45215896, 1.35472225, 20.61236782, 20.08391163]) Ainv = array([[ 4.88045959e-02, -1.46356257e-03, -5.71725987e-04, -1.49157827e-04, -2.13108649e-04, -3.13914661e-03, ...-2.10017211e-04, -3.11303151e-03, -5.19553255e-04, 1.72564152e-04, -1.98037270e-03, 5.03258711e-02]]) _ = 0 dtype = ind = 1 info = 0 n = 20 pftrf = pftri = rng = RandomState(MT19937) at 0x7FFB55299340 tfttr = trttf = __________________________________ test_pftrs __________________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1443: in test_pftrs assert_array_almost_equal(solve(A, B), soln, E AssertionError: E Arrays are not almost equal to 6 decimals E E Mismatched elements: 60 / 60 (100%) E Max absolute difference among violations: 0.00065308 E Max relative difference among violations: 0.02463674 E ACTUAL: array([[0.020472, 0.020472, 0.020472], E [0.021985, 0.021985, 0.021985], E [0.027095, 0.027095, 0.027095],... E DESIRED: array([[0.020533, 0.020533, 0.020533], E [0.022087, 0.022087, 0.022087], E [0.027141, 0.027141, 0.027141],... A = array([[21.42998776, 1.21905884, 0.78065033, 0.60858537, 0.71275324, 1.8147378 , 1.27425981, 0.161347 ...8539, 0.90382879, 1.11485812, 0.5171436 , 1.70649143, 0.72985418, 0.45215896, 1.35472225, 20.61236782]]) A_chol_rfp = array([ 2.51362875e-01, 2.42798667e-01, 1.39283130e-01, 1.81547640e-01, -2.35104519e-02, 2.44461938e-01, 1...2, 2.85536825e-01, 5.32760045e-02, -1.13703682e-02, 1.79042107e-01, 4.45785652e+00, 4.43334551e+00]) Afp = array([ 1.16362247, 1.19332357, 0.7377129 , 0.94617284, 0.08589751, 1.33407452, 0.79495767, 0.38867033, ...382879, 1.11485812, 0.5171436 , 1.70649143, 0.72985418, 0.45215896, 1.35472225, 20.61236782, 20.08391163]) B = array([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1...[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]) Bf1 = array([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1...[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]) Bf2 = array([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1...[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]) dtype = ind = 1 info = 0 n = 20 pftrf = pftrs = rng = RandomState(MT19937) at 0x7FFB55299940 soln = array([[0.02053261, 0.02053261, 0.02053261], [0.02208719, 0.02208719, 0.02208719], [0.02714092, 0.027140...54, 0.02381554, 0.02381554], [0.02289778, 0.02289778, 0.02289778], [0.02340638, 0.02340638, 0.02340638]]) tfttr = trttf = __________________________________ test_pstrf __________________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1697: in test_pstrf assert_allclose(A[piv-1][:, piv-1], L @ L.conj().T, rtol=0., atol=atol) E AssertionError: E Not equal to tolerance rtol=0, atol=2.22045e-13 E E Mismatched elements: 25 / 100 (25%) E Max absolute difference among violations: 0.49674748 E Max relative difference among violations: 0.68149363 E ACTUAL: array([[3.568302, 2.525024, 2.913056, 3.018699, 2.711777, 3.261647, E 2.332438, 1.618312, 2.983509, 1.537782], E [2.525024, 3.521735, 2.813897, 2.755708, 2.031634, 2.485715,... E DESIRED: array([[3.568302, 2.525024, 2.913056, 3.018699, 2.711777, 3.261647, E 2.332438, 1.618312, 2.983509, 1.537782], E [2.525024, 3.521735, 2.813897, 2.755708, 2.031634, 2.485715,... A = array([[3.56830206, 2.33243826, 2.91305597, 1.53778244, 3.26164704, 2.98350931, 1.61831156, 2.52502361, 2.7117..., 2.6469813 , 2.86771349, 2.03143937, 2.52422973, 2.31150304, 1.84058728, 2.75570761, 2.42639279, 3.46481756]]) L = array([[ 1.88899499, 0. , 0. , 0. , 0. , 0. , 0. , 0. ...8935, 0.28776551, 0.17087207, -0.44843435, 0.2218908 , 0.32832709, 0. , 0. , 0. ]]) U = array([[ 1.88899499, 1.33670212, 1.54211948, 1.59804526, 1.43556583, 1.72665733, 0.85670506, 1.2347509 ... , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]]) atol = np.float64(2.220446049250313e-13) c = array([[ 1.88899499, 2.33243826, 2.91305597, 1.53778244, 3.26164704, 2.98350931, 1.61831156, 2.52502361...8935, 0.28776551, 0.17087207, -0.44843435, 0.2218908 , 0.32832709, 0.89185714, 1.62686012, 2.36870766]]) double_atol = np.float64(2.220446049250313e-13) dtype = ind = 1 info = 1 n = 10 piv = array([ 1, 8, 3, 10, 9, 5, 2, 7, 6, 4], dtype=int32) pstrf = r = 2 r_c = 7 rng = RandomState(MT19937) at 0x7FFB55299F40 single_atol = np.float32(0.00011920929) __________________________________ test_pstf2 __________________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1737: in test_pstf2 assert_allclose(A[piv-1][:, piv-1], L @ L.conj().T, rtol=0., atol=atol) E AssertionError: E Not equal to tolerance rtol=0, atol=2.22045e-13 E E Mismatched elements: 25 / 100 (25%) E Max absolute difference among violations: 0.49674748 E Max relative difference among violations: 0.68149363 E ACTUAL: array([[3.568302, 2.525024, 2.913056, 3.018699, 2.711777, 3.261647, E 2.332438, 1.618312, 2.983509, 1.537782], E [2.525024, 3.521735, 2.813897, 2.755708, 2.031634, 2.485715,... E DESIRED: array([[3.568302, 2.525024, 2.913056, 3.018699, 2.711777, 3.261647, E 2.332438, 1.618312, 2.983509, 1.537782], E [2.525024, 3.521735, 2.813897, 2.755708, 2.031634, 2.485715,... A = array([[3.56830206, 2.33243826, 2.91305597, 1.53778244, 3.26164704, 2.98350931, 1.61831156, 2.52502361, 2.7117..., 2.6469813 , 2.86771349, 2.03143937, 2.52422973, 2.31150304, 1.84058728, 2.75570761, 2.42639279, 3.46481756]]) L = array([[ 1.88899499, 0. , 0. , 0. , 0. , 0. , 0. , 0. ...8935, 0.28776551, 0.17087207, -0.44843435, 0.2218908 , 0.32832709, 0. , 0. , 0. ]]) U = array([[ 1.88899499, 1.33670212, 1.54211948, 1.59804526, 1.43556583, 1.72665733, 0.85670506, 1.2347509 ... , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]]) atol = np.float64(2.220446049250313e-13) c = array([[ 1.88899499, 2.33243826, 2.91305597, 1.53778244, 3.26164704, 2.98350931, 1.61831156, 2.52502361...8935, 0.28776551, 0.17087207, -0.44843435, 0.2218908 , 0.32832709, 0.89185714, 1.62686012, 2.36870766]]) double_atol = np.float64(2.220446049250313e-13) dtype = ind = 1 info = 1 n = 10 piv = array([ 1, 8, 3, 10, 9, 5, 2, 7, 6, 4], dtype=int32) pstf2 = r = 2 r_c = 7 rng = RandomState(MT19937) at 0x7FFB5529A540 single_atol = np.float32(0.00011920929) _________________ test_gejsv_general[0-0-0-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5529AE40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-0-0-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5529B540 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-0-0-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5529BC40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-0-0-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FAF0440 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-0-0-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FAF0B40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362], [ 0.53936879, 0.36810838, -0.7238683...248, 0.16962845, -0.83306266, -0.05808097], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, 4.47123304e-01]) _________________ test_gejsv_general[0-0-0-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FAF1240 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[0-0-0-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FAF1940 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362], [ 0.53936879, 0.36810838, -0.7238683...248, 0.16962845, -0.83306266, -0.05808097], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, 4.47123304e-01]) _________________ test_gejsv_general[0-0-0-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FAF2040 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[0-0-0-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FAF2740 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-0-0-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FAF2E40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-0-0-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FAF3540 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-0-0-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FAF3C40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-0-0-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA20440 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-0-0-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA20B40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-0-0-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA21240 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-0-0-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA21940 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-0-0-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA22040 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362, -0.35573056], [ 0.53936879, 0..., 0.03549206], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, 4.47123304e-01]) _________________ test_gejsv_general[0-0-0-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA22740 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[0-0-0-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA22E40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362, -0.35573056], [ 0.53936879, 0..., 0.03549206], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, 4.47123304e-01]) _________________ test_gejsv_general[0-0-0-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA23540 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[0-0-0-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA23C40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-0-0-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F850440 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-0-0-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F850B40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-0-0-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F851240 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-0-0-2-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F851940 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-0-0-2-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F852040 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-0-0-2-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F852740 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-0-0-2-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F852E40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-0-0-2-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F853540 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[0-0-0-2-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F853C40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[0-0-0-2-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F6AC440 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[0-0-0-2-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F6ACB40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[0-0-0-2-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F6AD240 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-0-0-2-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F6AD940 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-0-0-2-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F6AE040 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-0-0-2-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F6AE740 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-0-0-3-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F6AEE40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-0-0-3-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F6AF540 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-0-0-3-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F6AFC40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-0-0-3-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F650440 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-0-0-3-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F650B40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[0-0-0-3-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F651240 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[0-0-0-3-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F651940 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[0-0-0-3-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F652040 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[0-0-0-3-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F652740 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-0-0-3-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F652E40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-0-0-3-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F653540 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-0-0-3-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F653C40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-0-1-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB534BC440 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-1-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB534BCB40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-1-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB534BD240 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-1-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB534BD940 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-1-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB534BE040 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-0-1-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB534BE740 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-0-1-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB534BEE40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-0-1-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB534BF540 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-0-1-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB534BFC40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-1-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F808440 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-1-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F808B40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-1-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F809240 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-1-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F809940 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-1-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F80A040 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-1-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F80A740 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-1-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F80AE40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-1-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F80B540 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-0-1-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F80BC40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-0-1-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F5A4440 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-0-1-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F5A4B40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-0-1-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F5A5240 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-1-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F5A5940 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-1-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F5A6040 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-1-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F5A6740 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-2-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F5A6E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-2-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F5A7540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-2-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F5A7C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-2-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F818440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-2-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F818B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-0-2-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F819240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-0-2-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F819940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-0-2-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F81A040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-0-2-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F81A740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-2-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F81AE40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-2-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F81B540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-2-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F81BC40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-2-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F980440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-2-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F980B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-2-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F981240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-2-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F981940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-2-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F982040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-0-2-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F982740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-0-2-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F982E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-0-2-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F983540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-0-2-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F983C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-2-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F940440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-2-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F940B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-2-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F941240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-2-2-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F941940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-2-2-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F942040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-2-2-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F942740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-2-2-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F942E40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-2-2-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F943540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-2-2-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F943C40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-2-2-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5042C440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-2-2-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5042CB40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-2-2-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5042D240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-2-2-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5042D940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-2-2-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5042E040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-2-2-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5042E740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-2-3-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5042EE40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-2-3-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5042F540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-2-3-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5042FC40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-2-3-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F834440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-2-3-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F834B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-2-3-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F835240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-2-3-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F835940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-2-3-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F836040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-2-3-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F836740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-2-3-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F836E40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-2-3-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F837540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-2-3-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F837C40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-3-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7B8440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-3-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7B8B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-3-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7B9240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-3-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7B9940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-3-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7BA040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-0-3-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7BA740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-0-3-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7BAE40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-0-3-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7BB540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-0-3-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7BBC40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-3-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50400440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-3-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50400B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-3-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50401240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-3-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50401940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-3-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50402040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-3-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50402740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-3-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50402E40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-3-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50403540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-0-3-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50403C40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-0-3-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F9BC440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-0-3-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F9BCB40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-0-3-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F9BD240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-3-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F9BD940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-3-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F9BE040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-0-3-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F9BE740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-0-3-2-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F9BEE40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-3-2-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F9BF540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-3-2-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F9BFC40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-3-2-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7C8440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-3-2-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7C8B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-3-2-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7C9240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-3-2-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7C9940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-3-2-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7CA040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-3-2-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7CA740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-3-2-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7CAE40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-3-2-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7CB540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-3-2-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F7CBC40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-3-3-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F874440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-3-3-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F874B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-3-3-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F875240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-3-3-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F875940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-3-3-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F876040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-3-3-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F876740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-3-3-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F876E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-3-3-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F877540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-3-3-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F877C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-3-3-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FC6C440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-0-3-3-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FC6CB40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-0-3-3-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FC6D240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-0-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FC6D940 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-1-0-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FC6E040 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-1-0-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FC6E740 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-1-0-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FC6EE40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-1-0-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FC6F540 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362], [ 0.53936879, 0.36810838, -0.7238683...248, 0.16962845, -0.83306266, -0.05808097], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, 4.47123304e-01]) _________________ test_gejsv_general[0-1-0-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FC6FC40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[0-1-0-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FBA4440 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362], [ 0.53936879, 0.36810838, -0.7238683...248, 0.16962845, -0.83306266, -0.05808097], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, 4.47123304e-01]) _________________ test_gejsv_general[0-1-0-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FBA4B40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[0-1-0-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FBA5240 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-1-0-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FBA5940 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-1-0-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FBA6040 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-1-0-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FBA6740 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-1-0-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FBA6E40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-1-0-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FBA7540 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-1-0-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FBA7C40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-1-0-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F884440 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-1-0-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F884B40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362, -0.35573056], [ 0.53936879, 0..., 0.03549206], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, 4.47123304e-01]) _________________ test_gejsv_general[0-1-0-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F885240 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[0-1-0-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F885940 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362, -0.35573056], [ 0.53936879, 0..., 0.03549206], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, 4.47123304e-01]) _________________ test_gejsv_general[0-1-0-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F886040 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[0-1-0-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F886740 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-1-0-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F886E40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-1-0-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F887540 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[0-1-0-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F887C40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[0-1-0-2-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501E8440 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-1-0-2-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB501E8B40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-1-0-2-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501E9240 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-1-0-2-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB501E9940 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-1-0-2-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501EA040 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[0-1-0-2-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB501EA740 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[0-1-0-2-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501EAE40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[0-1-0-2-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB501EB540 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[0-1-0-2-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501EBC40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-1-0-2-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50198440 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-1-0-2-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50198B40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-1-0-2-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50199240 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-1-0-3-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50199940 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-1-0-3-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5019A040 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-1-0-3-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5019A740 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-1-0-3-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5019AE40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-1-0-3-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5019B540 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[0-1-0-3-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5019BC40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[0-1-0-3-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501C4440 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[0-1-0-3-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB501C4B40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[0-1-0-3-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501C5240 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-1-0-3-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB501C5940 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-1-0-3-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501C6040 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[0-1-0-3-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB501C6740 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[0-1-1-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501C6E40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-1-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB501C7540 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-1-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501C7C40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-1-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50254440 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-1-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50254B40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-1-1-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50255240 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-1-1-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50255940 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-1-1-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50256040 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-1-1-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50256740 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-1-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50256E40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-1-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50257540 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-1-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50257C40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-1-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEF0440 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-1-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEF0B40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-1-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEF1240 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-1-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEF1940 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-1-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEF2040 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-1-1-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEF2740 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-1-1-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEF2E40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-1-1-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEF3540 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-1-1-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEF3C40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-1-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EED8440 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-1-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EED8B40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-1-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EED9240 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-2-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EED9940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-2-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEDA040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-2-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEDA740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-2-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEDAE40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-2-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEDB540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-1-2-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EEDBC40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-1-2-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF80440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-1-2-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF80B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-1-2-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF81240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-2-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF81940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-2-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF82040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-2-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF82740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-2-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF82E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-2-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF83540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-2-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF83C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-2-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50178440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-2-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50178B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-1-2-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50179240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-1-2-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50179940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-1-2-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5017A040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-1-2-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5017A740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-2-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5017AE40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-2-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5017B540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-2-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5017BC40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-2-2-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB500AC440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-2-2-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB500ACB40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-2-2-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB500AD240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-2-2-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB500AD940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-2-2-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB500AE040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-2-2-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB500AE740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-2-2-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB500AEE40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-2-2-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB500AF540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-2-2-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB500AFC40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-2-2-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF30440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-2-2-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF30B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-2-2-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF31240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-2-3-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF31940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-2-3-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF32040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-2-3-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF32740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-2-3-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF32E40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-2-3-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF33540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-2-3-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4EF33C40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-2-3-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB500BC440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-2-3-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB500BCB40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-2-3-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB500BD240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-2-3-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB500BD940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-2-3-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB500BE040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-2-3-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB500BE740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-3-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB500BEE40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-3-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB500BF540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-3-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB500BFC40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-3-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA04440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-3-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA04B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-1-3-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA05240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-1-3-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA05940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-1-3-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA06040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-1-3-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA06740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-3-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA06E40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-3-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA07540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-3-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FA07C40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-3-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501E0440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-3-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB501E0B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-3-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501E1240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-3-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB501E1940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-3-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501E2040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-1-3-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB501E2740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-1-3-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501E2E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[0-1-3-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB501E3540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[0-1-3-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB501E3C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-3-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50278440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-3-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50278B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[0-1-3-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50279240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[0-1-3-2-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50279940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-3-2-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5027A040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-3-2-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5027A740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-3-2-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5027AE40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-3-2-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5027B540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-3-2-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5027BC40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-3-2-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF4440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-3-2-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF4B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-3-2-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF5240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-3-2-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF5940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-3-2-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF6040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-3-2-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF6740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-3-3-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF6E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-3-3-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF7540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-3-3-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF7C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-3-3-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFE8440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-3-3-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFE8B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-3-3-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFE9240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-3-3-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFE9940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-3-3-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFEA040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-3-3-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFEA740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-3-3-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFEAE40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[0-1-3-3-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFEB540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[0-1-3-3-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 0 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFEBC40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-0-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF0440 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-0-0-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF0B40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-0-0-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF1240 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-0-0-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF1940 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-0-0-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF2040 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362], [ 0.53936879, 0.36810838, -0.7238683...248, 0.16962845, -0.83306266, -0.05808097], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, 4.47123304e-01]) _________________ test_gejsv_general[1-0-0-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF2740 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[1-0-0-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF2E40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362], [ 0.53936879, 0.36810838, -0.7238683...248, 0.16962845, -0.83306266, -0.05808097], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, 4.47123304e-01]) _________________ test_gejsv_general[1-0-0-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF3540 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[1-0-0-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFF3C40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-0-0-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50024440 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-0-0-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50024B40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-0-0-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50025240 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-0-0-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50025940 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-0-0-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50026040 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-0-0-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50026740 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-0-0-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50026E40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-0-0-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB50027540 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362, -0.35573056], [ 0.53936879, 0..., 0.03549206], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, 4.47123304e-01]) _________________ test_gejsv_general[1-0-0-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB50027C40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[1-0-0-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5001C440 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362, -0.35573056], [ 0.53936879, 0..., 0.03549206], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, 4.47123304e-01]) _________________ test_gejsv_general[1-0-0-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5001CB40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[1-0-0-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5001D240 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-0-0-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5001D940 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-0-0-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5001E040 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-0-0-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5001E740 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-0-0-2-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5001EE40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-0-0-2-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB5001F540 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-0-0-2-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB5001FC40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-0-0-2-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E960440 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-0-0-2-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E960B40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[1-0-0-2-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E961240 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[1-0-0-2-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E961940 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[1-0-0-2-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E962040 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[1-0-0-2-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E962740 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-0-0-2-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E962E40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-0-0-2-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E963540 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-0-0-2-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E963C40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-0-0-3-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E938440 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-0-0-3-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E938B40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-0-0-3-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E939240 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-0-0-3-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E939940 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-0-0-3-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E93A040 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[1-0-0-3-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E93A740 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[1-0-0-3-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E93AE40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[1-0-0-3-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E93B540 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[1-0-0-3-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E93BC40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-0-0-3-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E980440 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-0-0-3-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E980B40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-0-0-3-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E981240 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-0-1-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E981940 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-1-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E982040 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-1-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E982740 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-1-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E982E40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-1-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E983540 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-0-1-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E983C40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-0-1-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E734440 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-0-1-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E734B40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-0-1-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E735240 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-1-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E735940 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-1-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E736040 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-1-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E736740 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-1-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E736E40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-1-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E737540 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-1-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E737C40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-1-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7FC440 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-1-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7FCB40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-0-1-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7FD240 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-0-1-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7FD940 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-0-1-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7FE040 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-0-1-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7FE740 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-1-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7FEE40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-1-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7FF540 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-1-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7FFC40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-2-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD88440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-2-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD88B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-2-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD89240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-2-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD89940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-2-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8A040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-0-2-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8A740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-0-2-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8AE40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-0-2-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8B540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-0-2-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8BC40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-2-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDB4440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-2-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDB4B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-2-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDB5240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-2-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDB5940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-2-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDB6040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-2-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDB6740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-2-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDB6E40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-2-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDB7540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-0-2-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDB7C40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-0-2-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E750440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-0-2-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E750B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-0-2-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E751240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-2-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E751940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-2-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E752040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-2-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E752740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-2-2-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E752E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-2-2-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E753540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-2-2-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E753C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-2-2-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7AC440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-2-2-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7ACB40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-2-2-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7AD240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-2-2-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7AD940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-2-2-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7AE040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-2-2-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7AE740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-2-2-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7AEE40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-2-2-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7AF540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-2-2-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E7AFC40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-2-3-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD90440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-2-3-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD90B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-2-3-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD91240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-2-3-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD91940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-2-3-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD92040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-2-3-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD92740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-2-3-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD92E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-2-3-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD93540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-2-3-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD93C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-2-3-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8C440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-2-3-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8CB40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-2-3-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8D240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-3-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8D940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-3-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8E040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-3-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8E740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-3-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8EE40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-3-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8F540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-0-3-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FD8FC40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-0-3-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFD4440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-0-3-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFD4B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-0-3-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFD5240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-3-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFD5940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-3-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFD6040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-3-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFD6740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-3-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFD6E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-3-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFD7540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-3-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FFD7C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-3-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDAC440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-3-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDACB40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-0-3-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDAD240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-0-3-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDAD940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-0-3-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDAE040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-0-3-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDAE740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-3-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDAEE40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-3-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDAF540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-0-3-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4FDAFC40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-0-3-2-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3FC440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-3-2-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3FCB40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-3-2-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3FD240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-3-2-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3FD940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-3-2-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3FE040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-3-2-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3FE740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-3-2-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3FEE40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-3-2-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3FF540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-3-2-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3FFC40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-3-2-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E400440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-3-2-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E400B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-3-2-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E401240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-3-3-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E401940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-3-3-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E402040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-3-3-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E402740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-3-3-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E402E40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-3-3-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E403540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-3-3-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E403C40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-3-3-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F180440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-3-3-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F180B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-3-3-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F181240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-3-3-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F181940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-0-3-3-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F182040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-0-3-3-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 0 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F182740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-0-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F182E40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-1-0-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F183540 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-1-0-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F183C40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-1-0-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3F4440 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-1-0-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3F4B40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362], [ 0.53936879, 0.36810838, -0.7238683...248, 0.16962845, -0.83306266, -0.05808097], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, 4.47123304e-01]) _________________ test_gejsv_general[1-1-0-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3F5240 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[1-1-0-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3F5940 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362], [ 0.53936879, 0.36810838, -0.7238683...248, 0.16962845, -0.83306266, -0.05808097], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, 4.47123304e-01]) _________________ test_gejsv_general[1-1-0-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3F6040 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[1-1-0-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3F6740 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-1-0-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3F6E40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-1-0-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3F7540 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362], [ 0.53936879, -0.36810838, 0.7238683...248, -0.16962845, 0.83306266, -0.05808097], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.32000000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-1-0-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E3F7C40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-1-0-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F1F0440 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-1-0-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F1F0B40 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-1-0-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F1F1240 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-1-0-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F1F1940 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-1-0-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F1F2040 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362, -0.35573056], [ 0.53936879, 0..., 0.03549206], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, 4.47123304e-01]) _________________ test_gejsv_general[1-1-0-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F1F2740 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[1-1-0-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F1F2E40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, -0.3182528 , 0.30462805, 0.00881646, 0.63232362, -0.35573056], [ 0.53936879, 0..., 0.03549206], [ 0.31251297, 0.4057159 , 0.56669916, 0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, 0.5159251 , 0.69560088, -0.26635951, -0.32079152], [ 0.46309372, -0.72173372, 0.3069515...424, 0.07925981, 0.41199336, 0.72391415], [ 0.29666239, 0.32723506, -0.56492321, -0.68555022, 0.12566346]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, 4.47123304e-01]) _________________ test_gejsv_general[1-1-0-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F1F3540 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, 0.33834361, 0.39677046, -0.53375209, -0.35476945], [ 0.56623859, -0.61613605, -0.5358015...408, -0.03510213, -0.32355562, 0.87108488], [ 0.19099411, -0.43923094, 0.67718021, 0.50885012, 0.03591137]]) v = array([[ 0.1979207 , -0.2618093 , 0.83742459, 0.23407575, -0.36906895], [ 0.49494533, 0.74404513, 0.2330793...915, 0.14843899, -0.8182393 , 0.23969932], [ 0.32871924, -0.54571321, -0.13481217, 0.49755042, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, -3.39847103e-01]) _________________ test_gejsv_general[1-1-0-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F1F3C40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-1-0-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F130440 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-1-0-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.40860426 E Max relative difference among violations: 0.30087783 E ACTUAL: array([2.519785, 1.018663, 0.7576 , 0.303015, 0.176052]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F130B40 rsvec = True sigma = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) size = (6, 5) sva = array([2.51978494, 1.01866313, 0.75760043, 0.30301492, 0.1760522 ]) u = array([[ 0.47736407, 0.3182528 , -0.30462805, -0.00881646, 0.63232362, -0.35573056], [ 0.53936879, -0..., 0.03549206], [ 0.31251297, -0.4057159 , -0.56669916, -0.47766398, -0.38156961, 0.00101266]]) v = array([[ 0.27587337, -0.5159251 , -0.69560088, 0.26635951, -0.32079152], [ 0.46309372, 0.72173372, -0.3069515...424, -0.07925981, -0.41199336, 0.72391415], [ 0.29666239, -0.32723506, 0.56492321, 0.68555022, 0.12566346]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 2.75797647e+00, 1.37382542e+00, 4.35200000e+03, -2.50434031e-01]) _________________ test_gejsv_general[1-1-0-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.52908472 E Max relative difference among violations: 1.1412505 E ACTUAL: array([2.349497e+00, 9.581249e-01, 5.648317e-01, 2.297746e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 0 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F131240 rsvec = True sigma = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) size = (5, 5) sva = array([2.34949737e+00, 9.58124859e-01, 5.64831681e-01, 2.29774604e-01, 3.59115447e-04]) u = array([[ 0.47851373, -0.33834361, -0.39677046, 0.53375209, -0.35476945], [ 0.56623859, 0.61613605, 0.5358015...408, 0.03510213, 0.32355562, 0.87108488], [ 0.19099411, 0.43923094, -0.67718021, -0.50885012, 0.03591137]]) v = array([[ 0.1979207 , 0.2618093 , -0.83742459, -0.23407575, -0.36906895], [ 0.49494533, -0.74404513, -0.2330793...915, -0.14843899, 0.8182393 , 0.23969932], [ 0.32871924, 0.54571321, 0.13481217, -0.49755042, 0.57307068]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 3.03216479e+00, 1.19511124e+00, 4.32000000e+03, 2.15752556e-01]) _________________ test_gejsv_general[1-1-0-2-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F131940 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-1-0-2-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F132040 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-1-0-2-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F132740 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-1-0-2-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F132E40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-1-0-2-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F133540 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[1-1-0-2-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F133C40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[1-1-0-2-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F184440 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[1-1-0-2-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F184B40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[1-1-0-2-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F185240 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-1-0-2-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F185940 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-1-0-2-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F186040 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-1-0-2-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F186740 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-1-0-3-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F186E40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-1-0-3-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F187540 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-1-0-3-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F187C40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-1-0-3-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E14C440 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-1-0-3-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E14CB40 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[1-1-0-3-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E14D240 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[1-1-0-3-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E14D940 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, 0.49964515, -0.6810339 , -0.06686189, -0.43720431], [ 0.44511993, -0.74822182, -0.3540736...582, -0.11921113, 0.20913769, 0.80431831], [ 0.30011997, 0.31505698, 0.45085849, -0.77918854, -0.01609203]]) work = array([1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, 6.33877676e-02]) _________________ test_gejsv_general[1-1-0-3-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E14E040 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, -0.17232515, 0.77425414, 0.30609761, -0.48346693], [ 0.46718328, 0.81410301, 0.1671313...768, 0.26515747, -0.82745701, 0.15605605], [ 0.3475871 , -0.49909456, 0.03536104, 0.43757192, 0.66133822]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, 5.48850516e-02]) _________________ test_gejsv_general[1-1-0-3-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E14E740 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-1-0-3-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E14EE40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-1-0-3-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.37873855 E Max relative difference among violations: 0.40646933 E ACTUAL: array([2.489919, 1.014008, 0.819094, 0.356753, 0.187439]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E14F540 rsvec = True sigma = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) size = (6, 5) sva = array([2.48991923, 1.01400797, 0.81909441, 0.35675252, 0.18743926]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.30154507, -0.49964515, 0.6810339 , 0.06686189, -0.43720431], [ 0.44511993, 0.74822182, 0.3540736...582, 0.11921113, -0.20913769, 0.80431831], [ 0.30011997, -0.31505698, -0.45085849, 0.77918854, -0.01609203]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.90393382e+00, 1.99983949e+00, 0.00000000e+00, 4.32000000e+03, -6.33877676e-02]) _________________ test_gejsv_general[1-1-0-3-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.50399225 E Max relative difference among violations: 1.4710572 E ACTUAL: array([2.324405e+00, 9.672262e-01, 6.746504e-01, 2.330687e-01, E 4.144283e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 0 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E14FC40 rsvec = True sigma = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) size = (5, 5) sva = array([2.32440490e+00, 9.67226224e-01, 6.74650414e-01, 2.33068717e-01, 4.14428304e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[ 0.20832321, 0.17232515, -0.77425414, -0.30609761, -0.48346693], [ 0.46718328, -0.81410301, -0.1671313...768, -0.26515747, 0.82745701, 0.15605605], [ 0.3475871 , 0.49909456, -0.03536104, -0.43757192, 0.66133822]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.86592880e+00, 1.91978008e+00, 0.00000000e+00, 4.32000000e+03, -5.48850516e-02]) _________________ test_gejsv_general[1-1-1-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E158440 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-1-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E158B40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-1-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E159240 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-1-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E159940 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-1-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E15A040 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-1-1-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E15A740 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-1-1-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E15AE40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-1-1-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E15B540 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-1-1-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E15BC40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-1-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E144440 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-1-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E144B40 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-1-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E145240 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-1-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E145940 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-1-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E146040 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-1-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E146740 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-1-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E146E40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-1-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E147540 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-1-1-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E147C40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.21334728e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-1-1-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F004440 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-1-1-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F004B40 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 4.15999900e+03, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-1-1-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F005240 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-1-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F005940 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-1-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F006040 rsvec = True sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[-0.32070686, -0.50191665, -0.68630736, -0.26893709, -0.31918935], [-0.46661837, 0.73470943, -0.2742917...501, -0.06304507, 0.41826391, 0.72208401], [-0.28367024, -0.32719616, 0.57907729, -0.67906067, 0.12656999]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, -1.00000000e+00, -1.00000000e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-1-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 1 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F006740 rsvec = True sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[-0.23004863, 0.26641048, -0.82788992, 0.23342982, -0.36906894], [-0.51100639, -0.73868422, -0.2145120...097, -0.12914702, -0.81782168, 0.23969932], [-0.31702817, 0.548221 , 0.1495027 , 0.49818251, 0.57307068]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.50965110e+00, -1.00000000e+00, -1.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-2-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F006E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-2-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F007540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-2-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F007C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-2-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F080440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-2-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F080B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-1-2-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F081240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-1-2-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F081940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-1-2-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F082040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-1-2-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F082740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-2-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F082E40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-2-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F083540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-2-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F083C40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-2-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F084440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-2-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F084B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-2-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F085240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-2-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F085940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-2-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F086040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-1-2-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F086740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-1-2-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F086E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-1-2-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F087540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-1-2-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F087C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-2-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F044440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-2-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F044B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-2-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 2 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F045240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-2-2-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F045940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-2-2-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F046040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-2-2-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F046740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-2-2-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F046E40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-2-2-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F047540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-2-2-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F047C40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-2-2-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E128440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-2-2-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E128B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-2-2-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E129240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-2-2-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E129940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-2-2-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E12A040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-2-2-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E12A740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-2-3-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E12AE40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-2-3-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4E12B540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-2-3-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4E12BC40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-2-3-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06C440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-2-3-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06CB40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-2-3-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06D240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-2-3-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06D940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-2-3-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06E040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-2-3-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06E740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-2-3-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06EE40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-2-3-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06F540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-2-3-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 2 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06FC40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-3-0-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F0A4440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-3-0-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F0A4B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-3-0-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F0A5240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-3-0-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F0A5940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-3-0-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F0A6040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-1-3-0-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F0A6740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-1-3-0-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F0A6E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.32000000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-1-3-0-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F0A7540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-1-3-0-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F0A7C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-3-0-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4DF24440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-3-0-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4DF24B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258], [-0.43354729, -0.37633818, 0.7238261...625, -0.158005 , -0.83358102, -0.05648721], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.32000000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-3-0-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 0 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4DF25240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-3-1-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4DF25940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-3-1-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4DF26040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-3-1-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4DF26740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-3-1-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4DF26E40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-3-1-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4DF27540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.83025556e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-1-3-1-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4DF27C40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.21334728e+00, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-1-3-1-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4DDC0440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 9.01767848e+00, 1.72143156e+00, 1.91245603e+00, 4.35200000e+03, -4.50934692e-01]) _________________ test_gejsv_general[1-1-3-1-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4DDC0B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 4.15999900e+03, 1.88554769e+00, 0.00000000e+00, 4.32000000e+03, 3.37848362e-01]) _________________ test_gejsv_general[1-1-3-1-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4DDC1240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-3-1-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4DDC1940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-3-1-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4DDC2040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[-0.5305216 , 0.32804802, -0.29050162, 0.0123048 , 0.63233258, -0.35573056], [-0.43354729, -0..., 0.03549206], [-0.37619349, -0.39679903, -0.57425846, 0.4744871 , -0.38225277, 0.00101266]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+00, 1.00000000e+00, 1.51546754e+00, 1.01244595e+00, 1.76530655e+00, 4.35200000e+03, -2.60451504e-01]) _________________ test_gejsv_general[1-1-3-1-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 1 jobv = 3 l2tran = False lsvec = True m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4DDC2740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[-0.57022771, -0.33403899, -0.39035287, -0.53387413, -0.35476945], [-0.46627213, 0.61517216, 0.5418314...164, 0.03965085, -0.32348914, 0.87108488], [-0.29646593, 0.44367028, -0.67478204, 0.50857075, 0.03591137]]) v = array([], shape=(0, 0), dtype=float64) work = array([1.00000000e+00, 1.00000000e+00, 1.50965110e+00, 1.21058808e+00, 0.00000000e+00, 4.32000000e+03, 2.10873949e-01]) _________________ test_gejsv_general[1-1-3-2-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4DDC2E40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-3-2-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4DDC3540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-3-2-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4DDC3C40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-3-2-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F09C440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-3-2-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F09CB40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-3-2-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F09D240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-3-2-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F09D940 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-3-2-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F09E040 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-3-2-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F09E740 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-3-2-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F09EE40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-3-2-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F09F540 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-3-2-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 2 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F09FC40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-3-3-0-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F068440 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-3-3-0-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 0 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F068B40 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-3-3-1-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F069240 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-3-3-1-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 1 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F069940 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-3-3-2-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06A040 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-3-3-2-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 2 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06A740 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-3-3-3-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06AE40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 9.01767848e+000, 4.00000000e+000, 6.82877490e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-3-3-3-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 3 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06B540 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 4.15999900e+003, 4.00000000e+000, 4.97366983e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-3-3-4-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4F06BC40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-3-3-4-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 4 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4DDF8440 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) _________________ test_gejsv_general[1-1-3-3-5-float64-size0] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.41176519 E Max relative difference among violations: 0.28614199 E ACTUAL: array([2.522946, 1.017571, 0.749019, 0.302005, 0.175926]) E DESIRED: array([2.111181, 1.222811, 0.582376, 0.415433, 0.207815]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.13949386, 0.29214465, 0.36636184, 0.45606998], [0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 6 n = 5 rng = RandomState(MT19937) at 0x7FFB4DDF8B40 rsvec = False sigma = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) size = (6, 5) sva = array([2.52294588, 1.01757135, 0.74901862, 0.30200492, 0.1759258 ]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 8.12018157e-017, 0.00000000e+000, -1.24686178e+152]) _________________ test_gejsv_general[1-1-3-3-5-float64-size1] __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:1934: in test_gejsv_general assert_allclose(sigma, svd(A, compute_uv=False), atol=atol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.22045e-14 E E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 0.53111873 E Max relative difference among violations: 1.14125049 E ACTUAL: array([2.351531e+00, 9.579180e-01, 5.566678e-01, 2.297534e-01, E 3.591154e-04]) E DESIRED: array([1.820413e+00, 1.161447e+00, 5.448408e-01, 2.368611e-01, E 1.677130e-04]) A = array([[0.37454012, 0.95071431, 0.73199394, 0.59865848, 0.15601864], [0.15599452, 0.05808361, 0.86617615, 0.601... 0.30424224, 0.52475643, 0.43194502, 0.29122914], [0.61185289, 0.13949386, 0.29214465, 0.36636184, 0.45606998]]) atol = np.float64(2.220446049250313e-14) dtype = exit_status = 0 gejsv = info = 0 invalid_cplx_jobu = False invalid_cplx_jobv = False invalid_real_jobv = False is_complex = False iwork = array([5, 5, 0], dtype=int32) joba = 5 jobp = 1 jobr = 1 jobt = 0 jobu = 3 jobv = 3 l2tran = False lsvec = False m = 5 n = 5 rng = RandomState(MT19937) at 0x7FFB4DDF9240 rsvec = False sigma = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) size = (5, 5) sva = array([2.35153139e+00, 9.57917980e-01, 5.56667766e-01, 2.29753429e-01, 3.59115446e-04]) u = array([], shape=(0, 0), dtype=float64) v = array([], shape=(0, 0), dtype=float64) work = array([ 1.00000000e+000, 1.00000000e+000, 5.00000000e+000, 4.00000000e+000, 3.43019603e-017, 0.00000000e+000, -3.24550313e+148]) __________________________ test_orcsd_uncsd[float64] ___________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:2656: in test_orcsd_uncsd assert_allclose(X, Xc, rtol=0., atol=1e4*np.finfo(dtype_).eps) E AssertionError: E Not equal to tolerance rtol=0, atol=2.22045e-12 E E Mismatched elements: 62250 / 62500 (99.6%) E Max absolute difference among violations: 0.31660489 E Max relative difference among violations: 30688.88307736 E ACTUAL: array([[-0.089468, -0.040566, -0.029012, ..., 0.002575, -0.029193, E 0.122851], E [-0.004813, 0.032434, -0.007313, ..., 0.025866, -0.051427,... E DESIRED: array([[-0.011159, 0.044748, -0.014072, ..., 0.004996, -0.040237, E 0.09559 ], E [ 0.015405, 0.016903, -0.030787, ..., -0.050192, -0.080598,... S = array([[0.99995827, 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0.99... ], [0. , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(250, 250)) U = array([[-0.20651462, -0.09231034, 0.13555617, ..., 0. , 0. , 0. ], [ 0.0516153... [ 0. , 0. , 0. , ..., -0.05175272, 0.02996506, -0.04412025]], shape=(250, 250)) VH = array([[ 0.02039768, -0.02267692, -0.12471598, ..., 0. , 0. , 0. ], [-0.0289372... [ 0. , 0. , 0. , ..., -0.09996131, -0.18373748, 0.23925006]], shape=(250, 250)) X = array([[-0.08946809, -0.04056557, -0.02901189, ..., 0.00257459, -0.02919326, 0.12285137], [-0.0048132... [ 0.03369634, 0.00660203, -0.10348765, ..., 0.001328 , -0.01585522, 0.06872784]], shape=(250, 250)) Xc = array([[-0.01115902, 0.0447476 , -0.01407219, ..., 0.00499636, -0.04023704, 0.09559033], [ 0.0154047... [ 0.01948716, 0.00544566, -0.01455695, ..., -0.00671028, -0.08093561, 0.03841055]], shape=(250, 250)) cs11 = array([[-0.08113894, 0.07229314, 0.00683653, ..., -0.0020886 , -0.01324985, -0.03769238], [-0.0159779..., [-0.03322949, -0.03241707, -0.00405058, ..., -0.02756499, 0.09221618, 0.03650545]], shape=(80, 170)) cs12 = array([[ 1.00000000e+00, -3.34853761e-03, 3.07872119e-02, ..., -1.43736209e-02, -5.95986856e-02, 8.30518938e....80798129e-01, -1.54640761e-01, ..., 2.45975305e-01, -1.70086456e-01, 1.00000000e+00]], shape=(80, 80)) cs21 = array([[ 1.00000000e+00, -8.97291547e-02, -8.48539836e-03, ..., 2.59234277e-03, 1.64455102e-02, 4.67832174e...7691237e-02, -6.59124108e-02, ..., -6.26128861e-02, 4.47185083e-02, 1.00000000e+00]], shape=(170, 170)) cs22 = array([[ 1. , 1. , 0.05724054, ..., -0.02672388, -0.11080772, 0.15441265], [-0.0479722..., [ 0.09246999, 0.02841154, -0.00277975, ..., -0.17374998, -0.04840261, 0.14527396]], shape=(170, 80)) dlw = drv = dtype_ = i = 79 info = 0 lwval = 6020 lwvals = {'lwork': 6020} m = 250 n11 = 0 n12 = 0 n21 = 90 n22 = 0 one = np.float64(1.0) p = 80 pfx = 'or' q = 170 r = 80 theta = array([0.00913622, 0.02481865, 0.05740179, 0.06199374, 0.06786289, 0.08642444, 0.0934493 , 0.10974989, 0.135491...39, 1.06296196, 1.0778775 , 1.10195687, 1.11821011, 1.15309872, 1.2008976 , 1.25907678, 1.45192996, 1.50775728]) u1 = array([[-0.20651462, -0.09231034, 0.13555617, ..., 0.00883966, -0.15186222, -0.21925518], [ 0.0516153...], [ 0.04793623, -0.01330478, -0.0845902 , ..., 0.06584556, 0.09199332, -0.22064538]], shape=(80, 80)) u2 = array([[ 0.1089101 , 0.0970294 , -0.01809255, ..., -0.00117797, -0.02832928, 0.00527907], [-0.0694095... [ 0.09574484, 0.02182853, -0.00670438, ..., -0.05175272, 0.02996506, -0.04412025]], shape=(170, 170)) v1t = array([[ 0.02039768, -0.02267692, -0.12471598, ..., -0.06899855, 0.01895112, -0.01287479], [-0.0289372... [ 0.00283029, 0.04668555, -0.02309404, ..., -0.17648852, -0.1349792 , -0.11538705]], shape=(170, 170)) v2t = array([[-2.78197599e-03, 5.67943790e-02, -1.85667274e-02, ..., -9.95462759e-02, -1.27409276e-01, -1.99093314e....03948926e-02, -1.92877627e-02, ..., -9.99613114e-02, -1.83737484e-01, 2.39250062e-01]], shape=(80, 80)) _______________ test_pptrs_pptri_pptrf_ppsv_ppcon[float64-True] ________________ lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py:3039: in test_pptrs_pptri_pptrf_ppsv_ppcon assert_allclose(ul, aul, rtol=0, atol=atol) E AssertionError: E Not equal to tolerance rtol=0, atol=2.22045e-14 E E Mismatched elements: 19 / 55 (34.5%) E Max absolute difference among violations: 0.17704094 E Max relative difference among violations: 1.13963256 E ACTUAL: array([ 2.320138e+00, 4.223568e-01, 3.459337e-01, 7.130982e-01, E 3.619548e-01, 1.657173e-01, 2.421043e-01, 6.639241e-01, E 6.012714e-01, 4.432950e-01, 2.413215e+00, 4.776830e-01,... E DESIRED: array([ 2.320138e+00, 4.223568e-01, 3.459337e-01, 7.130982e-01, E 3.619548e-01, 1.657173e-01, 2.421043e-01, 6.639241e-01, E 6.012714e-01, 4.432950e-01, 2.413215e+00, 4.776830e-01,... a = array([[5.3830389 , 0.97992604, 0.80261372, 1.65448597, 0.83978503, 0.38448692, 0.56171522, 1.54039523, 1.3950..., 1.45105081, 1.09632293, 1.86074472, 0.98332601, 1.2945237 , 0.65625909, 1.11984377, 0.49542552, 6.33884349]]) ap = array([5.3830389 , 0.97992604, 0.80261372, 1.65448597, 0.83978503, 0.38448692, 0.56171522, 1.54039523, 1.395032...82, 1.39875828, 0.87000611, 0.65625909, 6.07170333, 0.83721551, 1.11984377, 6.26745154, 0.49542552, 6.33884349]) atol = np.float64(2.220446049250313e-14) aul = array([ 2.32013769e+00, 4.22356848e-01, 3.45933660e-01, 7.13098184e-01, 3.61954825e-01, 1.65717287e-01, 2...1317e-02, 2.18088572e+00, -7.59646286e-02, 7.20705656e-02, 2.29579854e+00, -1.90871347e-01, 2.26762947e+00]) b = array([[0.76711663, 0.70811536, 0.79686718, 0.55776083], [0.96583653, 0.1471569 , 0.029647 , 0.59389349], ...8 ], [0.85389857, 0.28706243, 0.17306723, 0.13402121], [0.99465383, 0.17949787, 0.31754682, 0.5682914 ]]) dtype = inds = ([0, 1, 2, 3, 4, 5, ...], [0, 0, 0, 0, 0, 0, ...]) info = 0 lower = True n = 10 nrhs = 4 ppcon = ppsv = pptrf = pptri = pptrs = rng = RandomState(MT19937) at 0x7FFB4DDF9F40 ul = array([ 2.32013769e+00, 4.22356848e-01, 3.45933660e-01, 7.13098184e-01, 3.61954825e-01, 1.65717287e-01, 2...7048e-02, 2.20699407e+00, -1.40136464e-02, 1.36181558e-01, 2.32446341e+00, -1.43853962e-01, 2.29626200e+00]) _________________ TestExpmConditionNumber.test_expm_cond_fuzz __________________ lib/python3.12/site-packages/scipy/linalg/tests/test_matfuncs.py:1046: in test_expm_cond_fuzz assert_array_less(p_best_relerr, (1 + 2*eps) * eps * kappa) E AssertionError: E Arrays are not strictly ordered `x < y` E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 2.02962756e-06 E Max relative difference among violations: 0.06822356 E x: array(3.177929e-05) E y: array(2.974966e-05) A = array([[ 0.59509111, 0.04183403, 0.8004467 , -0.07192168], [-1.04306888, -0.38115577, -0.76607823, -1.5774426... [ 0.48817647, 1.18031326, 0.1206598 , 0.87273915], [ 1.41795968, -1.00970237, 0.08276794, -0.09222159]]) A_norm = np.float64(3.280761614023622) X = array([[ 1.89240444, 0.54342118, 1.03728699, 0.02391685], [-3.07909 , 0.69636567, -1.72288174, -1.7740768... [ 0.40160599, 0.85084038, 0.97426618, 0.12032356], [ 3.04757788, -0.53730936, 1.38274292, 1.75988469]]) X_norm = np.float64(6.1211862813483355) eps = 1e-05 f = functools.partial(, array([[ 0.59509111, 0.04183403, 0.8004467 , ...18, 0.12032356], [ 3.04757788, -0.53730936, 1.38274292, 1.75988469]]), np.float64(6.1211862813483355), 1e-05) guess = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) i = 0 j = 4 kappa = np.float64(2.974906425297533) n = 4 nsamples = 10 out = message: CONVERGENCE: RELATIVE REDUCTION OF F <= FACTR*EPSMCH success: True status: 0 fun: -3.17792867963...1e-03 ... -1.379e-03 -1.327e-03] nfev: 391 njev: 23 hess_inv: <16x16 LbfgsInvHessProduct with dtype=float64> p_best = array([[ 1.21083173e-05, -1.35466686e-05, 5.80936812e-06, 1.46986714e-05], [-3.44483229e-06, 5.39307...69e-06, 7.56796573e-06], [ 7.59852040e-06, -9.79360841e-06, 3.56758608e-06, 1.01635190e-05]]) p_best_relerr = np.float64(3.177928679637975e-05) p_rand = array([[ 5.16018970e-06, -2.08349042e-06, 4.88398486e-07, -6.81117561e-08], [-8.63380812e-06, -1.10023...80e-06, -9.35450082e-06], [ 2.38362336e-06, 1.37910302e-06, 1.00854677e-05, 1.81680909e-05]]) p_rand_relerr = np.float64(1.244919579825174e-05) rng = RandomState(MT19937) at 0x7FFB4F18E740 self = xopt = array([ 2.95708298, -3.3083559 , 1.41875895, 3.58969704, -0.84129402, 1.31709161, -0.37173032, -1.31191432, 1.54581778, -1.67329865, 0.78493566, 1.84824217, 1.8557042 , -2.39178673, 0.87127284, 2.482126 ]) yopt = np.float64(-3.1779286796379744) __________________________ test_orthogonal_procrustes __________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_procrustes.py:85: in test_orthogonal_procrustes assert_allclose(inv(R), R.T) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 36 / 36 (100%) E Max absolute difference among violations: 4.05477579 E Max relative difference among violations: 229.87072158 E ACTUAL: array([[ 0.43302 , 0.134073, 0.20843 , 0.092721, -0.807961, 0.317487], E [-2.1921 , 0.866298, 0.52946 , 0.872833, 0.310923, 1.781726], E [-3.233626, 1.264128, 0.345519, -0.333624, 0.888688, 4.333328],... E DESIRED: array([[ 0.358778, 0.176347, 0.219501, 0.118562, -0.799758, 0.371926], E [-0.108816, 0.198916, 0.51242 , 0.638801, 0.119146, -0.15534 ], E [-0.014006, -0.323446, 0.064185, -0.331254, 0.026821, 0.278553],... A = array([[-0.64529537, 0.81346481, 1.57079957, -0.59780345, 0.70179195, -0.4626229 ], [ 0.71112475, 0..., -1.06194423], [-1.33911174, -0.88053268, 1.33108642, -0.46588719, -1.01864391, 0.26718376]]) A_perturbed = array([[-1.25173721, 1.3502734 , -2.04889147, -2.18190244], [ 0.80954826, -0.04878863, 0.52118401, 0.6750860... [ 2.28464526, -0.54202182, 0.33445759, 0.18499674], [-0.16785065, 0.20050822, -0.57225679, -1.18568751]]) B = array([[-0.4507651 , 0.74916381, -0.20393287, -0.18217541, 0.680656 , -1.81849899], [ 0.04707164, 0..., 0.67862967], [ 0.239556 , 0.15122663, 0.81612723, 1.89353447, 0.63963276, -0.96202883]]) R = array([[ 0.35877808, -0.10881587, -0.01400622, -0.51845715, -0.45082115, 0.02001505], [ 0.17634698, 0..., -0.15078545], [ 0.37192611, -0.15534018, 0.27855257, -0.07618784, -0.41256256, 0.20863134]]) R_prime = array([[ 0.53820873, 0.10147922, -0.33987097, 0.76453977], [ 0.69678767, -0.23975292, -0.31440831, -0.5984587... [-0.46698734, -0.07148894, -0.87978232, -0.05286992], [ 0.08210436, 0.96286543, -0.10778783, -0.23351835]]) V = array([[ 0.70991494, -0.01036124, -0.36255055, -0.450898 , -0.38412423, 0.11666229], [-0.50595202, -0..., 0.02262172], [ 0.09344937, -0.25528873, 0.80062211, -0.09744043, -0.50512219, -0.14302469]]) X = array([[-2.08526564, 1.93024677, -1.73534887, 1.2103837 , 0.79743542, -0.37981078], [ 0.70256222, -0..., 0.22598549], [ 0.62877583, 0.18649435, 0.95247835, 0.98813758, -0.07260831, -0.55060292]]) m = 4 n = 6 naive_approx = array([[ 1.04019182, -2.40624027, 2.04006598, -1.14668144], [ 0.2152535 , 0.70602748, -0.79295187, 0.4599360... [ 0.71957613, 0.51675431, -0.92483812, 2.00482591], [ 0.21920119, -1.16540609, 0.62599878, 0.06012555]]) naive_approx_error = np.float64(0.03507146788267098) optim_approx = array([[ 1.04482063, -2.40516265, 2.03865298, -1.14724683], [ 0.2137518 , 0.70660767, -0.79109694, 0.4629298... [ 0.7109435 , 0.51601227, -0.9202587 , 2.01019698], [ 0.21925954, -1.16585326, 0.6252702 , 0.05881057]]) optim_approx_error = np.float64(0.032606533051585194) rng = RandomState(MT19937) at 0x7FFB4F18EF40 s = np.float64(17.437658732523133) w = array([-8.33960345, -4.01510581, -1.97737233, -0.02322473, 1.61273258, 4.37608843]) __________ TestSolveContinuousAre.test_solve_continuous_are[5-case5] ___________ lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py:325: in test_solve_continuous_are x = solve_continuous_are(a, b, q, r) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[-4.3280e+00, 1.7140e-01, 5.3760e+00, 4.0160e+02, -7.2460e+02, -1.9330e+00, 1.0200e+00, -9.8200e-01...e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, -3.0600e-01, -1.8600e+00]]) b = array([[ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., ...., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.]]) case = (array([[-4.3280e+00, 1.7140e-01, 5.3760e+00, 4.0160e+02, -7.2460e+02, -1.9330e+00, 1.0200e+00, -9.8200e-0...000000e+00, 0.00000000e+00, 0.00000000e+00]]), array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]), None) dec = 6 j = 5 knownfailure = None q = array([[ 2.36873525e-01, -3.27949609e-01, 2.62320796e+00, 4.64218300e+01, 1.16904446e+01, 5.11797921e+00, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]) r = array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) self = lib/python3.12/site-packages/scipy/linalg/_solvers.py:466: in solve_continuous_are return _solve_continuous_are(a, b, q, r, e, s, balanced) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[-4.3280e+00, 1.7140e-01, 5.3760e+00, 4.0160e+02, -7.2460e+02, -1.9330e+00, 1.0200e+00, -9.8200e-01...e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, -3.0600e-01, -1.8600e+00]]) b = array([[ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., ...., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.]]) balanced = True e = None q = array([[ 2.36873525e-01, -3.27949609e-01, 2.62320796e+00, 4.64218300e+01, 1.16904446e+01, 5.11797921e+00, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]) r = array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) s = None lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-4.3280e+00, 1.7140e-01, 5.3760e+00, 4.0160e+02, -7.2460e+02, -1.9330e+00, 1.0200e+00, -9.8200e-0... 0.00000000e+00, 0.00000000e+00]]), array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]), None, None, ...] array = None arrays = [array([[-4.3280e+00, 1.7140e-01, 5.3760e+00, 4.0160e+02, -7.2460e+02, -1.9330e+00, 1.0200e+00, -9.8200e-0...e+00, 0.00000000e+00, 0.00000000e+00]]), array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]), None, None] batch_shapes = [(), (), (), (), (), ()] core_shapes = [(30, 30), (30, 3), (30, 30), (3, 3), (), ()] f = i = 5 kwargs = {} n_arrays = 6 name = 's' names = ('a', 'b', 'q', 'r', 'e', 's') ndim = 2 ndims = (2, 2, 2, 2, 2, 2) other_args = [True] shape = () lib/python3.12/site-packages/scipy/linalg/_solvers.py:518: in _solve_continuous_are _, _, _, _, _, u = ordqz(H, J, sort='lhp', overwrite_a=True, H = array([[ 8.48640000e+00, -1.73760000e+00, 5.25200000e+02, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e....59099927e-01, 1.75989988e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(60, 60)) J = array([[ 0. , 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ...], [ 0. , 0. , -0.01066606, ..., 0. , 0. , 0. ]], shape=(60, 60)) M = array([[ 0. , 0.1714, 5.376 , ..., 0. , 0. , 0. ], [ 0.4402, 0. , 127.5 , ..., ..., 0. , 0. ], [ 0. , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(63, 63)) _ = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, ...35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]) a = array([[-4.3280e+00, 1.7140e-01, 5.3760e+00, 4.0160e+02, -7.2460e+02, -1.9330e+00, 1.0200e+00, -9.8200e-01...e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, -3.0600e-01, -1.8600e+00]]) b = array([[ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., ...., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.]]) balanced = True e = None elwisescale = array([[1. , 1. , 0.25, ..., 0.5 , 0.25, 0.25], [1. , 1. , 0.25, ..., 0.5 , 0.25, 0.25], [4. , 4. ...], [4. , 4. , 1. , ..., 2. , 1. , 1. ], [4. , 4. , 1. , ..., 2. , 1. , 1. ]], shape=(63, 63)) gen_are = False m = 30 n = 3 out_str = 'real' q = array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., -4.99999938e-04, 0.00000000e+00, 0.00000000e....00000000e+00, -1.06660599e-02, ..., 0.00000000e+00, 0.00000000e+00, 9.99886235e-01]], shape=(63, 63)) r = array([[-2000.00025 , 0. , 0. ], [ 0. , -450.00111111, 0. ], ... ], [ 0. , 0. , 0. ], [ 0. , 0. , 0. ]]) r_or_c = s = array([-2., -2., -0., 2., 2., 1., -0., -1., -1., 2., -2., -2., 0., 0., 0., -4., 5., 1., 8., 3., -3., 5., -0., -7., 0., 0., 0., 0., -3., -2.]) sca = array([2.50000e-01, 2.50000e-01, 1.00000e+00, 4.00000e+00, 4.00000e+00, 2.00000e+00, 1.00000e+00, 5.00000e-01, ... 1.00000e+00, 1.00000e+00, 1.00000e+00, 8.00000e+00, 4.00000e+00, 5.00000e-01, 1.00000e+00, 1.00000e+00]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 8.48640000e+00, -1.73760000e+00, 5.25200000e+02, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000..., [ 0. , 0. , -0.01066606, ..., 0. , 0. , 0. ]], shape=(60, 60))] array = array([[ 0. , 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ...], [ 0. , 0. , -0.01066606, ..., 0. , 0. , 0. ]], shape=(60, 60)) arrays = [array([[ 8.48640000e+00, -1.73760000e+00, 5.25200000e+02, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000..., [ 0. , 0. , -0.01066606, ..., 0. , 0. , 0. ]], shape=(60, 60))] batch_shapes = [(), ()] core_shapes = [(60, 60), (60, 60)] f = i = 1 kwargs = {'check_finite': False, 'output': 'real', 'overwrite_a': True, 'overwrite_b': True, ...} n_arrays = 2 name = 'B' names = ('A', 'B') ndim = 2 ndims = (2, 2) other_args = [] shape = (60, 60) lib/python3.12/site-packages/scipy/linalg/_decomp_qz.py:446: in ordqz raise ValueError("Reordering of (A, B) failed because the transformed" E ValueError: Reordering of (A, B) failed because the transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is very ill-conditioned. (A, B) may have been partially reordered. A = array([[ 8.48640000e+00, -1.73760000e+00, 5.25200000e+02, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e....59099927e-01, 1.75989988e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(60, 60)) AA = array([[-33.3, 0. , 0. , ..., 0. , 0. , 0. ], [ 0. , -20. , 0. , ..., 0. , 0. , 0. ], ... 0. , 0. , 0. , ..., 0. , 20. , 0. ], [ 0. , 0. , 0. , ..., 0. , 0. , 20. ]], shape=(60, 60)) AAA = array([[-33.3, 0. , 0. , ..., 0. , 0. , 0. ], [ 0. , -20. , 0. , ..., 0. , 0. , 0. ], ... 0. , 0. , 0. , ..., 0. , 20. , 0. ], [ 0. , 0. , 0. , ..., 0. , 0. , 20. ]], shape=(60, 60)) B = array([[ 0. , 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ...], [ 0. , 0. , -0.01066606, ..., 0. , 0. , 0. ]], shape=(60, 60)) BB = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ... 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(60, 60)) BBB = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ... 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(60, 60)) Q = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(60, 60)) QQ = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(60, 60)) Z = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 0., ..., 0., 0., 1.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(60, 60)) ZZ = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 0., ..., 0., 0., 1.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(60, 60)) _ = array([0., 0.]) ab = [array([-3.33000000e+01, -2.00000000e+01, -2.00000000e+01, -2.00000000e+01, 2.61090708e+00, 2.61090708e+00, -....99999867e-01, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00])] alpha = array([-3.33000000e+01+0.j , -2.00000000e+01+0.j , -2.00000000e+01+0.j , -2.00000000e+01+0...3000000e+01+0.j , 2.00000000e+01+0.j , 2.00000000e+01+0.j , 2.00000000e+01+0.j ]) beta = array([1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 9.71389577e-04, 9.71389577e-04, 1.225109...9.99999867e-01, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]) check_finite = False info = 1 lwork = 256 output = 'real' overwrite_a = True overwrite_b = True select = array([ True, True, True, True, False, False, True, True, True, False, False, False, True, True, True,... False, False, True, True, True, False, False, True, True, False, False, False, False, False, False]) sfunction = sort = 'lhp' tgsen = typ = 'd' _________ TestSolveContinuousAre.test_solve_continuous_are[12-case12] __________ lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py:325: in test_solve_continuous_are x = solve_continuous_are(a, b, q, r) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.00e+00, 4.00e-01, 0.00e+00, 0.00e+00], [ 0.00e+00, 0.00e+00, 3.45e-01, 0.00e+00], [ 0.00e+00, -5.24e+05, -4.65e+05, 2.62e+05], [ 0.00e+00, 0.00e+00, 0.00e+00, -1.00e+06]]) b = array([[ 0.], [ 0.], [ 0.], [1000000.]]) case = (array([[ 0.00e+00, 4.00e-01, 0.00e+00, 0.00e+00], [ 0.00e+00, 0.00e+00, 3.45e-01, 0.00e+00], [ 0...., [1000000.]]), array([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]]), 1.0, None) dec = 9 j = 12 knownfailure = None q = array([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]]) r = 1.0 self = lib/python3.12/site-packages/scipy/linalg/_solvers.py:466: in solve_continuous_are return _solve_continuous_are(a, b, q, r, e, s, balanced) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.00e+00, 4.00e-01, 0.00e+00, 0.00e+00], [ 0.00e+00, 0.00e+00, 3.45e-01, 0.00e+00], [ 0.00e+00, -5.24e+05, -4.65e+05, 2.62e+05], [ 0.00e+00, 0.00e+00, 0.00e+00, -1.00e+06]]) b = array([[ 0.], [ 0.], [ 0.], [1000000.]]) balanced = True e = None q = array([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]]) r = 1.0 s = None lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 0.00e+00, 4.00e-01, 0.00e+00, 0.00e+00], [ 0.00e+00, 0.00e+00, 3.45e-01, 0.00e+00], [ 0....000000.]]), array([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]]), 1.0, None, None, ...] array = None arrays = [array([[ 0.00e+00, 4.00e-01, 0.00e+00, 0.00e+00], [ 0.00e+00, 0.00e+00, 3.45e-01, 0.00e+00], [ 0....00000.]]), array([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]]), array(1.), None, None] batch_shapes = [(), (), (), (), (), ()] core_shapes = [(4, 4), (4, 1), (4, 4), (), (), ()] f = i = 5 kwargs = {} n_arrays = 6 name = 's' names = ('a', 'b', 'q', 'r', 'e', 's') ndim = 2 ndims = (2, 2, 2, 2, 2, 2) other_args = [True] shape = () lib/python3.12/site-packages/scipy/linalg/_solvers.py:518: in _solve_continuous_are _, _, _, _, _, u = ordqz(H, J, sort='lhp', overwrite_a=True, H = array([[ 0.0000000e+00, 0.0000000e+00, 3.5328000e+02, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.000....4000000e-06, 0.0000000e+00, 1.6000000e+01, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 6.2500000e+04]]) J = array([[ 0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.000....0000000e+00, 0.0000000e+00, -1.6000000e-05, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]]) M = array([[0.00e+00, 4.00e-01, 0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00], [0.0... 0.00e+00], [0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, 1.00e+06, 0.00e+00]]) _ = array([0, 1, 2, 3, 4, 5, 6, 7, 8]) a = array([[ 0.00e+00, 4.00e-01, 0.00e+00, 0.00e+00], [ 0.00e+00, 0.00e+00, 3.45e-01, 0.00e+00], [ 0.00e+00, -5.24e+05, -4.65e+05, 2.62e+05], [ 0.00e+00, 0.00e+00, 0.00e+00, -1.00e+06]]) b = array([[ 0.], [ 0.], [ 0.], [1000000.]]) balanced = True e = None elwisescale = array([[1.00000000e+00, 1.00000000e+00, 1.02400000e+03, 6.40000000e+01, 1.60000000e+01, 1.60000000e+01, 1.5625...e+02, 1.60000000e+01, 4.00000000e+00, 4.00000000e+00, 3.90625000e-03, 6.25000000e-02, 1.00000000e+00]]) gen_are = False m = 4 n = 1 out_str = 'real' q = array([[ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, -1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.000...e+00, -1.6000000e-05, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00]]) r = array([[-62500.000008], [ 0. ], [ 0. ], [ 0. ], [ 0. ], [ 0. ], [ 0. ], [ 0. ], [ 0. ]]) r_or_c = s = array([ 2., 2., -8., -4.]) sca = array([4.00000e+00, 4.00000e+00, 3.90625e-03, 6.25000e-02, 2.50000e-01, 2.50000e-01, 2.56000e+02, 1.60000e+01, 1.00000e+00]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 0.0000000e+00, 0.0000000e+00, 3.5328000e+02, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.00...0000000e+00, 0.0000000e+00, -1.6000000e-05, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]])] array = array([[ 0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.000....0000000e+00, 0.0000000e+00, -1.6000000e-05, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]]) arrays = [array([[ 0.0000000e+00, 0.0000000e+00, 3.5328000e+02, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.00...0000000e+00, 0.0000000e+00, -1.6000000e-05, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]])] batch_shapes = [(), ()] core_shapes = [(8, 8), (8, 8)] f = i = 1 kwargs = {'check_finite': False, 'output': 'real', 'overwrite_a': True, 'overwrite_b': True, ...} n_arrays = 2 name = 'B' names = ('A', 'B') ndim = 2 ndims = (2, 2) other_args = [] shape = (8, 8) lib/python3.12/site-packages/scipy/linalg/_decomp_qz.py:446: in ordqz raise ValueError("Reordering of (A, B) failed because the transformed" E ValueError: Reordering of (A, B) failed because the transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is very ill-conditioned. (A, B) may have been partially reordered. A = array([[ 0.0000000e+00, 0.0000000e+00, 3.5328000e+02, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.000....4000000e-06, 0.0000000e+00, 1.6000000e+01, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 6.2500000e+04]]) AA = array([[ 1.10977254e+04, 1.39249129e+05, 4.33526022e+05, -4.84462654e+04, 9.89384149e+01, -1.04713678e+03, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -1.84059643e-01, -3.68315619e-01]]) AAA = array([[-3.21413585e+04, 4.64165709e+05, 5.26656887e+04, -8.04631150e+03, -2.90806134e+01, 3.17021224e+02, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -1.84059643e-01, -3.68315619e-01]]) B = array([[ 0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.000....0000000e+00, 0.0000000e+00, -1.6000000e-05, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]]) BB = array([[ 1.17009996e-02, -5.46958437e-01, -8.36378546e-01, -3.41750755e-02, 1.53087540e-17, -2.96168979e-04, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 8.71907966e-01]]) BBB = array([[ 3.38885681e-02, -9.99188994e-01, -2.14958038e-02, 3.24737655e-03, -1.00654227e-16, -1.02209091e-04, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 8.71907966e-01]]) Q = array([[-3.68772430e-04, 4.31874144e-04, -1.32948766e-02, 5.06102769e-01, 9.23340417e-02, -4.28237095e-01, ... 3.99320632e-02, 8.55829452e-01, 1.26717208e-05, 1.61816694e-01, 5.73572213e-06, 4.89667304e-01]]) QQ = array([[-3.72084519e-04, 1.46632770e-02, 4.71214353e-02, -5.03866559e-01, 9.23340417e-02, -4.28237095e-01, ... 1.41607847e-01, -8.44699765e-01, 1.26717208e-05, 1.61816694e-01, 5.73572213e-06, 4.89667304e-01]]) Z = array([[-1.81999995e-12, 5.23912106e-10, -7.58182272e-11, -3.17070832e-08, -7.91982553e-01, -4.61111630e-01, ...-1.64941025e-02, -9.99107942e-01, -1.30095410e-08, -1.35379305e-02, -5.80035269e-09, -3.51004347e-02]]) ZZ = array([[ 5.31800157e-12, -5.18415646e-10, 5.21942229e-09, 3.12747216e-08, -7.91982553e-01, -4.61111630e-01, ... 1.65545688e-01, 9.85484026e-01, -1.30095410e-08, -1.35379305e-02, -5.80035269e-09, -3.51004347e-02]]) _ = array([0., 0.]) ab = [array([-3.21413585e+04, -1.22448627e+04, 1.43650931e+05, 9.40974348e+04, 1.08432024e+00, 1.08432024e+00, -...3542]), array([0.03388857, 0.02175918, 0.15145982, 0.16721163, 4.33547345, 4.33547345, 3.74836618, 3.74836618])] alpha = array([-3.21413585e+04+0.j , -1.22448627e+04+0.j , 1.43650931e+05+0.j , 9.40974348e+04+0...8432024e+00+0.31233112j, 1.08432024e+00-0.31233112j, -9.37482231e-01+0.27003542j, -9.37482231e-01-0.27003542j]) beta = array([0.03388857, 0.02175918, 0.15145982, 0.16721163, 4.33547345, 4.33547345, 3.74836618, 3.74836618]) check_finite = False info = 1 lwork = 48 output = 'real' overwrite_a = True overwrite_b = True select = array([False, False, True, True, False, False, True, True]) sfunction = sort = 'lhp' tgsen = typ = 'd' _________ TestSolveContinuousAre.test_solve_continuous_are[14-case14] __________ lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py:325: in test_solve_continuous_are x = solve_continuous_are(a, b, q, r) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[-1., -0., 0., ..., 0., 0., 0.], [ 1., 0., -1., ..., 0., 0., 0.], [ 0., 0., -1., ..., 0...1., -0., 0.], [ 0., 0., 0., ..., 1., 0., -1.], [ 0., 0., 0., ..., 0., 0., -1.]], shape=(39, 39)) b = array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0... 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]) case = (array([[-1., -0., 0., ..., 0., 0., 0.], [ 1., 0., -1., ..., 0., 0., 0.], [ 0., 0., -1., ..., ..., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]), None) dec = 13 j = 14 knownfailure = None q = array([[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 10., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0...0., 0., 0.], [ 0., 0., 0., ..., 0., 10., 0.], [ 0., 0., 0., ..., 0., 0., 0.]], shape=(39, 39)) r = array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 1., 0., 0... 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]) self = lib/python3.12/site-packages/scipy/linalg/_solvers.py:466: in solve_continuous_are return _solve_continuous_are(a, b, q, r, e, s, balanced) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[-1., -0., 0., ..., 0., 0., 0.], [ 1., 0., -1., ..., 0., 0., 0.], [ 0., 0., -1., ..., 0...1., -0., 0.], [ 0., 0., 0., ..., 1., 0., -1.], [ 0., 0., 0., ..., 0., 0., -1.]], shape=(39, 39)) b = array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0... 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]) balanced = True e = None q = array([[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 10., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0...0., 0., 0.], [ 0., 0., 0., ..., 0., 10., 0.], [ 0., 0., 0., ..., 0., 0., 0.]], shape=(39, 39)) r = array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 1., 0., 0... 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]) s = None lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-1., -0., 0., ..., 0., 0., 0.], [ 1., 0., -1., ..., 0., 0., 0.], [ 0., 0., -1., ..., ....], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]), None, None, ...] array = None arrays = [array([[-1., -0., 0., ..., 0., 0., 0.], [ 1., 0., -1., ..., 0., 0., 0.], [ 0., 0., -1., ..., ...1., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]), None, None] batch_shapes = [(), (), (), (), (), ()] core_shapes = [(39, 39), (39, 20), (39, 39), (20, 20), (), ()] f = i = 5 kwargs = {} n_arrays = 6 name = 's' names = ('a', 'b', 'q', 'r', 'e', 's') ndim = 2 ndims = (2, 2, 2, 2, 2, 2) other_args = [True] shape = () lib/python3.12/site-packages/scipy/linalg/_solvers.py:518: in _solve_continuous_are _, _, _, _, _, u = ordqz(H, J, sort='lhp', overwrite_a=True, H = array([[0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. , 0. , ..., 0..... , 0. , 0. ], [0. , 0. , 0. , ..., 1.6, 0. , 0. ], [0. , 0. , 0. , ..., 0. , 0. , 0.5]], shape=(78, 78)) J = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(78, 78)) M = array([[0., 0., 0., ..., 0., 0., 0.], [1., 0., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(98, 98)) _ = array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, ...70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97]) a = array([[-1., -0., 0., ..., 0., 0., 0.], [ 1., 0., -1., ..., 0., 0., 0.], [ 0., 0., -1., ..., 0...1., -0., 0.], [ 0., 0., 0., ..., 1., 0., -1.], [ 0., 0., 0., ..., 0., 0., -1.]], shape=(39, 39)) b = array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0... 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]) balanced = True e = None elwisescale = array([[1. , 0.5, 0.5, ..., 1. , 1. , 1. ], [2. , 1. , 1. , ..., 2. , 2. , 2. ], [2. , 1. , 1. , ..., 2..... , 1. , 1. ], [1. , 0.5, 0.5, ..., 1. , 1. , 1. ], [1. , 0.5, 0.5, ..., 1. , 1. , 1. ]], shape=(98, 98)) gen_are = False m = 39 n = 20 out_str = 'real' q = array([[-0.70710678, 0. , 0. , ..., 0. , 0. , 0. ], [-0. ...], [-0. , -0. , -0. , ..., 0. , 0. , 0.5 ]], shape=(98, 98)) r = array([[-1.41421356, 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ...], [ 0. , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(98, 20)) r_or_c = s = array([0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0.]) sca = array([1. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. ,...1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. ]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. , 0. , ..., 0...0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(78, 78))] array = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(78, 78)) arrays = [array([[0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. , 0. , ..., 0...0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(78, 78))] batch_shapes = [(), ()] core_shapes = [(78, 78), (78, 78)] f = i = 1 kwargs = {'check_finite': False, 'output': 'real', 'overwrite_a': True, 'overwrite_b': True, ...} n_arrays = 2 name = 'B' names = ('A', 'B') ndim = 2 ndims = (2, 2) other_args = [] shape = (78, 78) lib/python3.12/site-packages/scipy/linalg/_decomp_qz.py:446: in ordqz raise ValueError("Reordering of (A, B) failed because the transformed" E ValueError: Reordering of (A, B) failed because the transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is very ill-conditioned. (A, B) may have been partially reordered. A = array([[0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. , 0. , ..., 0..... , 0. , 0. ], [0. , 0. , 0. , ..., 1.6, 0. , 0. ], [0. , 0. , 0. , ..., 0. , 0. , 0.5]], shape=(78, 78)) AA = array([[ 1.75164167e+00, 1.31451103e+00, 1.25963977e-14, ..., 1.57419002e-02, 2.10593976e-15, -2.41443910e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]], shape=(78, 78)) AAA = array([[ 1.75164167e+00, 1.31451103e+00, 1.25963977e-14, ..., 1.57419002e-02, 2.10593976e-15, -2.41443910e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]], shape=(78, 78)) B = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(78, 78)) BB = array([[ 1.00000000e+00, 0.00000000e+00, 1.69803037e-15, ..., -1.02944996e-16, 2.66974053e-16, -2.63890601e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]], shape=(78, 78)) BBB = array([[ 1.00000000e+00, 0.00000000e+00, 1.69803037e-15, ..., -1.02944996e-16, 2.66974053e-16, -2.63890601e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]], shape=(78, 78)) Q = array([[ 5.91746107e-02, 1.65717992e-01, 1.05055426e-01, ..., -6.97240794e-03, -1.02541377e-02, 1.25500281e....27022613e-01, 1.44142510e-14, ..., 7.62732674e-02, 1.94257172e-01, 4.16333634e-17]], shape=(78, 78)) QQ = array([[ 5.91746107e-02, 1.65717992e-01, 1.05055426e-01, ..., -6.97240794e-03, -1.02541377e-02, 1.25500281e....27022613e-01, 1.44142510e-14, ..., 7.62732674e-02, 1.94257172e-01, 4.16333634e-17]], shape=(78, 78)) Z = array([[-1.60657078e-15, 9.12659288e-03, -4.26568503e-15, ..., 2.12198545e-01, -3.92232270e-01, 0.00000000e....68098012e-02, 4.01488676e-02, ..., -1.21308356e-01, -4.24138579e-15, 1.16247639e-01]], shape=(78, 78)) ZZ = array([[-1.60657078e-15, 9.12659288e-03, -4.26568503e-15, ..., 2.12198545e-01, -3.92232270e-01, 0.00000000e....68098012e-02, 4.01488676e-02, ..., -1.21308356e-01, -4.24138579e-15, 1.16247639e-01]], shape=(78, 78)) _ = array([0., 0.]) ab = [array([ 1.03971324, 1.03971324, 1.04008551, 1.04008551, 1.04071908, 1.04071908, 1.04163474, 1.04163474,...012281, 1.18146135, 1.18146135, 1.47317227, 1.47317227, 0.88630277, 0.8295767 , 0.49526056, 1. ])] alpha = array([ 1.03971324+0.96028676j, 1.03971324-0.96028676j, 1.04008551+0.95991449j, 1.04008551-0.95991449j, ...43j, -0.58698785+0.j , -0.62155967+0.j , -0.49526056+0.j , 1. +0.j ]) beta = array([0.56365405, 0.56365405, 0.56628972, 0.56628972, 0.57074745, 0.57074745, 0.57712904, 0.57712904, 0.585586...2012281, 1.18146135, 1.18146135, 1.47317227, 1.47317227, 0.88630277, 0.8295767 , 0.49526056, 1. ]) check_finite = False info = 1 lwork = 328 output = 'real' overwrite_a = True overwrite_b = True select = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, False,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, False]) sfunction = sort = 'lhp' tgsen = typ = 'd' _________ TestSolveContinuousAre.test_solve_continuous_are[15-case15] __________ lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py:325: in test_solve_continuous_are x = solve_continuous_are(a, b, q, r) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[-2., 1., 0., ..., 0., 0., 1.], [ 1., -2., 1., ..., 0., 0., 0.], [ 0., 1., -2., ..., 0...2., 1., 0.], [ 0., 0., 0., ..., 1., -2., 1.], [ 1., 0., 0., ..., 0., 1., -2.]], shape=(64, 64)) b = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ... 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(64, 64)) case = (array([[-2., 1., 0., ..., 0., 0., 1.], [ 1., -2., 1., ..., 0., 0., 0.], [ 0., 1., -2., ..., ..., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(64, 64)), None) dec = 14 j = 15 knownfailure = None q = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ... 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(64, 64)) r = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ... 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(64, 64)) self = lib/python3.12/site-packages/scipy/linalg/_solvers.py:466: in solve_continuous_are return _solve_continuous_are(a, b, q, r, e, s, balanced) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[-2., 1., 0., ..., 0., 0., 1.], [ 1., -2., 1., ..., 0., 0., 0.], [ 0., 1., -2., ..., 0...2., 1., 0.], [ 0., 0., 0., ..., 1., -2., 1.], [ 1., 0., 0., ..., 0., 1., -2.]], shape=(64, 64)) b = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ... 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(64, 64)) balanced = True e = None q = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ... 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(64, 64)) r = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ... 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(64, 64)) s = None lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-2., 1., 0., ..., 0., 0., 1.], [ 1., -2., 1., ..., 0., 0., 0.], [ 0., 1., -2., ..., ...0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(64, 64)), None, None, ...] array = None arrays = [array([[-2., 1., 0., ..., 0., 0., 1.], [ 1., -2., 1., ..., 0., 0., 0.], [ 0., 1., -2., ..., ... 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(64, 64)), None, None] batch_shapes = [(), (), (), (), (), ()] core_shapes = [(64, 64), (64, 64), (64, 64), (64, 64), (), ()] f = i = 5 kwargs = {} n_arrays = 6 name = 's' names = ('a', 'b', 'q', 'r', 'e', 's') ndim = 2 ndims = (2, 2, 2, 2, 2, 2) other_args = [True] shape = () lib/python3.12/site-packages/scipy/linalg/_solvers.py:531: in _solve_continuous_are raise LinAlgError('Failed to find a finite solution.') E numpy.linalg.LinAlgError: Failed to find a finite solution. H = array([[-1. , 0. , 0. , ..., 0. , 0. , -1. ], [ 0. ... [-0.70710678, 0. , 0. , ..., 0. , 0. , 0.70710678]], shape=(128, 128)) J = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(128, 128)) M = array([[0., 1., 0., ..., 0., 0., 0.], [1., 0., 1., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(192, 192)) _ = array([[-0.02143971, -0.03094732, -0.03210171, ..., -0.00121038, 0.10267869, -0.0028169 ], [ 0.0214397... [-0.12314763, -0.16655233, -0.15331097, ..., -0.02940505, 0.14351209, 0.0101701 ]], shape=(128, 128)) a = array([[-2., 1., 0., ..., 0., 0., 1.], [ 1., -2., 1., ..., 0., 0., 0.], [ 0., 1., -2., ..., 0...2., 1., 0.], [ 0., 0., 0., ..., 1., -2., 1.], [ 1., 0., 0., ..., 0., 1., -2.]], shape=(64, 64)) b = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ... 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(64, 64)) balanced = True e = None gen_are = False m = 64 n = 64 out_str = 'real' q = array([[-0.70710678, 0. , 0. , ..., 0. , 0. , 0. ], [-0. ... [-0. , -0. , -0. , ..., 0. , 0. , 0.70710678]], shape=(192, 192)) r = array([[-1.41421356, 0. , 0. , ..., 0. , 0. , 0. ], [ 0. ..., [ 0. , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(192, 64)) r_or_c = s = None sca = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ... 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) u = array([[-0.12406344, -0.17539578, -0.17528862, ..., 0.00141737, -0.12434988, 0.00341143], [ 0.1240634... [ 0.01527291, 0.02110309, 0.02018614, ..., -0.02629303, 0.12528624, 0.00887851]], shape=(128, 128)) u00 = array([[-0.12406344, -0.17539578, -0.17528862, ..., 0.12694191, -0.01052469, 0.00017942], [ 0.1240634...], [ 0.12406344, 0.1678433 , 0.15459073, ..., 0.12655602, 0.01444267, -0.01213243]], shape=(64, 64)) u10 = array([[-0.01527291, -0.02205267, -0.02288882, ..., 0.1221573 , -0.010128 , 0.0001777 ], [ 0.0152729...], [ 0.01527291, 0.02110309, 0.02018614, ..., 0.12178596, 0.01389831, -0.01201615]], shape=(64, 64)) ul = array([[ 1. , 0. , 0. , ..., 0. , 0. , 0. ], [ 1. ...], [-1. , -0.93083108, 0.32019113, ..., -0.02228537, 0.61073314, 1. ]], shape=(64, 64)) up = array([[0., 1., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(64, 64)) uu = array([[-0.12406344, 0.12402355, 0.12394782, ..., -0.01052469, -0.12694191, 0.0889397 ], [ 0. ...], [ 0. , 0. , 0. , ..., 0. , 0. , -5.19334729]], shape=(64, 64)) _________ TestSolveContinuousAre.test_solve_continuous_are[17-case17] __________ lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py:325: in test_solve_continuous_are x = solve_continuous_are(a, b, q, r) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[-3.71945896e+02, 2.63663585e+02, -7.06484447e+01, ..., 3.26531309e-53, -8.70750158e-54, 2.17687539e...0750158e-54, 3.26531309e-53, ..., -7.06484447e+01, 2.63663585e+02, -3.71945896e+02]], shape=(100, 100)) b = array([[-2.49020314e-12], [ 9.96081257e-12], [-3.73530471e-11], [ 1.39451376e-10], [-5.204...16118110e-38], [-3.11129863e-39], [ 8.33383563e-40], [-2.22235617e-40], [ 5.55589042e-41]]) case = (array([[-3.71945896e+02, 2.63663585e+02, -7.06484447e+01, ..., 3.26531309e-53, -8.70750158e-54, 2.17687539...., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)), array([[1]], dtype=uint8), None) dec = 12 j = 17 knownfailure = None q = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)) r = array([[1]], dtype=uint8) self = lib/python3.12/site-packages/scipy/linalg/_solvers.py:466: in solve_continuous_are return _solve_continuous_are(a, b, q, r, e, s, balanced) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[-3.71945896e+02, 2.63663585e+02, -7.06484447e+01, ..., 3.26531309e-53, -8.70750158e-54, 2.17687539e...0750158e-54, 3.26531309e-53, ..., -7.06484447e+01, 2.63663585e+02, -3.71945896e+02]], shape=(100, 100)) b = array([[-2.49020314e-12], [ 9.96081257e-12], [-3.73530471e-11], [ 1.39451376e-10], [-5.204...16118110e-38], [-3.11129863e-39], [ 8.33383563e-40], [-2.22235617e-40], [ 5.55589042e-41]]) balanced = True e = None q = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)) r = array([[1]], dtype=uint8) s = None lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-3.71945896e+02, 2.63663585e+02, -7.06484447e+01, ..., 3.26531309e-53, -8.70750158e-54, 2.17687539......, 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)), array([[1]], dtype=uint8), None, None, ...] array = None arrays = [array([[-3.71945896e+02, 2.63663585e+02, -7.06484447e+01, ..., 3.26531309e-53, -8.70750158e-54, 2.17687539... 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)), array([[1]], dtype=uint8), None, None] batch_shapes = [(), (), (), (), (), ()] core_shapes = [(100, 100), (100, 1), (100, 100), (1, 1), (), ()] f = i = 5 kwargs = {} n_arrays = 6 name = 's' names = ('a', 'b', 'q', 'r', 'e', 's') ndim = 2 ndims = (2, 2, 2, 2, 2, 2) other_args = [True] shape = () lib/python3.12/site-packages/scipy/linalg/_solvers.py:531: in _solve_continuous_are raise LinAlgError('Failed to find a finite solution.') E numpy.linalg.LinAlgError: Failed to find a finite solution. H = array([[ 2.63663585e+02, -4.42594341e+02, 2.82593779e+02, ..., -7.35849048e-52, 1.96226413e-52, -4.90566032e...5009062e+01, -2.10342545e+01, ..., 7.59509163e-40, -2.02535777e-40, 5.06339442e-41]], shape=(200, 200)) J = array([[ 2.96564583e-12, 1.00000000e+00, 3.29814570e-23, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e...2965636e-13, 3.31112114e-12, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(200, 200)) M = array([[0.00000000e+00, 2.63663585e+02, 7.06484447e+01, ..., 0.00000000e+00, 0.00000000e+00, 2.49020314e-12], ...0e+00, 0.00000000e+00, 0.00000000e+00, ..., 2.22235617e-40, 5.55589042e-41, 0.00000000e+00]], shape=(201, 201)) _ = array([[ 8.74885372e-03, 1.74637640e-02, 2.61099933e-02, ..., -5.75663022e-06, -8.71809767e-06, -1.69387263e...3980425e-03, -3.85512398e-04, ..., 8.52831486e-04, 1.06859454e-03, 5.02893839e-09]], shape=(200, 200)) a = array([[-3.71945896e+02, 2.63663585e+02, -7.06484447e+01, ..., 3.26531309e-53, -8.70750158e-54, 2.17687539e...0750158e-54, 3.26531309e-53, ..., -7.06484447e+01, 2.63663585e+02, -3.71945896e+02]], shape=(100, 100)) b = array([[-2.49020314e-12], [ 9.96081257e-12], [-3.73530471e-11], [ 1.39451376e-10], [-5.204...16118110e-38], [-3.11129863e-39], [ 8.33383563e-40], [-2.22235617e-40], [ 5.55589042e-41]]) balanced = True e = None gen_are = False m = 100 n = 1 out_str = 'real' q = array([[-7.41406936e-13, 2.96564583e-12, -1.11211719e-11, ..., 0.00000000e+00, 0.00000000e+00, 2.97731316e...2965636e-13, 3.31112114e-12, ..., 0.00000000e+00, 0.00000000e+00, 9.11356064e-01]], shape=(201, 201)) r = array([[3.35873302], [0. ], [0. ], [0. ], [0. ], [0. ...[0. ], [0. ], [0. ], [0. ], [0. ], [0. ]]) r_or_c = s = None sca = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) u = array([[-4.37635735e-03, -8.74848085e-03, -1.31121408e-02, ..., -2.87275306e-06, -4.35692025e-06, -8.40406213e...2428616e-21, -1.02667511e-20, ..., -8.74498906e-03, 4.40674579e-03, 1.74631156e-02]], shape=(200, 200)) u00 = array([[-0.00437636, -0.00874848, -0.01311214, ..., 0.01312778, 0.00875196, -0.00434818], [ 0.0087484... [ 0.00437636, -0.00874848, 0.01311214, ..., 0.01310617, -0.00874857, -0.00439598]], shape=(100, 100)) u10 = array([[ 1.60521645e-17, -1.76738241e-17, -1.31803969e-18, ..., 9.26112259e-07, 2.86380562e-06, -4.36413271e...2428616e-21, -1.02667511e-20, ..., 8.20863214e-09, 1.17747209e-07, -7.19439592e-07]], shape=(100, 100)) ul = array([[ 1. , 0. , 0. , ..., 0. , 0. , 0. ], [ 0.7016717... [ 0.90011151, -0.7405307 , 0.60853967, ..., 0.21094509, -0.97295364, 1. ]], shape=(100, 100)) up = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)) uu = array([[ 1.40702491e-01, 4.37635734e-03, -1.40566370e-01, ..., -1.40482628e-01, 4.94159336e-03, -1.40763371e...0000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, -7.91475204e+00]], shape=(100, 100)) ___________ TestSolveDiscreteAre.test_solve_discrete_are[13-case13] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py:555: in test_solve_discrete_are x = solve_discrete_are(a, b, q, r) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 1.], [0., 0., 0., 0., 0., 0.]]) atol = 1.5e-14 b = array([[0., 0.], [0., 0.], [1., 0.], [0., 0.], [0., 0.], [0., 1.]]) case = (array([[0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0.... 1, -1, 0], [ 0, 0, 0, -1, 1, 0], [ 0, 0, 0, 0, 0, 0]]), array([[3, 0], [0, 1]]), None) j = 13 knownfailure = None q = array([[ 1, 1, 0, 0, 0, 0], [ 1, 1, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 1, -1, 0], [ 0, 0, 0, -1, 1, 0], [ 0, 0, 0, 0, 0, 0]]) r = array([[3, 0], [0, 1]]) self = lib/python3.12/site-packages/scipy/linalg/_solvers.py:683: in solve_discrete_are return _solve_discrete_are(a, b, q, r, e, s, balanced) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 1.], [0., 0., 0., 0., 0., 0.]]) b = array([[0., 0.], [0., 0.], [1., 0.], [0., 0.], [0., 0.], [0., 1.]]) balanced = True e = None q = array([[ 1, 1, 0, 0, 0, 0], [ 1, 1, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 1, -1, 0], [ 0, 0, 0, -1, 1, 0], [ 0, 0, 0, 0, 0, 0]]) r = array([[3, 0], [0, 1]]) s = None lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0....], [ 0, 0, 0, -1, 1, 0], [ 0, 0, 0, 0, 0, 0]]), array([[3, 0], [0, 1]]), None, None, ...] array = None arrays = [array([[0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0....1, 0], [ 0, 0, 0, -1, 1, 0], [ 0, 0, 0, 0, 0, 0]]), array([[3, 0], [0, 1]]), None, None] batch_shapes = [(), (), (), (), (), ()] core_shapes = [(6, 6), (6, 2), (6, 6), (2, 2), (), ()] f = i = 5 kwargs = {} n_arrays = 6 name = 's' names = ('a', 'b', 'q', 'r', 'e', 's') ndim = 2 ndims = (2, 2, 2, 2, 2, 2) other_args = [True] shape = () lib/python3.12/site-packages/scipy/linalg/_solvers.py:750: in _solve_discrete_are raise LinAlgError('Failed to find a finite solution.') E numpy.linalg.LinAlgError: Failed to find a finite solution. H = array([[ 0. , -0.31622777, 0. , 0. , 0. , 0. , 0. , 0. .... , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]]) J = array([[-0.31622777, 0. , 0.9 , 0. , 0. , 0. , 0. , 0. .... , -0.5 , 0. , 0. , 0. , 0. , 0. , -0.5 ]]) M = array([[0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0... 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.]]) _ = array([[-2.20233115e-01, -3.27335111e-17, -1.34084716e-01, 8.83408473e-01, -6.11741460e-16, -9.68851090e-17, ... 4.40517890e-01, -3.06935575e-01, -9.39825014e-18, 2.07786705e-01, 9.95915005e-02, 4.98365497e-02]]) a = array([[0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 1.], [0., 0., 0., 0., 0., 0.]]) b = array([[0., 0.], [0., 0.], [1., 0.], [0., 0.], [0., 0.], [0., 1.]]) balanced = True e = None gen_are = False m = 6 n = 2 out_str = 'real' q = array([[ 1, 1, 0, 0, 0, 0], [ 1, 1, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 1, -1, 0], [ 0, 0, 0, -1, 1, 0], [ 0, 0, 0, 0, 0, 0]]) q_of_qr = array([[ 0. , 0. , -0.31622777, 0. , 0. , 0. , 0. , 0. ... , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5 ]]) r = array([[3, 0], [0, 1]]) r_or_c = s = None sca = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) u = array([[ 6.93255355e-01, 3.80176047e-17, 3.69898037e-01, 1.06233675e-01, 2.21428725e-17, 1.14234448e-17, ... -2.87230345e-17, -6.20999632e-17, 1.68531949e-17, 5.77364489e-01, -2.07786705e-01, -1.11364935e-01]]) u00 = array([[ 6.93255355e-01, 3.80176047e-17, 3.69898037e-01, 1.06233675e-01, 2.21428725e-17, 1.14234448e-17],... [-4.96069928e-36, 1.11364935e-01, 1.07229696e-17, -2.41227132e-16, -2.07786705e-01, -5.77364489e-01]]) u10 = array([[ 5.48564538e-01, -8.91755383e-17, -1.84387203e-01, -1.90696536e-01, 3.96638818e-17, 9.34848076e-17],... [-8.19768301e-33, -1.11364935e-01, -1.07229709e-17, 5.06953369e-17, 2.07786705e-01, -7.45315584e-01]]) ul = array([[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],... [-7.15565952e-36, 1.45898034e-01, -9.82614690e-17, -5.03666950e-16, 3.81966011e-01, 1.00000000e+00]]) up = array([[1., 0., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 1., 0., 0.], [0., 1., 0., 0., 0., 0.], [0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 1.]]) uu = array([[ 6.93255355e-01, 3.80176047e-17, 3.69898037e-01, 1.06233675e-01, 2.21428725e-17, 1.14234448e-17],... [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -5.05218832e-01]]) ___________ TestSolveDiscreteAre.test_solve_discrete_are[18-case18] ____________ lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py:555: in test_solve_discrete_are x = solve_discrete_are(a, b, q, r) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)) atol = 1.5e-10 b = array([[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], ..., [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [1.]]) case = (array([[0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ....], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(100, 100)), array([[1]]), None) j = 18 knownfailure = None q = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ...., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(100, 100)) r = array([[1]]) self = lib/python3.12/site-packages/scipy/linalg/_solvers.py:683: in solve_discrete_are return _solve_discrete_are(a, b, q, r, e, s, balanced) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)) b = array([[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], ..., [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [1.]]) balanced = True e = None q = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ...., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(100, 100)) r = array([[1]]) s = None lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...[0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(100, 100)), array([[1]]), None, None, ...] array = None arrays = [array([[0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(100, 100)), array([[1]]), None, None] batch_shapes = [(), (), (), (), (), ()] core_shapes = [(100, 100), (100, 1), (100, 100), (1, 1), (), ()] f = i = 5 kwargs = {} n_arrays = 6 name = 's' names = ('a', 'b', 'q', 'r', 'e', 's') ndim = 2 ndims = (2, 2, 2, 2, 2, 2) other_args = [True] shape = () lib/python3.12/site-packages/scipy/linalg/_solvers.py:750: in _solve_discrete_are raise LinAlgError('Failed to find a finite solution.') E numpy.linalg.LinAlgError: Failed to find a finite solution. H = array([[ 0. , 0. , 1. , ..., 0. , 0. , 0. ], [ 0. ... [ 0. , -0.70710678, 0. , ..., 0. , 0. , 0. ]], shape=(200, 200)) J = array([[ 0. , 1. , 0. , ..., 0. , 0. , 0. ], [ 0. ... [-0.70710678, 0. , 0. , ..., 0. , 0. , -0.5 ]], shape=(200, 200)) M = array([[0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.]], shape=(201, 201)) _ = array([[ 3.46526664e-16, 4.47213595e-01, -3.59118406e-17, ..., -8.94427191e-01, 1.36298148e-32, 0.00000000e...2803223e-17, -2.06128257e-18, ..., 1.18207729e-16, 5.00000000e-01, 0.00000000e+00]], shape=(200, 200)) a = array([[0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)) b = array([[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], ..., [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [1.]]) balanced = True e = None gen_are = False m = 100 n = 1 out_str = 'real' q = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 1., ..., 0., 0., 0.], ...., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(100, 100)) q_of_qr = array([[ 0. , 0. , 0. , ..., 0. , 0. , -0.70710678], [-0. ... [-0.70710678, 0. , 0. , ..., 0. , 0. , 0.5 ]], shape=(201, 201)) r = array([[1]]) r_or_c = s = None sca = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) u = array([[-7.07106781e-01, 1.66551030e-16, 2.91509377e-18, ..., 7.40203066e-18, -5.72342900e-17, 7.07106781e...1576399e-34, -1.50120830e-17, ..., -2.94077734e-34, -7.22836551e-18, 1.45735040e-40]], shape=(200, 200)) u00 = array([[-7.07106781e-01, 1.66551030e-16, 2.91509377e-18, ..., 7.29863076e-23, -2.04069332e-19, -6.32407565e...1576399e-34, 1.50120830e-17, ..., -4.49072512e-16, -1.96289074e-15, 9.99950004e-03]], shape=(100, 100)) u10 = array([[-7.07106781e-01, 1.66551030e-16, 2.91509377e-18, ..., -7.29863076e-23, 2.04069332e-19, 6.24123287e...1576399e-34, -1.50120830e-17, ..., 5.56937618e-16, -2.99627378e-13, 9.99950004e-01]], shape=(100, 100)) ul = array([[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e...4890408e-33, 2.00710080e-16, ..., -4.40268501e-14, -1.94320182e-13, 1.00000000e+00]], shape=(100, 100)) up = array([[1., 0., 0., ..., 0., 0., 0.], [0., 1., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 1., 0., 0.], [0., 0., 0., ..., 0., 1., 0.], [0., 0., 0., ..., 0., 0., 1.]], shape=(100, 100)) uu = array([[-7.07106781e-01, 1.66551030e-16, 2.91509377e-18, ..., 7.29863076e-23, -2.04069332e-19, -6.32407565e...0000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 9.99950004e-03]], shape=(100, 100)) ____________________ test_solve_generalized_continuous_are _____________________ lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py:641: in test_solve_generalized_continuous_are _test_factory(case, min_decimal[ind]) _test_factory = ._test_factory at 0x7ffb4de80720> case = (array([[0.276923 , 0.8234578 , 0.950222 ], [0.04617139, 0.6948286 , 0.03444608], [0.09713178, 0.31709...7027, 0.1189977], [0.7546867, 0.655098 , 0.4983641]]), array([[0., 0.], [0., 0.], [0., 0.]]), ...) cases = [(array([[0.276923 , 0.8234578 , 0.950222 ], [0.04617139, 0.6948286 , 0.03444608], [0.09713178, 0.3170...027, 0.1189977], [0.7546867, 0.655098 , 0.4983641]]), array([[1., 1.], [1., 1.], [1., 1.]]), ...)] ind = 0 min_decimal = (10, 10) lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py:634: in _test_factory x = solve_continuous_are(a, b, q, r, e, s) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[0.276923 , 0.8234578 , 0.950222 ], [0.04617139, 0.6948286 , 0.03444608], [0.09713178, 0.3170995 , 0.4387444 ]]) b = array([[0.3815585, 0.1868726], [0.7655168, 0.4897644], [0.7951999, 0.4455862]]) case = (array([[0.276923 , 0.8234578 , 0.950222 ], [0.04617139, 0.6948286 , 0.03444608], [0.09713178, 0.31709...7027, 0.1189977], [0.7546867, 0.655098 , 0.4983641]]), array([[0., 0.], [0., 0.], [0., 0.]]), ...) dec = 10 e = array([[0.646313 , 0.2760251, 0.1626117], [0.7093648, 0.6797027, 0.1189977], [0.7546867, 0.655098 , 0.4983641]]) knownfailure = None q = array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) r = array([[1., 0.], [0., 1.]]) s = array([[0., 0.], [0., 0.], [0., 0.]]) lib/python3.12/site-packages/scipy/linalg/_solvers.py:466: in solve_continuous_are return _solve_continuous_are(a, b, q, r, e, s, balanced) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[0.276923 , 0.8234578 , 0.950222 ], [0.04617139, 0.6948286 , 0.03444608], [0.09713178, 0.3170995 , 0.4387444 ]]) b = array([[0.3815585, 0.1868726], [0.7655168, 0.4897644], [0.7951999, 0.4455862]]) balanced = True e = array([[0.646313 , 0.2760251, 0.1626117], [0.7093648, 0.6797027, 0.1189977], [0.7546867, 0.655098 , 0.4983641]]) q = array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) r = array([[1., 0.], [0., 1.]]) s = array([[0., 0.], [0., 0.], [0., 0.]]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.276923 , 0.8234578 , 0.950222 ], [0.04617139, 0.6948286 , 0.03444608], [0.09713178, 0.31709...7027, 0.1189977], [0.7546867, 0.655098 , 0.4983641]]), array([[0., 0.], [0., 0.], [0., 0.]]), ...] array = array([[0., 0.], [0., 0.], [0., 0.]]) arrays = [array([[0.276923 , 0.8234578 , 0.950222 ], [0.04617139, 0.6948286 , 0.03444608], [0.09713178, 0.31709...0.6797027, 0.1189977], [0.7546867, 0.655098 , 0.4983641]]), array([[0., 0.], [0., 0.], [0., 0.]])] batch_shapes = [(), (), (), (), (), ()] core_shapes = [(3, 3), (3, 2), (3, 3), (2, 2), (3, 3), (3, 2)] f = i = 5 kwargs = {} n_arrays = 6 name = 's' names = ('a', 'b', 'q', 'r', 'e', 's') ndim = 2 ndims = (2, 2, 2, 2, 2, 2) other_args = [True] shape = (3, 2) lib/python3.12/site-packages/scipy/linalg/_solvers.py:518: in _solve_continuous_are _, _, _, _, _, u = ordqz(H, J, sort='lhp', overwrite_a=True, H = array([[-0.06696431, -0.35770697, -0.10612795, -0.09740795, -0.20766976, -0.20898903], [-1. , 0..., 0.51282178], [ 0.0621405 , -0.24676715, 0.31309551, 0.22246266, 0.48084482, 0.48050207]]) J = array([[ 0.06611147, 0.16920352, 0.27995215, 0. , 0. , 0. ], [ 0. , 0..., 0. ], [-0.30326035, -0.41017856, -0.01938603, 0. , 0. , 0. ]]) M = array([[0. , 1.0994829 , 1.1128337 , 0. , 0. , 0. , 0.3815585 , 0.1868726 ], ... ], [0. , 0. , 0. , 0.1868726 , 0.4897644 , 0.4455862 , 0. , 0. ]]) _ = array([0, 1, 2, 3, 4, 5, 6, 7]) a = array([[0.276923 , 0.8234578 , 0.950222 ], [0.04617139, 0.6948286 , 0.03444608], [0.09713178, 0.3170995 , 0.4387444 ]]) b = array([[0.3815585, 0.1868726], [0.7655168, 0.4897644], [0.7951999, 0.4455862]]) balanced = True e = array([[0.646313 , 0.2760251, 0.1626117], [0.7093648, 0.6797027, 0.1189977], [0.7546867, 0.655098 , 0.4983641]]) gen_are = True m = 3 n = 2 out_str = 'real' q = array([[-0.24816606, -0.05258454, -0.46515488, 0. , 0. , 0. , -0.7763105 , 0.3414988 ... [-0. , -0.91202485, -0.10658998, 0. , 0. , 0. , 0.2578719 , 0.30058497]]) r = array([[-1.53751284, -0.52068235], [ 0. , -1.09646135], [ 0. , 0. ], [ 0. ... 0. ], [ 0. , 0. ], [ 0. , 0. ], [ 0. , 0. ]]) r_or_c = s = array([[0., 0.], [0., 0.], [0., 0.]]) sca = array([1., 1., 1., 1., 1., 1., 1., 1.]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[-0.06696431, -0.35770697, -0.10612795, -0.09740795, -0.20766976, -0.20898903], [-1. , ... 0. ], [-0.30326035, -0.41017856, -0.01938603, 0. , 0. , 0. ]])] array = array([[ 0.06611147, 0.16920352, 0.27995215, 0. , 0. , 0. ], [ 0. , 0..., 0. ], [-0.30326035, -0.41017856, -0.01938603, 0. , 0. , 0. ]]) arrays = [array([[-0.06696431, -0.35770697, -0.10612795, -0.09740795, -0.20766976, -0.20898903], [-1. , ... 0. ], [-0.30326035, -0.41017856, -0.01938603, 0. , 0. , 0. ]])] batch_shapes = [(), ()] core_shapes = [(6, 6), (6, 6)] f = i = 1 kwargs = {'check_finite': False, 'output': 'real', 'overwrite_a': True, 'overwrite_b': True, ...} n_arrays = 2 name = 'B' names = ('A', 'B') ndim = 2 ndims = (2, 2) other_args = [] shape = (6, 6) lib/python3.12/site-packages/scipy/linalg/_decomp_qz.py:446: in ordqz raise ValueError("Reordering of (A, B) failed because the transformed" E ValueError: Reordering of (A, B) failed because the transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is very ill-conditioned. (A, B) may have been partially reordered. A = array([[-0.06696431, -0.35770697, -0.10612795, -0.09740795, -0.20766976, -0.20898903], [-1. , 0..., 0.51282178], [ 0.0621405 , -0.24676715, 0.31309551, 0.22246266, 0.48084482, 0.48050207]]) AA = array([[ 0.78243542, -0.13468529, 0.14629691, -0.08283553, 0.41103158, -0.99984522], [ 0. , 0..., 0.13927973], [ 0. , 0. , 0. , 0. , 0. , -0.89975138]]) AAA = array([[ 0.78243542, -0.13468529, 0.14629691, -0.08283553, 0.41103158, -0.99984522], [ 0. , 0..., 0.13927973], [ 0. , 0. , 0. , 0. , 0. , -0.89975138]]) B = array([[ 0.06611147, 0.16920352, 0.27995215, 0. , 0. , 0. ], [ 0. , 0..., 0. ], [-0.30326035, -0.41017856, -0.01938603, 0. , 0. , 0. ]]) BB = array([[ 0.36258909, -0.81065233, 0.00168029, -0.44551871, 0.38082677, 0.49284812], [ 0. , 0..., -0.00734787], [ 0. , 0. , 0. , 0. , 0. , 0.41695459]]) BBB = array([[ 0.36258909, -0.81065233, 0.00168029, -0.44551871, 0.38082677, 0.49284812], [ 0. , 0..., -0.00734787], [ 0. , 0. , 0. , 0. , 0. , 0.41695459]]) Q = array([[-0.06120102, -0.18966302, 0.14306988, 0.03407731, 0.88849231, -0.38630756], [-0.2082556 , 0..., -0.23977347], [-0.51809426, -0.14949963, 0.41820488, -0.10895366, 0.1742418 , 0.70149966]]) QQ = array([[-0.06120102, -0.18966302, 0.14306988, 0.03407731, 0.88849231, -0.38630756], [-0.2082556 , 0..., -0.23977347], [-0.51809426, -0.14949963, 0.41820488, -0.10895366, 0.1742418 , 0.70149966]]) Z = array([[ 0.02832467, -0.82381413, -0.00275437, 0.53852885, -0.03442597, -0.17123648], [ 0.45407615, -0..., -0.64820408], [-0.22566614, 0.37355961, -0.69028477, 0.48170772, 0.03613692, -0.31573206]]) ZZ = array([[ 0.02832467, -0.82381413, -0.00275437, 0.53852885, -0.03442597, -0.17123648], [ 0.45407615, -0..., -0.64820408], [-0.22566614, 0.37355961, -0.69028477, 0.48170772, 0.03613692, -0.31573206]]) _ = array([0., 0.]) ab = [array([ 0.78243542, 1.21407397, 1.21407397, -1.21407397, -1.21407397, -0.89975138]), array([ 0. , 0....78592603, 0. ]), array([0.36258909, 0.8709729 , 0.8709729 , 0.8709729 , 0.8709729 , 0.41695459])] alpha = array([ 0.78243542+0.j , 1.21407397+0.78592603j, 1.21407397-0.78592603j, -1.21407397+0.78592603j, -1.21407397-0.78592603j, -0.89975138+0.j ]) beta = array([0.36258909, 0.8709729 , 0.8709729 , 0.8709729 , 0.8709729 , 0.41695459]) check_finite = False info = 1 lwork = 40 output = 'real' overwrite_a = True overwrite_b = True select = array([False, False, False, True, True, True]) sfunction = sort = 'lhp' tgsen = typ = 'd' _____________________ test_solve_generalized_discrete_are ______________________ lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py:712: in test_solve_generalized_discrete_are _test_factory(case, max_atol[ind]) _test_factory = ._test_factory at 0x7ffb4de80f40> case = (array([[ 0.97905961, 0.15428665, -0.03994193, 0.00391164, -0.01180311, -0.02494093, -0.00892079, 0.0143359...891e-06, 2.94712339e-08], [ 2.40952333e-08, 4.30614350e-07], [ 1.23662598e-08, -6.06921957e-07]]), ...) cases = [(array([[0.276923 , 0.8234578 , 0.950222 ], [0.04617139, 0.6948286 , 0.03444608], [0.09713178, 0.3170...91e-06, 2.94712339e-08], [ 2.40952333e-08, 4.30614350e-07], [ 1.23662598e-08, -6.06921957e-07]]), ...)] ind = 2 mat20170120 = {'A': array([[ 0.97905961, 0.15428665, -0.03994193, 0.00391164, -0.01180311, -0.02494093, -0.00892079, 0.01..., 2.58702432e-06]]), 'R': array([[ 6.86199839e-07, -1.42279806e-08], [-1.42279806e-08, 1.81130866e-07]]), ...} max_atol = (1.5e-11, 1.5e-11, 3.5e-16) lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py:695: in _test_factory x = solve_discrete_are(a, b, q, r, e, s) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.97905961, 0.15428665, -0.03994193, 0.00391164, -0.01180311, -0.02494093, -0.00892079, 0.01433595... [-0.02851398, -0.00156313, -0.01257725, -0.05334177, -0.03769227, -0.00788838, -0.62801576, 0.34907 ]]) atol = 3.5e-16 b = array([[-1.04368719, 1.09316659], [ 0.51336209, -0.15143908], [ 0.78618282, 0.3888125 ], [ 0.90... 0.12416864], [ 0.90485159, -0.0090001 ], [-0.00863767, 0.55645316], [ 0.00708354, 0.6553915 ]]) case = (array([[ 0.97905961, 0.15428665, -0.03994193, 0.00391164, -0.01180311, -0.02494093, -0.00892079, 0.0143359...891e-06, 2.94712339e-08], [ 2.40952333e-08, 4.30614350e-07], [ 1.23662598e-08, -6.06921957e-07]]), ...) e = None knownfailure = None q = array([[ 1.75512507e-06, -4.27225221e-07, -9.34790486e-07, -6.10641258e-07, 1.62839572e-06, 2.22620136e-06, ...-7.58710361e-07, -9.08221173e-07, -2.90720260e-07, -6.17890194e-08, -2.00190655e-06, 2.58702432e-06]]) r = array([[ 6.86199839e-07, -1.42279806e-08], [-1.42279806e-08, 1.81130866e-07]]) s = array([[-6.27256153e-07, 2.80554657e-07], [ 4.27827567e-07, 8.54401686e-08], [ 8.76221935e-07, 1.5285....68302891e-06, 2.94712339e-08], [ 2.40952333e-08, 4.30614350e-07], [ 1.23662598e-08, -6.06921957e-07]]) lib/python3.12/site-packages/scipy/linalg/_solvers.py:683: in solve_discrete_are return _solve_discrete_are(a, b, q, r, e, s, balanced) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.97905961, 0.15428665, -0.03994193, 0.00391164, -0.01180311, -0.02494093, -0.00892079, 0.01433595... [-0.02851398, -0.00156313, -0.01257725, -0.05334177, -0.03769227, -0.00788838, -0.62801576, 0.34907 ]]) b = array([[-1.04368719, 1.09316659], [ 0.51336209, -0.15143908], [ 0.78618282, 0.3888125 ], [ 0.90... 0.12416864], [ 0.90485159, -0.0090001 ], [-0.00863767, 0.55645316], [ 0.00708354, 0.6553915 ]]) balanced = True e = None q = array([[ 1.75512507e-06, -4.27225221e-07, -9.34790486e-07, -6.10641258e-07, 1.62839572e-06, 2.22620136e-06, ...-7.58710361e-07, -9.08221173e-07, -2.90720260e-07, -6.17890194e-08, -2.00190655e-06, 2.58702432e-06]]) r = array([[ 6.86199839e-07, -1.42279806e-08], [-1.42279806e-08, 1.81130866e-07]]) s = array([[-6.27256153e-07, 2.80554657e-07], [ 4.27827567e-07, 8.54401686e-08], [ 8.76221935e-07, 1.5285....68302891e-06, 2.94712339e-08], [ 2.40952333e-08, 4.30614350e-07], [ 1.23662598e-08, -6.06921957e-07]]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 0.97905961, 0.15428665, -0.03994193, 0.00391164, -0.01180311, -0.02494093, -0.00892079, 0.0143359...891e-06, 2.94712339e-08], [ 2.40952333e-08, 4.30614350e-07], [ 1.23662598e-08, -6.06921957e-07]]), ...] array = array([[-6.27256153e-07, 2.80554657e-07], [ 4.27827567e-07, 8.54401686e-08], [ 8.76221935e-07, 1.5285....68302891e-06, 2.94712339e-08], [ 2.40952333e-08, 4.30614350e-07], [ 1.23662598e-08, -6.06921957e-07]]) arrays = [array([[ 0.97905961, 0.15428665, -0.03994193, 0.00391164, -0.01180311, -0.02494093, -0.00892079, 0.0143359...68302891e-06, 2.94712339e-08], [ 2.40952333e-08, 4.30614350e-07], [ 1.23662598e-08, -6.06921957e-07]])] batch_shapes = [(), (), (), (), (), ()] core_shapes = [(8, 8), (8, 2), (8, 8), (2, 2), (), (8, 2)] f = i = 5 kwargs = {} n_arrays = 6 name = 's' names = ('a', 'b', 'q', 'r', 'e', 's') ndim = 2 ndims = (2, 2, 2, 2, 2, 2) other_args = [True] shape = (8, 2) lib/python3.12/site-packages/scipy/linalg/_solvers.py:734: in _solve_discrete_are _, _, _, _, _, u = ordqz(H, J, sort='iuc', H = array([[ 1.73379549e-01, 1.42883662e-01, 1.00376922e+00, -2.38098755e-02, -9.86434359e-03, -6.29260961e-02, ... 1.19398295e-13, 6.88295741e-14, 9.31625392e-15, 9.92746190e-16, 7.78046492e-14, -1.09541288e-13]]) J = array([[ 1.31727281e-01, 1.21301647e-01, 9.65830821e-01, -9.76527475e-02, 5.72507661e-02, -9.70650863e-02, ...-9.72031256e-02, -3.66032098e-01, -1.24168643e-01, 9.00009651e-03, -5.56453163e-01, -6.55391500e-01]]) M = array([[0.00000000e+00, 1.54286652e-01, 3.99419325e-02, 3.91163679e-03, 1.18031072e-02, 2.49409260e-02, 8.9207...e-01, 1.24168643e-01, 9.00009651e-03, 5.56453163e-01, 6.55391500e-01, 1.42279806e-08, 0.00000000e+00]]) _ = array([[1.26826804, 0.01323034], [0. , 0.98694052], [0. , 0. ], [0. ,... , 0. ], [0. , 0. ], [0. , 0. ], [0. , 0. ]]) a = array([[ 0.97905961, 0.15428665, -0.03994193, 0.00391164, -0.01180311, -0.02494093, -0.00892079, 0.01433595... [-0.02851398, -0.00156313, -0.01257725, -0.05334177, -0.03769227, -0.00788838, -0.62801576, 0.34907 ]]) b = array([[-1.04368719, 1.09316659], [ 0.51336209, -0.15143908], [ 0.78618282, 0.3888125 ], [ 0.90... 0.12416864], [ 0.90485159, -0.0090001 ], [-0.00863767, 0.55645316], [ 0.00708354, 0.6553915 ]]) balanced = True e = None elwisescale = array([[ 1. , 1. , 1. , 0.5 , 0.25 , 0.25 , 0.25 , 0.25 , 0.0625, 0.0625, 0.0625, 0.... , 1. , 0.25 , 0.25 , 0.25 , 0.5 , 1. , 1. , 1. , 1. , 1. , 1. ]]) gen_are = True m = 8 n = 2 out_str = 'real' q = array([[ 1.75512507e-06, -4.27225221e-07, -9.34790486e-07, -6.10641258e-07, 1.62839572e-06, 2.22620136e-06, ...-7.58710361e-07, -9.08221173e-07, -2.90720260e-07, -6.17890194e-08, -2.00190655e-06, 2.58702432e-06]]) q_of_qr = array([[-2.05730799e-01, 2.79665826e-01, 1.31727281e-01, 2.79460670e-01, -5.36279284e-01, 6.87673561e-01, ... -1.21644968e-14, -3.44319350e-14, 7.90254459e-14, -1.10285480e-13, -1.36354683e-14, 1.00000000e+00]]) r = array([[ 6.86199839e-07, -1.42279806e-08], [-1.42279806e-08, 1.81130866e-07]]) r_or_c = s = array([-2., -2., -2., -1., 0., 0., 0., 0.]) sca = array([0.25, 0.25, 0.25, 0.5 , 1. , 1. , 1. , 1. , 4. , 4. , 4. , 2. , 1. , 1. , 1. , 1. , 1. , 1. ]) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[ 1.73379549e-01, 1.42883662e-01, 1.00376922e+00, -2.38098755e-02, -9.86434359e-03, -6.29260961e-02,...9.72031256e-02, -3.66032098e-01, -1.24168643e-01, 9.00009651e-03, -5.56453163e-01, -6.55391500e-01]])] array = array([[ 1.31727281e-01, 1.21301647e-01, 9.65830821e-01, -9.76527475e-02, 5.72507661e-02, -9.70650863e-02, ...-9.72031256e-02, -3.66032098e-01, -1.24168643e-01, 9.00009651e-03, -5.56453163e-01, -6.55391500e-01]]) arrays = [array([[ 1.73379549e-01, 1.42883662e-01, 1.00376922e+00, -2.38098755e-02, -9.86434359e-03, -6.29260961e-02,...9.72031256e-02, -3.66032098e-01, -1.24168643e-01, 9.00009651e-03, -5.56453163e-01, -6.55391500e-01]])] batch_shapes = [(), ()] core_shapes = [(16, 16), (16, 16)] f = i = 1 kwargs = {'check_finite': False, 'output': 'real', 'overwrite_a': True, 'overwrite_b': True, ...} n_arrays = 2 name = 'B' names = ('A', 'B') ndim = 2 ndims = (2, 2) other_args = [] shape = (16, 16) lib/python3.12/site-packages/scipy/linalg/_decomp_qz.py:446: in ordqz raise ValueError("Reordering of (A, B) failed because the transformed" E ValueError: Reordering of (A, B) failed because the transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is very ill-conditioned. (A, B) may have been partially reordered. A = array([[ 1.73379549e-01, 1.42883662e-01, 1.00376922e+00, -2.38098755e-02, -9.86434359e-03, -6.29260961e-02, ... 1.19398295e-13, 6.88295741e-14, 9.31625392e-15, 9.92746190e-16, 7.78046492e-14, -1.09541288e-13]]) AA = array([[ 5.30291269e-01, 7.45010861e-01, 1.15544267e-02, -1.04523512e-01, 2.20381201e-02, -2.25536463e-01, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 9.54466448e-01]]) AAA = array([[ 5.30291269e-01, 7.45010861e-01, 1.15544267e-02, -1.04523512e-01, 2.20381201e-02, -2.25536463e-01, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 9.54466448e-01]]) B = array([[ 1.31727281e-01, 1.21301647e-01, 9.65830821e-01, -9.76527475e-02, 5.72507661e-02, -9.70650863e-02, ...-9.72031256e-02, -3.66032098e-01, -1.24168643e-01, 9.00009651e-03, -5.56453163e-01, -6.55391500e-01]]) BB = array([[ 9.85309597e-01, -0.00000000e+00, 8.62404486e-04, -1.70617740e-01, 4.43923781e-03, 3.83428907e-03, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 9.23721983e-01]]) BBB = array([[ 9.85309597e-01, -0.00000000e+00, 8.62404486e-04, -1.70617740e-01, 4.43923781e-03, 3.83428907e-03, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 9.23721983e-01]]) Q = array([[-3.39976638e-02, 7.03196511e-02, 1.70828210e-01, -3.13700466e-01, 4.91556879e-01, -7.90358808e-01, ...-3.95124786e-01, -4.79321692e-01, -8.64918251e-02, 1.90340287e-01, 7.25362883e-02, -2.87210762e-01]]) QQ = array([[-3.39976638e-02, 7.03196511e-02, 1.70828210e-01, -3.13700466e-01, 4.91556879e-01, -7.90358808e-01, ...-3.95124786e-01, -4.79321692e-01, -8.64918251e-02, 1.90340287e-01, 7.25362883e-02, -2.87210762e-01]]) Z = array([[-1.43735366e-01, -3.19814219e-01, -3.64509796e-02, -7.88175504e-03, 1.47338606e-01, -6.31666178e-01, ... 6.20241207e-03, -1.84296383e-03, -1.39242288e-04, -1.48006649e-01, -9.95580330e-03, -1.56115009e-01]]) ZZ = array([[-1.43735366e-01, -3.19814219e-01, -3.64509796e-02, -7.88175504e-03, 1.47338606e-01, -6.31666178e-01, ... 6.20241207e-03, -1.84296383e-03, -1.39242288e-04, -1.48006649e-01, -9.95580330e-03, -1.56115009e-01]]) _ = array([0., 0.]) ab = [array([-0.61056933, -0.61056933, -0.57576514, -0.57576514, -0.20981567, -0.20981567, -0.24082067, -0.24082067,... , 0.69075543, 0.7161816 , 1.0274048 , 1.03292049, 0.99579429, 1.01187924, 0.96682736, 0.92372198])] alpha = array([-0.61056933+2.58627495j, -0.61056933-2.58627495j, -0.57576514+2.133255j , -0.57576514-2.133255j , ... , 0.97309849+0.j , 0.97928544+0.j , 0.9893769 +0.j , 0.95446645+0.j ]) beta = array([1.21332415, 1.21332415, 1.02103655, 1.02103655, 2. , 2. , 2. , 2. , 0.69075543, 0.7161816 , 1.0274048 , 1.03292049, 0.99579429, 1.01187924, 0.96682736, 0.92372198]) check_finite = False info = 1 lwork = 80 output = 'real' overwrite_a = True overwrite_b = True select = array([False, False, False, False, True, True, True, True, False, False, True, True, True, True, False, False]) sfunction = sort = 'iuc' tgsen = typ = 'd' _________________________ TestInvHilbert.test_inverse __________________________ lib/python3.12/site-packages/scipy/linalg/tests/test_special_matrices.py:438: in test_inverse assert_allclose(a.dot(b), eye(n), atol=1e-15*c, rtol=1e-15*c) E AssertionError: E Not equal to tolerance rtol=1.32098e-08, atol=1.32098e-08 E E Mismatched elements: 20 / 64 (31.2%) E Max absolute difference among violations: 8.94069672e-08 E Max relative difference among violations: inf E ACTUAL: array([[ 1.000000e+00, -4.074536e-10, 9.313226e-10, -2.235174e-08, E 1.490116e-08, -8.940697e-08, 1.490116e-08, -3.725290e-09], E [ 3.175238e-13, 1.000000e+00, 2.400480e-10, -1.623476e-08,... E DESIRED: array([[1., 0., 0., 0., 0., 0., 0., 0.], E [0., 1., 0., 0., 0., 0., 0., 0.], E [0., 0., 1., 0., 0., 0., 0., 0.],... a = array([[1. , 0.5 , 0.33333333, 0.25 , 0.2 , 0.16666667, 0.14285714, 0.125 ], ...857], [0.125 , 0.11111111, 0.1 , 0.09090909, 0.08333333, 0.07692308, 0.07142857, 0.06666667]]) b = array([[ 6.40000000e+01, -2.01600000e+03, 2.01600000e+04, -9.24000000e+04, 2.21760000e+05, -2.88288000e+05, ...-3.89188800e+07, 2.16216000e+08, -5.94594000e+08, 8.56215360e+08, -6.18377760e+08, 1.76679360e+08]]) c = np.float64(13209757.599119514) n = 8 self = _______________________ TestRRSVD.test_infeasible_m_gt_n _______________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:71: in test_infeasible_m_gt_n A1, b1, status, message = self.rr(A0, b0) ^^^^^^^^^^^^^^^ A0 = array([[0.96358733, 0.10460043, 0.80011116, 0.66580741, 0.77378936, 0.38672711, 0.31848874, 0.98915716, 0.8490..., 0.97029018, 0.51627173, 0.15927346, 0.18964117, 0.66103298, 0.49827768, 0.17039008, 0.90262862, 0.16170246]]) b0 = array([0.73360363, 0.42337309, 0.44263979, 0.80161672, 0.50546179, 0.52241532, 0.1469814 , 0.74403981, 0.566849...85, 0.22631939, 0.16760296, 0.99181657, 0.66062775, 0.89108169, 0.1257144 , 0.34697098, 0.12611039, 0.24144779]) m = 20 n = 10 self = lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:211: in rr return _remove_redundancy_svd(A, b) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.96358733, 0.10460043, 0.80011116, 0.66580741, 0.77378936, 0.38672711, 0.31848874, 0.98915716, 0.8490..., 0.97029018, 0.51627173, 0.15927346, 0.18964117, 0.66103298, 0.49827768, 0.17039008, 0.90262862, 0.16170246]]) b = array([0.73360363, 0.42337309, 0.44263979, 0.80161672, 0.50546179, 0.52241532, 0.1469814 , 0.74403981, 0.566849...85, 0.22631939, 0.16760296, 0.99181657, 0.66062775, 0.89108169, 0.1257144 , 0.34697098, 0.12611039, 0.24144779]) self = lib/python3.12/site-packages/scipy/optimize/_remove_redundancy.py:400: in _remove_redundancy_svd U, s, Vh = svd(A) ^^^^^^ A = array([[0.96358733, 0.10460043, 0.80011116, 0.66580741, 0.77378936, 0.38672711, 0.31848874, 0.98915716, 0.8490..., 0.97029018, 0.51627173, 0.15927346, 0.18964117, 0.66103298, 0.49827768, 0.17039008, 0.90262862, 0.16170246]]) b = array([0.73360363, 0.42337309, 0.44263979, 0.80161672, 0.50546179, 0.52241532, 0.1469814 , 0.74403981, 0.566849...85, 0.22631939, 0.16760296, 0.99181657, 0.66062775, 0.89108169, 0.1257144 , 0.34697098, 0.12611039, 0.24144779]) message = '' status = 0 lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.96358733, 0.10460043, 0.80011116, 0.66580741, 0.77378936, 0.38672711, 0.31848874, 0.98915716, 0.849... 0.97029018, 0.51627173, 0.15927346, 0.18964117, 0.66103298, 0.49827768, 0.17039008, 0.90262862, 0.16170246]])] array = array([[0.96358733, 0.10460043, 0.80011116, 0.66580741, 0.77378936, 0.38672711, 0.31848874, 0.98915716, 0.8490..., 0.97029018, 0.51627173, 0.15927346, 0.18964117, 0.66103298, 0.49827768, 0.17039008, 0.90262862, 0.16170246]]) arrays = [array([[0.96358733, 0.10460043, 0.80011116, 0.66580741, 0.77378936, 0.38672711, 0.31848874, 0.98915716, 0.849... 0.97029018, 0.51627173, 0.15927346, 0.18964117, 0.66103298, 0.49827768, 0.17039008, 0.90262862, 0.16170246]])] batch_shapes = [()] core_shapes = [(20, 10)] f = i = 0 kwargs = {} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (20, 10) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.96358733, 0.10460043, 0.80011116, 0.66580741, 0.77378936, 0.38672711, 0.31848874, 0.98915716, 0.8490..., 0.97029018, 0.51627173, 0.15927346, 0.18964117, 0.66103298, 0.49827768, 0.17039008, 0.90262862, 0.16170246]]) a1 = array([[0.96358733, 0.10460043, 0.80011116, 0.66580741, 0.77378936, 0.38672711, 0.31848874, 0.98915716, 0.8490..., 0.97029018, 0.51627173, 0.15927346, 0.18964117, 0.66103298, 0.49827768, 0.17039008, 0.90262862, 0.16170246]]) check_finite = True compute_uv = True full_matrices = True funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 9 lapack_driver = 'gesdd' lwork = 770 m = 20 max_mn = 20 min_mn = 10 n = 10 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) u = array([[ nan, nan, nan, nan, nan, nan, nan, nan...2004, -0.12144908, -0.26187836, 0.21579549, 0.03568025, -0.14164621, 0.0050683 , -0.0517877 , 0.57483917]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ... [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _______________________ TestRRSVD.test_infeasible_m_eq_n _______________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:80: in test_infeasible_m_eq_n assert_equal(status, 2) E AssertionError: E Items are not equal: E ACTUAL: 0 E DESIRED: 2 A0 = array([[0.06524825, 0.54550585, 0.07195307, 0.70130912, 0.6067562 , 0.24733106, 0.48197232, 0.81026008, 0.5726..., 1.21417734, 0.16605399, 1.82954655, 1.46096836, 1.35290449, 1.10236441, 0.80360092, 1.08019697, 1.83968851]]) A1 = array([[0.06524825, 0.54550585, 0.07195307, 0.70130912, 0.6067562 , 0.24733106, 0.48197232, 0.81026008, 0.5726..., 1.21417734, 0.16605399, 1.82954655, 1.46096836, 1.35290449, 1.10236441, 0.80360092, 1.08019697, 1.83968851]]) b0 = array([0.02154948, 0.72709435, 0.55442754, 0.16469031, 0.37155492, 0.5692018 , 0.59308854, 0.89503586, 0.92759081, 0.36479138]) b1 = array([0.02154948, 0.72709435, 0.55442754, 0.16469031, 0.37155492, 0.5692018 , 0.59308854, 0.89503586, 0.92759081, 0.36479138]) m = 10 message = '' n = 10 self = status = 0 _______________________ TestRRSVD.test_infeasible_m_lt_n _______________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:88: in test_infeasible_m_lt_n assert_equal(status, 2) E AssertionError: E Items are not equal: E ACTUAL: 0 E DESIRED: 2 A0 = array([[2.22974958e-01, 8.00311679e-01, 2.49889952e-01, 2.88166171e-01, 6.73724771e-01, 1.14035540e-01, 5.0254...e+01, 1.03088770e+01, 1.10108703e+01, 1.96485360e+01, 1.43474126e+01, 1.30409380e+01, 8.78704726e+00]]) A1 = array([[2.22974958e-01, 8.00311679e-01, 2.49889952e-01, 2.88166171e-01, 6.73724771e-01, 1.14035540e-01, 5.0254...e+01, 1.03088770e+01, 1.10108703e+01, 1.96485360e+01, 1.43474126e+01, 1.30409380e+01, 8.78704726e+00]]) b0 = array([0.66882556, 0.53161123, 0.26258946, 0.35123466, 0.53655651, 0.23761469, 0.37640381, 0.93062634, 0.98302237]) b1 = array([0.66882556, 0.53161123, 0.26258946, 0.35123466, 0.53655651, 0.23761469, 0.37640381, 0.93062634, 0.98302237]) m = 9 message = '' n = 10 self = status = 0 ____________________________ TestRRSVD.test_m_gt_n _____________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:97: in test_m_gt_n A1, b1, status, message = self.rr(A0, b0) ^^^^^^^^^^^^^^^ A0 = array([[0.95557887, 0.88492326, 0.27770323, 0.73042471, 0.59677073, 0.22220477, 0.39335336, 0.83246557, 0.0812..., 0.24687973, 0.02418627, 0.92579896, 0.7836743 , 0.43117863, 0.35820003, 0.16998005, 0.14423338, 0.43716617]]) b0 = array([ 6.04794271e-01, 6.01667006e-01, 9.93874727e-01, 4.62113495e-03, 1.53969128e-01, 6.07236314e-01, 9...4940e-01, 3.41918939e+00, -4.57923400e+00, 4.21179748e+00, 9.98335592e-01, -6.00213983e+00, -1.31587881e+00]) m = 20 n = 10 self = x = array([-1.09520521, 2.61704088, 4.79423123, -6.50624744, 6.29065158, 5.74890392, 0.24684684, -0.26088014, -6.96067003, -3.96765167]) lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:211: in rr return _remove_redundancy_svd(A, b) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.95557887, 0.88492326, 0.27770323, 0.73042471, 0.59677073, 0.22220477, 0.39335336, 0.83246557, 0.0812..., 0.24687973, 0.02418627, 0.92579896, 0.7836743 , 0.43117863, 0.35820003, 0.16998005, 0.14423338, 0.43716617]]) b = array([ 6.04794271e-01, 6.01667006e-01, 9.93874727e-01, 4.62113495e-03, 1.53969128e-01, 6.07236314e-01, 9...4940e-01, 3.41918939e+00, -4.57923400e+00, 4.21179748e+00, 9.98335592e-01, -6.00213983e+00, -1.31587881e+00]) self = lib/python3.12/site-packages/scipy/optimize/_remove_redundancy.py:400: in _remove_redundancy_svd U, s, Vh = svd(A) ^^^^^^ A = array([[0.95557887, 0.88492326, 0.27770323, 0.73042471, 0.59677073, 0.22220477, 0.39335336, 0.83246557, 0.0812..., 0.24687973, 0.02418627, 0.92579896, 0.7836743 , 0.43117863, 0.35820003, 0.16998005, 0.14423338, 0.43716617]]) b = array([ 6.04794271e-01, 6.01667006e-01, 9.93874727e-01, 4.62113495e-03, 1.53969128e-01, 6.07236314e-01, 9...4940e-01, 3.41918939e+00, -4.57923400e+00, 4.21179748e+00, 9.98335592e-01, -6.00213983e+00, -1.31587881e+00]) message = '' status = 0 lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.95557887, 0.88492326, 0.27770323, 0.73042471, 0.59677073, 0.22220477, 0.39335336, 0.83246557, 0.081... 0.24687973, 0.02418627, 0.92579896, 0.7836743 , 0.43117863, 0.35820003, 0.16998005, 0.14423338, 0.43716617]])] array = array([[0.95557887, 0.88492326, 0.27770323, 0.73042471, 0.59677073, 0.22220477, 0.39335336, 0.83246557, 0.0812..., 0.24687973, 0.02418627, 0.92579896, 0.7836743 , 0.43117863, 0.35820003, 0.16998005, 0.14423338, 0.43716617]]) arrays = [array([[0.95557887, 0.88492326, 0.27770323, 0.73042471, 0.59677073, 0.22220477, 0.39335336, 0.83246557, 0.081... 0.24687973, 0.02418627, 0.92579896, 0.7836743 , 0.43117863, 0.35820003, 0.16998005, 0.14423338, 0.43716617]])] batch_shapes = [()] core_shapes = [(20, 10)] f = i = 0 kwargs = {} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (20, 10) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.95557887, 0.88492326, 0.27770323, 0.73042471, 0.59677073, 0.22220477, 0.39335336, 0.83246557, 0.0812..., 0.24687973, 0.02418627, 0.92579896, 0.7836743 , 0.43117863, 0.35820003, 0.16998005, 0.14423338, 0.43716617]]) a1 = array([[0.95557887, 0.88492326, 0.27770323, 0.73042471, 0.59677073, 0.22220477, 0.39335336, 0.83246557, 0.0812..., 0.24687973, 0.02418627, 0.92579896, 0.7836743 , 0.43117863, 0.35820003, 0.16998005, 0.14423338, 0.43716617]]) check_finite = True compute_uv = True full_matrices = True funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 9 lapack_driver = 'gesdd' lwork = 770 m = 20 max_mn = 20 min_mn = 10 n = 10 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) u = array([[ nan, nan, nan, nan, nan, nan, nan, nan...0222, -0.09050166, 0.10381871, 0.0102311 , -0.04228903, 0.17210175, 0.0332912 , -0.00767249, 0.66833878]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ... [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _____________________ TestRRSVD.test_m_lt_n_rank_deficient _____________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:120: in test_m_lt_n_rank_deficient assert_equal(A1.shape[0], 8) E AssertionError: E Items are not equal: E ACTUAL: 9 E DESIRED: 8 A0 = array([[6.69093393e-01, 1.17329363e-01, 6.67641344e-01, 8.25334928e-01, 4.35121287e-01, 6.05822147e-01, 5.9198...e+01, 6.55751344e+00, 1.22827685e+01, 1.19688163e+01, 1.65600653e+01, 1.71602241e+01, 1.32300720e+01]]) A1 = array([[6.69093393e-01, 1.17329363e-01, 6.67641344e-01, 8.25334928e-01, 4.35121287e-01, 6.05822147e-01, 5.9198...e+01, 6.55751344e+00, 1.22827685e+01, 1.19688163e+01, 1.65600653e+01, 1.71602241e+01, 1.32300720e+01]]) b0 = array([ 0.82519632, 0.89250355, 0.59809456, 0.54511628, 0.01695356, 0.35585936, 0.37578563, 0.90409082, 14.15450208]) b1 = array([ 0.82519632, 0.89250355, 0.59809456, 0.54511628, 0.01695356, 0.35585936, 0.37578563, 0.90409082, 14.15450208]) m = 9 message = '' n = 10 self = status = 0 ____________________________ TestRRSVD.test_dense1 _____________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:133: in test_dense1 assert_(redundancy_removed(A1, A)) E AssertionError A = array([[ 0., 0., 0., 1., 1., 1.], [ 1., 1., 1., 0., 0., 0.], [ 1., 1., 1., 1., 1., 1.], [ 0., 0., -1., 1., -1., 1.], [-1., 1., 0., 0., 0., 0.], [-1., 1., -1., 1., -1., 1.]]) A1 = array([[ 0., 0., 0., 1., 1., 1.], [ 1., 1., 1., 0., 0., 0.], [ 0., 0., -1., 1., -1., 1.], [-1., 1., 0., 0., 0., 0.]]) b = array([0., 0., 0., 0., 0., 0.]) b1 = array([0., 0., 0., 0.]) message = '' self = status = 0 ____________________________ TestRRSVD.test_dense2 _____________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:142: in test_dense2 assert_(redundancy_removed(A1, A)) E AssertionError A = array([[1., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 1., 1.], [1., 1., 1., 1., 1., 1.]]) A1 = array([[1., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 1., 1.], [1., 1., 1., 1., 1., 1.]]) b = array([0., 0., 0., 0., 0., 0.]) b1 = array([0., 0., 0., 0., 0., 0.]) message = 'Due to numerical issues, redundant equality constraints could not be removed automatically. Try providing your constr...arse matrices to activate sparse presolve, try turning off redundancy removal, or try turning off presolve altogether.' self = status = 4 ____________________________ TestRRSVD.test_dense3 _____________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:152: in test_dense3 assert_(redundancy_removed(A1, A)) E AssertionError A = array([[1., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 1., 1.], [1., 1., 1., 1., 1., 1.]]) A1 = array([[1., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 1., 1.], [1., 1., 1., 1., 1., 1.]]) b = array([0.85264645, 0.51562367, 0.15127154, 0.85742979, 0.47168513, 2.84865657]) b1 = array([0.85264645, 0.51562367, 0.15127154, 0.85742979, 0.47168513, 2.84865657]) message = 'Due to numerical issues, redundant equality constraints could not be removed automatically. Try providing your constr...arse matrices to activate sparse presolve, try turning off redundancy removal, or try turning off presolve altogether.' self = status = 4 _________________________ TestRRSVD.test_m_lt_n_sparse _________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:177: in test_m_lt_n_sparse assert_equal(status, 0) E AssertionError: E Items are not equal: E ACTUAL: 4 E DESIRED: 0 A = array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ..., 0. , 0. , 0. , 0. , 0. , 0. , 0.68532491, 0. , 0. ]]) A1 = array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ..., 0. , 0. , 0. , 0. , 0. , 0. , 0.68532491, 0. , 0. ]]) b = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) b1 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) m = 20 message = 'Due to numerical issues, redundant equality constraints could not be removed automatically. Try providing your constr...arse matrices to activate sparse presolve, try turning off redundancy removal, or try turning off presolve altogether.' n = 50 p = 0.05 rank = np.int64(20) self = status = 4 _________________________ TestRRSVD.test_m_eq_n_sparse _________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:191: in test_m_eq_n_sparse assert_equal(A1.shape[0], rank) E AssertionError: E Items are not equal: E ACTUAL: 67 E DESIRED: np.int64(96) A = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)) A1 = array([[0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. ... ], [0. , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(67, 100)) b = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) b1 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) m = 100 message = '' n = 100 p = 0.01 rank = np.int64(96) self = status = 0 _________________________ TestRRSVD.test_magic_square __________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:198: in test_magic_square assert_equal(A1.shape[0], 23) E AssertionError: E Items are not equal: E ACTUAL: 26 E DESIRED: 23 A = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) A1 = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) _ = 15.0 b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) b1 = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...7676109, 0.60484552, 0.73926358, 0.03918779, 0.28280696, 0.12019656, 0.2961402 , 0.11872772, 0.31798318]) message = '' numbers = array([[[1, 1, 1], [1, 1, 1], [1, 1, 1]], [[2, 2, 2], [2, 2, 2], [2, 2, 2]], ... [[8, 8, 8], [8, 8, 8], [8, 8, 8]], [[9, 9, 9], [9, 9, 9], [9, 9, 9]]]) self = status = 0 _________________________ TestRRSVD.test_magic_square2 _________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:204: in test_magic_square2 assert_equal(status, 0) E AssertionError: E Items are not equal: E ACTUAL: 4 E DESIRED: 0 A = array([[ 1., 1., 1., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0...., 0., 16.], [ 1., 0., 0., ..., 0., 0., 16.], [ 0., 0., 0., ..., 0., 0., 0.]], shape=(42, 256)) A1 = array([[ 1., 1., 1., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0...., 0., 16.], [ 1., 0., 0., ..., 0., 0., 16.], [ 0., 0., 0., ..., 0., 0., 0.]], shape=(42, 256)) _ = 34.0 b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 34., 34., 34., 34., 34., 34., 34., 34., 34., 34.]) b1 = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 34., 34., 34., 34., 34., 34., 34., 34., 34., 34.]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...8327984, 0.14484776, 0.48805628, 0.35561274, 0.94043195, 0.76532525, 0.74866362, 0.90371974, 0.08342244]) message = 'Due to numerical issues, redundant equality constraints could not be removed automatically. Try providing your constr...arse matrices to activate sparse presolve, try turning off redundancy removal, or try turning off presolve altogether.' numbers = array([[[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]], [[ 2,...5, 15, 15]], [[16, 16, 16, 16], [16, 16, 16, 16], [16, 16, 16, 16], [16, 16, 16, 16]]]) self = status = 4 _________________________ TestRRPivotDense.test_dense1 _________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:133: in test_dense1 assert_(redundancy_removed(A1, A)) E AssertionError A = array([[ 0., 0., 0., 1., 1., 1.], [ 1., 1., 1., 0., 0., 0.], [ 1., 1., 1., 1., 1., 1.], [ 0., 0., -1., 1., -1., 1.], [-1., 1., 0., 0., 0., 0.], [-1., 1., -1., 1., -1., 1.]]) A1 = array([[ 0., 0., 0., 1., 1., 1.], [ 1., 1., 1., 0., 0., 0.], [ 0., 0., -1., 1., -1., 1.], [-1., 1., 0., 0., 0., 0.]]) b = array([0., 0., 0., 0., 0., 0.]) b1 = array([0., 0., 0., 0.]) message = '' self = status = 0 _____________________ TestRRPivotDense.test_m_lt_n_sparse ______________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:178: in test_m_lt_n_sparse assert_equal(A1.shape[0], rank) E AssertionError: E Items are not equal: E ACTUAL: 18 E DESIRED: np.int64(20) A = array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ..., 0. , 0. , 0. , 0. , 0. , 0. , 0.68532491, 0. , 0. ]]) A1 = array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ..., 0. , 0. , 0. , 0. , 0. , 0. , 0.68532491, 0. , 0. ]]) b = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) b1 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) m = 20 message = '' n = 50 p = 0.05 rank = np.int64(20) self = status = 0 _____________________ TestRRPivotDense.test_m_eq_n_sparse ______________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:191: in test_m_eq_n_sparse assert_equal(A1.shape[0], rank) E AssertionError: E Items are not equal: E ACTUAL: 53 E DESIRED: np.int64(96) A = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)) A1 = array([[0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. ... ], [0. , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(53, 100)) b = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) b1 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) m = 100 message = '' n = 100 p = 0.01 rank = np.int64(96) self = status = 0 _____________________ TestRRPivotDense.test_magic_square2 ______________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:206: in test_magic_square2 assert_equal(np.linalg.matrix_rank(A1), 39) E AssertionError: E Items are not equal: E ACTUAL: np.int64(38) E DESIRED: 39 A = array([[ 1., 1., 1., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0...., 0., 16.], [ 1., 0., 0., ..., 0., 0., 16.], [ 0., 0., 0., ..., 0., 0., 0.]], shape=(42, 256)) A1 = array([[ 1., 1., 1., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0...., 16., 0.], [ 1., 0., 0., ..., 0., 0., 16.], [ 0., 0., 0., ..., 0., 0., 0.]], shape=(39, 256)) _ = 34.0 b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 34., 34., 34., 34., 34., 34., 34., 34., 34., 34.]) b1 = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 34., 34., 34., 34., 34., 34., 34., 34.]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...8327984, 0.14484776, 0.48805628, 0.35561274, 0.94043195, 0.76532525, 0.74866362, 0.90371974, 0.08342244]) message = '' numbers = array([[[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]], [[ 2,...5, 15, 15]], [[16, 16, 16, 16], [16, 16, 16, 16], [16, 16, 16, 16], [16, 16, 16, 16]]]) self = status = 0 _________________________ TestRRID.test_no_redundancy __________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:45: in test_no_redundancy A1, b1, status, message = self.rr(A0, b0) ^^^^^^^^^^^^^^^ A0 = array([[0.24297605, 0.17140034, 0.47149368, 0.06648691, 0.02579971, 0.19907105, 0.21822714, 0.72560196, 0.4287..., 0.83506119, 0.5571114 , 0.04447358, 0.32312861, 0.17693938, 0.37247498, 0.48628951, 0.76516887, 0.33882767]]) b0 = array([0.22798188, 0.09191813, 0.59730906, 0.76724989, 0.5853289 , 0.79789912, 0.03632018, 0.29963239, 0.45954284, 0.32497261]) m = 10 n = 10 self = lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:221: in rr return _remove_redundancy_id(A, b) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.24297605, 0.17140034, 0.47149368, 0.06648691, 0.02579971, 0.19907105, 0.21822714, 0.72560196, 0.4287..., 0.83506119, 0.5571114 , 0.04447358, 0.32312861, 0.17693938, 0.37247498, 0.48628951, 0.76516887, 0.33882767]]) b = array([0.22798188, 0.09191813, 0.59730906, 0.76724989, 0.5853289 , 0.79789912, 0.03632018, 0.29963239, 0.45954284, 0.32497261]) self = lib/python3.12/site-packages/scipy/optimize/_remove_redundancy.py:505: in _remove_redundancy_id idx, proj = interp_decomp(A.T, k, rand=randomized) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.24297605, 0.17140034, 0.47149368, 0.06648691, 0.02579971, 0.19907105, 0.21822714, 0.72560196, 0.4287..., 0.83506119, 0.5571114 , 0.04447358, 0.32312861, 0.17693938, 0.37247498, 0.48628951, 0.76516887, 0.33882767]]) inconsistent = 'There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. However the same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible.' k = np.int64(10) m = 10 message = '' n = 10 randomized = True rank = None rhs = array([0.22798188, 0.09191813, 0.59730906, 0.76724989, 0.5853289 , 0.79789912, 0.03632018, 0.29963239, 0.45954284, 0.32497261]) status = 0 lib/python3.12/site-packages/scipy/linalg/interpolative.py:556: in interp_decomp idx, proj = _backend.iddr_aid(A, k, rng=rng) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[ 2.10266929e+000, 7.04567478e-001, 5.62091594e-001, 4.81684948e-001, 1.64946965e-001, 4.29312085e...90508e+272, -1.59446279e+273, -1.15412604e+273, -9.03812625e+272, 3.88034889e-002, -1.36694800e-001]]) LinearOperator = eps_or_k = np.int64(10) k = 10 rand = True real = True rng = Generator(PCG64) at 0x7FFB6205B4C0 scipy/linalg/_decomp_interpolative.pyx:751: in scipy.linalg._decomp_interpolative.iddr_aid ??? scipy/linalg/_decomp_interpolative.pyx:958: in scipy.linalg._decomp_interpolative.iddr_id ??? scipy/linalg/_decomp_interpolative.pyx:1024: in scipy.linalg._decomp_interpolative.iddr_qrpiv ??? E RuntimeWarning: overflow encountered in square _______________________ TestRRID.test_infeasible_m_gt_n ________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:71: in test_infeasible_m_gt_n A1, b1, status, message = self.rr(A0, b0) ^^^^^^^^^^^^^^^ A0 = array([[0.59114357, 0.16641968, 0.09282776, 0.25573752, 0.192401 , 0.88190774, 0.12271297, 0.46883496, 0.9652..., 0.8868194 , 0.96228457, 0.05042839, 0.87113214, 0.43295771, 0.03507757, 0.14934139, 0.54404589, 0.25224892]]) b0 = array([0.82487174, 0.0038908 , 0.28950958, 0.54281105, 0.98828926, 0.45674737, 0.25077808, 0.84322313, 0.586559...73, 0.32502301, 0.92464126, 0.48633588, 0.66350696, 0.34472278, 0.88312111, 0.31646943, 0.5557346 , 0.6108414 ]) m = 20 n = 10 self = lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:221: in rr return _remove_redundancy_id(A, b) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.59114357, 0.16641968, 0.09282776, 0.25573752, 0.192401 , 0.88190774, 0.12271297, 0.46883496, 0.9652..., 0.8868194 , 0.96228457, 0.05042839, 0.87113214, 0.43295771, 0.03507757, 0.14934139, 0.54404589, 0.25224892]]) b = array([0.82487174, 0.0038908 , 0.28950958, 0.54281105, 0.98828926, 0.45674737, 0.25077808, 0.84322313, 0.586559...73, 0.32502301, 0.92464126, 0.48633588, 0.66350696, 0.34472278, 0.88312111, 0.31646943, 0.5557346 , 0.6108414 ]) self = lib/python3.12/site-packages/scipy/optimize/_remove_redundancy.py:505: in _remove_redundancy_id idx, proj = interp_decomp(A.T, k, rand=randomized) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.59114357, 0.16641968, 0.09282776, 0.25573752, 0.192401 , 0.88190774, 0.12271297, 0.46883496, 0.9652..., 0.8868194 , 0.96228457, 0.05042839, 0.87113214, 0.43295771, 0.03507757, 0.14934139, 0.54404589, 0.25224892]]) inconsistent = 'There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. However the same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible.' k = np.int64(10) m = 20 message = '' n = 10 randomized = True rank = None rhs = array([0.82487174, 0.0038908 , 0.28950958, 0.54281105, 0.98828926, 0.45674737, 0.25077808, 0.84322313, 0.586559...73, 0.32502301, 0.92464126, 0.48633588, 0.66350696, 0.34472278, 0.88312111, 0.31646943, 0.5557346 , 0.6108414 ]) status = 0 lib/python3.12/site-packages/scipy/linalg/interpolative.py:556: in interp_decomp idx, proj = _backend.iddr_aid(A, k, rng=rng) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[ 2.37164112e+000, 7.26647231e-001, 1.49295152e+000, 9.55128490e-001, 1.02249746e+000, 6.60369585e...64519e+275, -2.68629478e+275, -4.13793020e+275, 4.88617909e+273, -6.70505131e+275, -4.89518777e-001]]) LinearOperator = eps_or_k = np.int64(10) k = 10 rand = True real = True rng = Generator(PCG64) at 0x7FFB6205BCA0 scipy/linalg/_decomp_interpolative.pyx:751: in scipy.linalg._decomp_interpolative.iddr_aid ??? scipy/linalg/_decomp_interpolative.pyx:958: in scipy.linalg._decomp_interpolative.iddr_id ??? scipy/linalg/_decomp_interpolative.pyx:1024: in scipy.linalg._decomp_interpolative.iddr_qrpiv ??? E RuntimeWarning: overflow encountered in square _______________________ TestRRID.test_infeasible_m_eq_n ________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:79: in test_infeasible_m_eq_n A1, b1, status, message = self.rr(A0, b0) ^^^^^^^^^^^^^^^ A0 = array([[0.98660031, 0.1218035 , 0.92044506, 0.87308816, 0.58270376, 0.85286873, 0.85775081, 0.95357358, 0.9235..., 1.35308751, 0.17486482, 1.69488569, 1.60000076, 0.89828704, 1.59113729, 0.53342848, 1.5764711 , 0.25549475]]) b0 = array([0.33496989, 0.70669005, 0.58253392, 0.46106289, 0.01938314, 0.0184949 , 0.46384209, 0.32825936, 0.17001812, 0.2650811 ]) m = 10 n = 10 self = lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:221: in rr return _remove_redundancy_id(A, b) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.98660031, 0.1218035 , 0.92044506, 0.87308816, 0.58270376, 0.85286873, 0.85775081, 0.95357358, 0.9235..., 1.35308751, 0.17486482, 1.69488569, 1.60000076, 0.89828704, 1.59113729, 0.53342848, 1.5764711 , 0.25549475]]) b = array([0.33496989, 0.70669005, 0.58253392, 0.46106289, 0.01938314, 0.0184949 , 0.46384209, 0.32825936, 0.17001812, 0.2650811 ]) self = lib/python3.12/site-packages/scipy/optimize/_remove_redundancy.py:505: in _remove_redundancy_id idx, proj = interp_decomp(A.T, k, rand=randomized) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.98660031, 0.1218035 , 0.92044506, 0.87308816, 0.58270376, 0.85286873, 0.85775081, 0.95357358, 0.9235..., 1.35308751, 0.17486482, 1.69488569, 1.60000076, 0.89828704, 1.59113729, 0.53342848, 1.5764711 , 0.25549475]]) inconsistent = 'There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. However the same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible.' k = np.int64(10) m = 10 message = '' n = 10 randomized = True rank = None rhs = array([0.33496989, 0.70669005, 0.58253392, 0.46106289, 0.01938314, 0.0184949 , 0.46384209, 0.32825936, 0.17001812, 0.2650811 ]) status = 0 lib/python3.12/site-packages/scipy/linalg/interpolative.py:556: in interp_decomp idx, proj = _backend.iddr_aid(A, k, rng=rng) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[ 4.17649406e+000, 2.50918320e-001, 7.41324930e-001, 1.08773748e+000, 4.85282555e-001, 6.20886227e...38093e+274, -5.66629835e+274, -3.00664506e+274, -5.09962828e+136, -5.43536463e+136, -1.86682305e-001]]) LinearOperator = eps_or_k = np.int64(10) k = 10 rand = True real = True rng = Generator(PCG64) at 0x7FFB61DB0580 scipy/linalg/_decomp_interpolative.pyx:751: in scipy.linalg._decomp_interpolative.iddr_aid ??? scipy/linalg/_decomp_interpolative.pyx:958: in scipy.linalg._decomp_interpolative.iddr_id ??? scipy/linalg/_decomp_interpolative.pyx:1024: in scipy.linalg._decomp_interpolative.iddr_qrpiv ??? E RuntimeWarning: overflow encountered in square _______________________ TestRRID.test_infeasible_m_lt_n ________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:87: in test_infeasible_m_lt_n A1, b1, status, message = self.rr(A0, b0) ^^^^^^^^^^^^^^^ A0 = array([[4.06738774e-01, 1.62751760e-01, 2.45114893e-01, 6.40414940e-01, 7.46204954e-01, 5.56644178e-01, 8.5215...e+01, 1.38831772e+01, 1.02179841e+01, 1.55327725e+01, 1.82730011e+01, 1.34868459e+01, 1.40789143e+01]]) b0 = array([0.66990736, 0.77050823, 0.92696209, 0.24680647, 0.31939471, 0.15188804, 0.07192603, 0.5482685 , 0.96146023]) m = 9 n = 10 self = lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:221: in rr return _remove_redundancy_id(A, b) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[4.06738774e-01, 1.62751760e-01, 2.45114893e-01, 6.40414940e-01, 7.46204954e-01, 5.56644178e-01, 8.5215...e+01, 1.38831772e+01, 1.02179841e+01, 1.55327725e+01, 1.82730011e+01, 1.34868459e+01, 1.40789143e+01]]) b = array([0.66990736, 0.77050823, 0.92696209, 0.24680647, 0.31939471, 0.15188804, 0.07192603, 0.5482685 , 0.96146023]) self = lib/python3.12/site-packages/scipy/optimize/_remove_redundancy.py:505: in _remove_redundancy_id idx, proj = interp_decomp(A.T, k, rand=randomized) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[4.06738774e-01, 1.62751760e-01, 2.45114893e-01, 6.40414940e-01, 7.46204954e-01, 5.56644178e-01, 8.5215...e+01, 1.38831772e+01, 1.02179841e+01, 1.55327725e+01, 1.82730011e+01, 1.34868459e+01, 1.40789143e+01]]) inconsistent = 'There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. However the same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible.' k = np.int64(9) m = 9 message = '' n = 10 randomized = True rank = None rhs = array([0.66990736, 0.77050823, 0.92696209, 0.24680647, 0.31939471, 0.15188804, 0.07192603, 0.5482685 , 0.96146023]) status = 0 lib/python3.12/site-packages/scipy/linalg/interpolative.py:556: in interp_decomp idx, proj = _backend.iddr_aid(A, k, rng=rng) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[ 4.59007953e+001, 4.71692915e-001, 6.66028664e-001, 6.30878710e-001, 5.08577161e-001, 5.19151985e... 3.72955008e+275, 1.55526981e+275, 9.99292147e+274, 3.28187551e+275, 4.84935254e-001, -1.08461808e-001]]) LinearOperator = eps_or_k = np.int64(9) k = 9 rand = True real = True rng = Generator(PCG64) at 0x7FFB61DB0D60 scipy/linalg/_decomp_interpolative.pyx:751: in scipy.linalg._decomp_interpolative.iddr_aid ??? scipy/linalg/_decomp_interpolative.pyx:958: in scipy.linalg._decomp_interpolative.iddr_id ??? scipy/linalg/_decomp_interpolative.pyx:1024: in scipy.linalg._decomp_interpolative.iddr_qrpiv ??? E RuntimeWarning: overflow encountered in square _____________________________ TestRRID.test_m_gt_n _____________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:97: in test_m_gt_n A1, b1, status, message = self.rr(A0, b0) ^^^^^^^^^^^^^^^ A0 = array([[0.95557887, 0.88492326, 0.27770323, 0.73042471, 0.59677073, 0.22220477, 0.39335336, 0.83246557, 0.0812..., 0.24687973, 0.02418627, 0.92579896, 0.7836743 , 0.43117863, 0.35820003, 0.16998005, 0.14423338, 0.43716617]]) b0 = array([ 6.04794271e-01, 6.01667006e-01, 9.93874727e-01, 4.62113495e-03, 1.53969128e-01, 6.07236314e-01, 9...4940e-01, 3.41918939e+00, -4.57923400e+00, 4.21179748e+00, 9.98335592e-01, -6.00213983e+00, -1.31587881e+00]) m = 20 n = 10 self = x = array([-1.09520521, 2.61704088, 4.79423123, -6.50624744, 6.29065158, 5.74890392, 0.24684684, -0.26088014, -6.96067003, -3.96765167]) lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:221: in rr return _remove_redundancy_id(A, b) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.95557887, 0.88492326, 0.27770323, 0.73042471, 0.59677073, 0.22220477, 0.39335336, 0.83246557, 0.0812..., 0.24687973, 0.02418627, 0.92579896, 0.7836743 , 0.43117863, 0.35820003, 0.16998005, 0.14423338, 0.43716617]]) b = array([ 6.04794271e-01, 6.01667006e-01, 9.93874727e-01, 4.62113495e-03, 1.53969128e-01, 6.07236314e-01, 9...4940e-01, 3.41918939e+00, -4.57923400e+00, 4.21179748e+00, 9.98335592e-01, -6.00213983e+00, -1.31587881e+00]) self = lib/python3.12/site-packages/scipy/optimize/_remove_redundancy.py:505: in _remove_redundancy_id idx, proj = interp_decomp(A.T, k, rand=randomized) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.95557887, 0.88492326, 0.27770323, 0.73042471, 0.59677073, 0.22220477, 0.39335336, 0.83246557, 0.0812..., 0.24687973, 0.02418627, 0.92579896, 0.7836743 , 0.43117863, 0.35820003, 0.16998005, 0.14423338, 0.43716617]]) inconsistent = 'There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. However the same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible.' k = np.int64(10) m = 20 message = '' n = 10 randomized = True rank = None rhs = array([ 6.04794271e-01, 6.01667006e-01, 9.93874727e-01, 4.62113495e-03, 1.53969128e-01, 6.07236314e-01, 9...4940e-01, 3.41918939e+00, -4.57923400e+00, 4.21179748e+00, 9.98335592e-01, -6.00213983e+00, -1.31587881e+00]) status = 0 lib/python3.12/site-packages/scipy/linalg/interpolative.py:556: in interp_decomp idx, proj = _backend.iddr_aid(A, k, rng=rng) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[ 2.21055081e+000, 5.34676694e-001, 1.41084946e+000, 4.26922256e-001, 7.79907980e-001, 5.80647907e...95856e+275, 1.34602425e+276, 4.57706928e+275, 7.80947168e+275, 6.94289088e+275, -1.28274678e-001]]) LinearOperator = eps_or_k = np.int64(10) k = 10 rand = True real = True rng = Generator(PCG64) at 0x7FFB61DB1540 scipy/linalg/_decomp_interpolative.pyx:751: in scipy.linalg._decomp_interpolative.iddr_aid ??? scipy/linalg/_decomp_interpolative.pyx:958: in scipy.linalg._decomp_interpolative.iddr_id ??? scipy/linalg/_decomp_interpolative.pyx:1024: in scipy.linalg._decomp_interpolative.iddr_qrpiv ??? E RuntimeWarning: overflow encountered in square _____________________ TestRRID.test_m_lt_n_rank_deficient ______________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:118: in test_m_lt_n_rank_deficient A1, b1, status, message = self.rr(A0, b0) ^^^^^^^^^^^^^^^ A0 = array([[6.69093393e-01, 1.17329363e-01, 6.67641344e-01, 8.25334928e-01, 4.35121287e-01, 6.05822147e-01, 5.9198...e+01, 6.55751344e+00, 1.22827685e+01, 1.19688163e+01, 1.65600653e+01, 1.71602241e+01, 1.32300720e+01]]) b0 = array([ 0.82519632, 0.89250355, 0.59809456, 0.54511628, 0.01695356, 0.35585936, 0.37578563, 0.90409082, 14.15450208]) m = 9 n = 10 self = lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:221: in rr return _remove_redundancy_id(A, b) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[6.69093393e-01, 1.17329363e-01, 6.67641344e-01, 8.25334928e-01, 4.35121287e-01, 6.05822147e-01, 5.9198...e+01, 6.55751344e+00, 1.22827685e+01, 1.19688163e+01, 1.65600653e+01, 1.71602241e+01, 1.32300720e+01]]) b = array([ 0.82519632, 0.89250355, 0.59809456, 0.54511628, 0.01695356, 0.35585936, 0.37578563, 0.90409082, 14.15450208]) self = lib/python3.12/site-packages/scipy/optimize/_remove_redundancy.py:505: in _remove_redundancy_id idx, proj = interp_decomp(A.T, k, rand=randomized) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[6.69093393e-01, 1.17329363e-01, 6.67641344e-01, 8.25334928e-01, 4.35121287e-01, 6.05822147e-01, 5.9198...e+01, 6.55751344e+00, 1.22827685e+01, 1.19688163e+01, 1.65600653e+01, 1.71602241e+01, 1.32300720e+01]]) inconsistent = 'There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. However the same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible.' k = np.int64(9) m = 9 message = '' n = 10 randomized = True rank = None rhs = array([ 0.82519632, 0.89250355, 0.59809456, 0.54511628, 0.01695356, 0.35585936, 0.37578563, 0.90409082, 14.15450208]) status = 0 lib/python3.12/site-packages/scipy/linalg/interpolative.py:556: in interp_decomp idx, proj = _backend.iddr_aid(A, k, rng=rng) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[ 4.71309933e+001, 7.13984652e-001, 7.36589695e-001, 7.51278399e-001, 1.90310443e-001, 6.67693725e... -1.17864922e+275, -3.47114828e+274, -9.89769723e+274, 4.20856400e+136, 2.75353598e+137, -2.18629012e-001]]) LinearOperator = eps_or_k = np.int64(9) k = 9 rand = True real = True rng = Generator(PCG64) at 0x7FFB61DB1D20 scipy/linalg/_decomp_interpolative.pyx:751: in scipy.linalg._decomp_interpolative.iddr_aid ??? scipy/linalg/_decomp_interpolative.pyx:958: in scipy.linalg._decomp_interpolative.iddr_id ??? scipy/linalg/_decomp_interpolative.pyx:1024: in scipy.linalg._decomp_interpolative.iddr_qrpiv ??? E RuntimeWarning: overflow encountered in square _____________________________ TestRRID.test_dense3 _____________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:153: in test_dense3 assert_equal(status, 0) E AssertionError: E Items are not equal: E ACTUAL: 2 E DESIRED: 0 A = array([[1., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 1., 1.], [1., 1., 1., 1., 1., 1.]]) A1 = array([[0., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 1., 1.], [1., 1., 1., 1., 1., 1.]]) b = array([0.85264645, 0.51562367, 0.15127154, 0.85742979, 0.47168513, 2.84865657]) b1 = array([0.51562367, 0.15127154, 0.85742979, 0.47168513, 2.84865657]) message = 'There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. However the same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible.' self = status = 2 _________________________ TestRRID.test_m_lt_n_sparse __________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:178: in test_m_lt_n_sparse assert_equal(A1.shape[0], rank) E AssertionError: E Items are not equal: E ACTUAL: 17 E DESIRED: np.int64(20) A = array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ..., 0. , 0. , 0. , 0. , 0. , 0. , 0.68532491, 0. , 0. ]]) A1 = array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ..., 0. , 0. , 0. , 0. , 0. , 0. , 0.68532491, 0. , 0. ]]) b = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) b1 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) m = 20 message = '' n = 50 p = 0.05 rank = np.int64(20) self = status = 0 _________________________ TestRRID.test_m_eq_n_sparse __________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:191: in test_m_eq_n_sparse assert_equal(A1.shape[0], rank) E AssertionError: E Items are not equal: E ACTUAL: 67 E DESIRED: np.int64(96) A = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)) A1 = array([[0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. ... ], [0. , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(67, 100)) b = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) b1 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) m = 100 message = '' n = 100 p = 0.01 rank = np.int64(96) self = status = 0 __________________________ TestRRID.test_magic_square __________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:196: in test_magic_square A1, b1, status, message = self.rr(A, b) ^^^^^^^^^^^^^ A = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) _ = 15.0 b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...7676109, 0.60484552, 0.73926358, 0.03918779, 0.28280696, 0.12019656, 0.2961402 , 0.11872772, 0.31798318]) numbers = array([[[1, 1, 1], [1, 1, 1], [1, 1, 1]], [[2, 2, 2], [2, 2, 2], [2, 2, 2]], ... [[8, 8, 8], [8, 8, 8], [8, 8, 8]], [[9, 9, 9], [9, 9, 9], [9, 9, 9]]]) self = lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:221: in rr return _remove_redundancy_id(A, b) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) self = lib/python3.12/site-packages/scipy/optimize/_remove_redundancy.py:505: in _remove_redundancy_id idx, proj = interp_decomp(A.T, k, rand=randomized) ^^^^^^^^^ E ValueError: too many values to unpack (expected 2) A = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) inconsistent = 'There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. However the same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible.' k = np.int64(0) m = 26 message = '' n = 81 randomized = True rank = None rhs = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) status = 0 _________________________ TestRRID.test_magic_square2 __________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:203: in test_magic_square2 A1, b1, status, message = self.rr(A, b) ^^^^^^^^^^^^^ A = array([[ 1., 1., 1., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0...., 0., 16.], [ 1., 0., 0., ..., 0., 0., 16.], [ 0., 0., 0., ..., 0., 0., 0.]], shape=(42, 256)) _ = 34.0 b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 34., 34., 34., 34., 34., 34., 34., 34., 34., 34.]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...8327984, 0.14484776, 0.48805628, 0.35561274, 0.94043195, 0.76532525, 0.74866362, 0.90371974, 0.08342244]) numbers = array([[[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]], [[ 2,...5, 15, 15]], [[16, 16, 16, 16], [16, 16, 16, 16], [16, 16, 16, 16], [16, 16, 16, 16]]]) self = lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:221: in rr return _remove_redundancy_id(A, b) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[ 1., 1., 1., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0...., 0., 16.], [ 1., 0., 0., ..., 0., 0., 16.], [ 0., 0., 0., ..., 0., 0., 0.]], shape=(42, 256)) b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 34., 34., 34., 34., 34., 34., 34., 34., 34., 34.]) self = lib/python3.12/site-packages/scipy/optimize/_remove_redundancy.py:505: in _remove_redundancy_id idx, proj = interp_decomp(A.T, k, rand=randomized) ^^^^^^^^^ E ValueError: too many values to unpack (expected 2) A = array([[ 1., 1., 1., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0...., 0., 16.], [ 1., 0., 0., ..., 0., 0., 16.], [ 0., 0., 0., ..., 0., 0., 0.]], shape=(42, 256)) inconsistent = 'There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. However the same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible.' k = np.int64(0) m = 42 message = '' n = 256 randomized = True rank = None rhs = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 34., 34., 34., 34., 34., 34., 34., 34., 34., 34.]) status = 0 ________________________ TestRRPivotSparse.test_dense1 _________________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:133: in test_dense1 assert_(redundancy_removed(A1, A)) E AssertionError A = array([[ 0., 0., 0., 1., 1., 1.], [ 1., 1., 1., 0., 0., 0.], [ 1., 1., 1., 1., 1., 1.], [ 0., 0., -1., 1., -1., 1.], [-1., 1., 0., 0., 0., 0.], [-1., 1., -1., 1., -1., 1.]]) A1 = array([[ 0., 0., 0., 1., 1., 1.], [ 1., 1., 1., 0., 0., 0.], [ 0., 0., -1., 1., -1., 1.], [-1., 1., 0., 0., 0., 0.]]) b = array([0., 0., 0., 0., 0., 0.]) b1 = array([0., 0., 0., 0.]) message = '' self = status = 0 _____________________ TestRRPivotSparse.test_m_lt_n_sparse _____________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:178: in test_m_lt_n_sparse assert_equal(A1.shape[0], rank) E AssertionError: E Items are not equal: E ACTUAL: 18 E DESIRED: np.int64(20) A = array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ..., 0. , 0. , 0. , 0. , 0. , 0. , 0.68532491, 0. , 0. ]]) A1 = array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ..., 0. , 0. , 0. , 0. , 0. , 0. , 0.68532491, 0. , 0. ]]) b = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) b1 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) m = 20 message = '' n = 50 p = 0.05 rank = np.int64(20) self = status = 0 _____________________ TestRRPivotSparse.test_m_eq_n_sparse _____________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:191: in test_m_eq_n_sparse assert_equal(A1.shape[0], rank) E AssertionError: E Items are not equal: E ACTUAL: 53 E DESIRED: np.int64(96) A = array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ...., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], shape=(100, 100)) A1 = array([[0. , 0. , 0. , ..., 0. , 0. , 0. ], [0. , 0. ... ], [0. , 0. , 0. , ..., 0. , 0. , 0. ]], shape=(53, 100)) b = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) b1 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) m = 100 message = '' n = 100 p = 0.01 rank = np.int64(96) self = status = 0 _____________________ TestRRPivotSparse.test_magic_square2 _____________________ lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py:206: in test_magic_square2 assert_equal(np.linalg.matrix_rank(A1), 39) E AssertionError: E Items are not equal: E ACTUAL: np.int64(38) E DESIRED: 39 A = array([[ 1., 1., 1., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0...., 0., 16.], [ 1., 0., 0., ..., 0., 0., 16.], [ 0., 0., 0., ..., 0., 0., 0.]], shape=(42, 256)) A1 = array([[ 1., 1., 1., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0...., 16., 0.], [ 1., 0., 0., ..., 0., 0., 16.], [ 0., 0., 0., ..., 0., 0., 0.]], shape=(39, 256)) _ = 34.0 b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 34., 34., 34., 34., 34., 34., 34., 34., 34., 34.]) b1 = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 34., 34., 34., 34., 34., 34., 34., 34.]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...8327984, 0.14484776, 0.48805628, 0.35561274, 0.94043195, 0.76532525, 0.74866362, 0.90371974, 0.08342244]) message = '' numbers = array([[[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]], [[ 2,...5, 15, 15]], [[16, 16, 16, 16], [16, 16, 16, 16], [16, 16, 16, 16], [16, 16, 16, 16]]]) self = status = 0 ____________________________ TestBounds.test_basic _____________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_cobyla.py:181: in test_basic assert_allclose(res.x, ref, atol=1e-3) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0.001 E E Mismatched elements: 2 / 5 (40%) E Max absolute difference among violations: 3.99495 E Max relative difference among violations: 1.99495 E ACTUAL: array([-0.5 , -0.5 , 2.99495, 3.99495, -0.5 ]) E DESIRED: array([-0.5, -0.5, 1. , 0. , -0.5]) bounds = [(-1, -0.5), (None, -0.5), (1, None), (None, None), (-0.5, -0.5)] f = .f at 0x7ffb46376160> lb = [-1, None, 1, None, -0.5] ref = [-0.5, -0.5, 1, 0, -0.5] res = message: Return from COBYLA because the trust region radius reaches its lower bound. success: True status: 0 fun: 25.679351005 x: [-5.000e-01 -5.000e-01 2.995e+00 3.995e+00 -5.000e-01] nfev: 13 maxcv: 0.0 self = ub = [-0.5, -0.5, None, None, -0.5] ___________________ TestNewToOldCobyla.test_list_of_problems ___________________ lib/python3.12/site-packages/scipy/optimize/tests/test_constraint_conversion.py:286: in test_list_of_problems assert_allclose(result.fun, truth.fun, rtol=1e-3) E AssertionError: E Not equal to tolerance rtol=0.001, atol=0 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.00814103 E Max relative difference among violations: 0.01627995 E ACTUAL: array(0.508205) E DESIRED: array(0.500064) prob = result = message: Return from COBYLA because the trust region radius reaches its lower bound. success: True status: 0 ...052 x: [-5.348e-01 7.396e-01 7.859e-01 -6.718e-01 3.104e-01 -3.991e-02] nfev: 87 maxcv: 0.0 self = sup = truth = message: `gtol` termination condition is satisfied. success: True status: 1 ...penalty: 1.0 barrier_parameter: 3.200000000000001e-05 barrier_tolerance: 3.200000000000001e-05 niter: 16 _________________________________ test_cython __________________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_extending.py:22: in test_cython extensions, extensions_cpp = _test_cython_extension(tmp_path, srcdir) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ srcdir = '/home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.testenv/lib/python3.12/site-packages/scipy/optimize' tmp_path = PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython1') lib/python3.12/site-packages/scipy/_lib/_testutils.py:320: in _test_cython_extension subprocess.check_call(["meson", "compile", "-vv"], cwd=target_dir) build_dir = PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython1/140735883390096/optimize/tests/_cython_examples') f = <_io.TextIOWrapper name='/tmp/pytest-of-buildozer/pytest-53/test_cython1/140735883390096/optimize/tests/_cython_examples/interpreter-native-file.ini' mode='w' encoding='UTF-8'> mod_name = 'optimize' native_file = '/tmp/pytest-of-buildozer/pytest-53/test_cython1/140735883390096/optimize/tests/_cython_examples/interpreter-native-file.ini' pytest = srcdir = '/home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.testenv/lib/python3.12/site-packages/scipy/optimize' target_dir = PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython1/140735883390096/optimize/tests/_cython_examples/build') tmp_path = PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython1/140735883390096') /usr/lib/python3.12/subprocess.py:413: in check_call raise CalledProcessError(retcode, cmd) E subprocess.CalledProcessError: Command '['meson', 'compile', '-vv']' returned non-zero exit status 1. cmd = ['meson', 'compile', '-vv'] kwargs = {'cwd': PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython1/140735883390096/optimize/tests/_cython_examples/build')} popenargs = (['meson', 'compile', '-vv'],) retcode = 1 ----------------------------- Captured stdout call ----------------------------- 1.9.1 The Meson build system Version: 1.9.1 Source dir: /tmp/pytest-of-buildozer/pytest-53/test_cython1/140735883390096/optimize/tests/_cython_examples Build dir: /tmp/pytest-of-buildozer/pytest-53/test_cython1/140735883390096/optimize/tests/_cython_examples/build Build type: native build Project name: random-build-examples Project version: undefined C compiler for the host machine: cc (gcc 15.2.0 "cc (Alpine 15.2.0) 15.2.0") C linker for the host machine: cc ld.bfd 2.45 C++ compiler for the host machine: c++ (gcc 15.2.0 "c++ (Alpine 15.2.0) 15.2.0") C++ linker for the host machine: c++ ld.bfd 2.45 Cython compiler for the host machine: cython (cython 3.1.6) Host machine cpu family: ppc64 Host machine cpu: ppc64le Program python found: YES (/home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.testenv/bin/python) Found pkg-config: YES (/usr/bin/pkg-config) 2.5.1 Run-time dependency python found: YES 3.12 Build targets in project: 3 random-build-examples undefined User defined options Native files: /tmp/pytest-of-buildozer/pytest-53/test_cython1/140735883390096/optimize/tests/_cython_examples/interpreter-native-file.ini Found ninja-1.9 at /usr/bin/ninja [1/7] /usr/bin/meson --internal copy ../extending.pyx extending_cpp.pyx [2/7] cython -M --fast-fail -3 -Xfreethreading_compatible=True /tmp/pytest-of-buildozer/pytest-53/test_cython1/140735883390096/optimize/tests/_cython_examples/extending.pyx -o extending.cpython-312-powerpc64le-linux-musl.so.p/extending.pyx.c [3/7] cython -M --fast-fail -3 --cplus -Xfreethreading_compatible=True extending_cpp.pyx -o extending_cpp.cpython-312-powerpc64le-linux-musl.so.p/extending_cpp.pyx.cpp Error compiling Cython file: ------------------------------------------------------------ ... #cython: wraparound=False """ Taken from docstring for scipy.optimize.cython_optimize module. """ from scipy.optimize.cython_optimize cimport brentq ^ ------------------------------------------------------------ /tmp/pytest-of-buildozer/pytest-53/test_cython1/140735883390096/optimize/tests/_cython_examples/extending.pyx:9:0: 'scipy/optimize/cython_optimize.pxd' not found Error compiling Cython file: ------------------------------------------------------------ ... #cython: wraparound=False """ Taken from docstring for scipy.optimize.cython_optimize module. """ from scipy.optimize.cython_optimize cimport brentq ^ ------------------------------------------------------------ extending_cpp.pyx:9:0: 'scipy/optimize/cython_optimize.pxd' not found INFO: autodetecting backend as ninja INFO: calculating backend command to run: /usr/bin/ninja -v ----------------------------- Captured stderr call ----------------------------- ninja: job failed: cython -M --fast-fail -3 -Xfreethreading_compatible=True /tmp/pytest-of-buildozer/pytest-53/test_cython1/140735883390096/optimize/tests/_cython_examples/extending.pyx -o extending.cpython-312-powerpc64le-linux-musl.so.p/extending.pyx.c ninja: job failed: cython -M --fast-fail -3 --cplus -Xfreethreading_compatible=True extending_cpp.pyx -o extending_cpp.cpython-312-powerpc64le-linux-musl.so.p/extending_cpp.pyx.cpp ninja: subcommands failed _______________________ TestDogbox.test_solver_selection _______________________ lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py:575: in test_solver_selection assert_allclose(res_dense.cost, 0, atol=1e-20) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-20 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 3.91703668e-06 E Max relative difference among violations: inf E ACTUAL: array(3.917037e-06) E DESIRED: array(0) dense = res_dense = message: `xtol` termination condition is satisfied. success: True status: 3 fun: [ 0.000e+00 ...3.171e-05 9.816e-06] optimality: 0.004648212490127825 active_mask: [0 0 ... 0 0] nfev: 120 njev: 82 res_sparse = message: `gtol` termination condition is satisfied. success: True status: 1 fun: [ 7.172e-14 ... -5.139e-13 1.246e-12] optimality: 8.222755400198658e-12 active_mask: [0 0 ... 0 0] nfev: 5 njev: 5 self = sparse = ________________________ TestDogbox.test_numerical_jac _________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py:586: in test_numerical_jac assert_equal(res_dense.nfev, res_sparse.nfev) E AssertionError: E Items are not equal: E ACTUAL: 227 E DESIRED: 5 jac = '2-point' p = res_dense = message: `xtol` termination condition is satisfied. success: True status: 3 fun: [ 0.000e+00 ....835e-06 1.270e-05] optimality: 0.025718365768113677 active_mask: [0 0 ... 0 0] nfev: 227 njev: 155 res_sparse = message: `gtol` termination condition is satisfied. success: True status: 1 fun: [ 7.172e-14 ... -5.133e-13 1.232e-12] optimality: 8.219646757813157e-12 active_mask: [0 0 ... 0 0] nfev: 5 njev: 5 self = _________________________ TestDogbox.test_with_bounds __________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py:605: in test_with_bounds assert_allclose(res_1.optimality, 0, atol=1e-10) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.01955932 E Max relative difference among violations: inf E ACTUAL: array(0.019559) E DESIRED: array(0) jac = '2-point' jac_sparsity = None p = res_1 = message: `xtol` termination condition is satisfied. success: True status: 3 fun: [ 0.000e+00 ...-5.639e-04 1.734e-03] optimality: 0.019559315950261745 active_mask: [0 0 ... 0 0] nfev: 93 njev: 65 res_2 = message: `xtol` termination condition is satisfied. success: True status: 3 fun: [ 0.000e+00 ...3.389e-04 -1.035e-04] optimality: 0.042193820222339036 active_mask: [0 0 ... 0 0] nfev: 134 njev: 99 res_3 = message: `xtol` termination condition is satisfied. success: True status: 3 fun: [ 0.000e+00 ...-5.639e-04 1.734e-03] optimality: 0.019559315950261745 active_mask: [0 0 ... 0 0] nfev: 93 njev: 65 self = _____________________________ TestDogbox.test_bvp ______________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py:383: in test_bvp assert_(res.cost < 0.5) E AssertionError max_nfev = 100 n = 10 res = message: Both `ftol` and `xtol` termination conditions are satisfied. success: True status: 4 ...... 0.000e+00 1.000e+00] optimality: 3.0000001116880544 active_mask: [0 0 ... 0 0] nfev: 2 njev: 2 self = x0 = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) ________________________ TestTRF.test_solver_selection _________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py:575: in test_solver_selection assert_allclose(res_dense.cost, 0, atol=1e-20) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-20 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.00868154 E Max relative difference among violations: inf E ACTUAL: array(0.008682) E DESIRED: array(0) dense = res_dense = message: `ftol` termination condition is satisfied. success: True status: 2 fun: [-5.133e-06 ...: 0.23629428813506004 active_mask: [ 0.000e+00 0.000e+00 ... 0.000e+00 0.000e+00] nfev: 33 njev: 15 res_sparse = message: `gtol` termination condition is satisfied. success: True status: 1 fun: [ 6.484e-14 ... 1.0267341008669233e-11 active_mask: [ 0.000e+00 0.000e+00 ... 0.000e+00 0.000e+00] nfev: 5 njev: 5 self = sparse = __________________________ TestTRF.test_numerical_jac __________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py:586: in test_numerical_jac assert_equal(res_dense.nfev, res_sparse.nfev) E AssertionError: E Items are not equal: E ACTUAL: 101 E DESIRED: 5 jac = '2-point' p = res_dense = message: `xtol` termination condition is satisfied. success: True status: 3 fun: [ 0.000e+00 ....868563127055271e-06 active_mask: [ 0.000e+00 0.000e+00 ... 0.000e+00 0.000e+00] nfev: 101 njev: 58 res_sparse = message: `gtol` termination condition is satisfied. success: True status: 1 fun: [ 6.484e-14 ... 1.0266008753731656e-11 active_mask: [ 0.000e+00 0.000e+00 ... 0.000e+00 0.000e+00] nfev: 5 njev: 5 self = ___________________________ TestTRF.test_with_bounds ___________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py:605: in test_with_bounds assert_allclose(res_1.optimality, 0, atol=1e-10) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 2.37532186e-07 E Max relative difference among violations: inf E ACTUAL: array(2.375322e-07) E DESIRED: array(0) jac = '2-point' jac_sparsity = None p = res_1 = message: `xtol` termination condition is satisfied. success: True status: 3 fun: [ 2.220e-16 ....877e-08 -1.490e-09] optimality: 2.3753218599599475e-07 active_mask: [0 0 ... 0 0] nfev: 18 njev: 18 res_2 = message: `xtol` termination condition is satisfied. success: True status: 3 fun: [ 1.150e-09 ...1.564e-15 -8.893e-16] optimality: 3.673219504070731e-07 active_mask: [0 0 ... 0 0] nfev: 30 njev: 30 res_3 = message: `xtol` termination condition is satisfied. success: True status: 3 fun: [ 1.702e-09 ...1.928e-14 -3.998e-15] optimality: 4.168403092007668e-07 active_mask: [0 0 ... 0 0] nfev: 28 njev: 28 self = _______________________________ TestTRF.test_bvp _______________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py:383: in test_bvp assert_(res.cost < 0.5) E AssertionError max_nfev = 100 n = 10 res = message: `ftol` termination condition is satisfied. success: True status: 2 fun: [-8.490e-02 ...y: 1.4143380926418598 active_mask: [ 0.000e+00 0.000e+00 ... 0.000e+00 0.000e+00] nfev: 29 njev: 21 self = x0 = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) ___________ TestLinprogIPDense.test_remove_redundancy_infeasibility ____________ lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:281: in _get_delta p, q = _sym_solve(Dinv, A, c, b, solve) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) Dinv = array([5.82643317e-02, 6.67411599e-04, 6.20587604e-02, 7.58928919e-02, 6.14891579e-02, 3.62652104e-02, 4.88197929e-02, 9.67164886e-02, 1.87792745e-06, 5.89310086e-02]) M = array([[0.23401496, 0.2165357 , 0.15576478, 0.0798312 , 0.10346452, 0.05579772, 0.14152879, 0.12476074, 0.0741..., 0.15428212, 0.12648529, 0.07708858, 0.09692196, 0.09110549, 0.16196931, 0.14305221, 0.13886703, 0.27773405]]) alpha = 0 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) cholesky = False d_kappa = 0 d_tau = 0 d_x = 0 d_z = 0 eta = .eta at 0x7ffb60b2cb80> gamma = 0 i = 0 ip = False kappa = np.float64(0.9983153932119021) lstsq = False mu = np.float64(0.0420348947594014) n_corrections = 1 n_x = 10 pc = True permc_spec = 'MMD_AT_PLUS_A' r_D = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) r_G = np.float64(1.2498188442965308) r_P = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhatd = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) rhatg = np.float64(1.2498188442965308) rhatp = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhattk = np.float64(-0.052153857005181097) rhatxs = array([-6.03169895e-02, -1.57970044e-03, -5.14799116e-02, -6.54609779e-02, -5.17570016e-02, -4.96078974e-02, -4.38344352e-02, -4.46109095e-02, -1.11891097e-05, -4.15709732e-02]) solve = None solved = False sparse = False sym_pos = True tau = np.float64(0.05224186400390496) x = array([5.92817770e-02, 1.02679618e-03, 5.65223805e-02, 7.04842033e-02, 5.64136016e-02, 4.24151015e-02, 4.62600048e-02, 6.56856949e-02, 4.58392149e-06, 4.94956501e-02]) y = array([-1.64499244, -0.4551789 , 2.58312913, -2.41015947, -1.36205943, -0.30679332, 2.6747642 , 0.00408249, -1.62048967, -0.48223424]) z = array([1.01746258, 1.53847518, 0.9107881 , 0.92873261, 0.91745608, 1.16958101, 0.94756659, 0.67915715, 2.44094706, 0.83989145]) lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:362: in _sym_solve v = solve(r) ^^^^^^^^ E TypeError: 'NoneType' object is not callable A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) Dinv = array([5.82643317e-02, 6.67411599e-04, 6.20587604e-02, 7.58928919e-02, 6.14891579e-02, 3.62652104e-02, 4.88197929e-02, 9.67164886e-02, 1.87792745e-06, 5.89310086e-02]) r = array([ 0.62801568, 1.03960264, 0.84552911, 0.39463931, 0.92397384, 0.47375164, 1.01336757, 0.68393049, 0.95299436, -0.55001359]) r1 = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) r2 = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) solve = None During handling of the above exception, another exception occurred: lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py:1080: in test_remove_redundancy_infeasibility res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, A_eq = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) b_eq = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) m = 10 n = 10 rng = RandomState(MT19937) at 0x7FFB610DB040 self = sup = lib/python3.12/site-packages/scipy/optimize/_linprog.py:704: in linprog x, status, message, iteration = _linprog_ip( A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) A_eq = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) A_ub = None C = 1 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) b_eq = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) b_scale = 1 b_ub = None bounds = None c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None complete = False integrality = None iteration = 0 lp = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) lp_o = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) message = '' meth = 'interior-point' method = 'interior-point' methods = {'highs', 'highs-ds', 'highs-ipm', 'interior-point', 'revised simplex', 'simplex'} options = {'sparse': False} postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) rr = True rr_method = None solver_options = {'sparse': False} status = 0 tol = 1e-09 undo = [] x = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) x0 = None lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:1135: in _linprog_ip x, status, message, iteration = _ip_hsd(A, b, c, c0, alpha0, beta, A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) alpha0 = 0.99995 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) beta = 0.1 c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None cholesky = True disp = False ip = False lstsq = False maxiter = 1000 pc = True permc_spec = 'MMD_AT_PLUS_A' postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) sparse = False sym_pos = True tol = 1e-08 unknown_options = {} valid_permc_spec = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', 'COLAMD') lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:765: in _ip_hsd d_x, d_y, d_z, d_tau, d_kappa = _get_delta( A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) alpha = np.float64(0.5776994974599121) alpha0 = 0.99995 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) beta = 0.1 c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None cholesky = True d_kappa = np.float64(-0.0029160606777437655) d_tau = np.float64(-0.11797724099404101) d_x = array([-0.1449841 , 0.00169084, -0.09678013, -0.09215866, -0.12596611, -0.10329511, -0.07871836, -0.08510379, -0.15868777, -0.07324453]) d_y = array([-4.26617804, 0.14735429, 7.03363658, -4.7271256 , -3.62671277, 0.20430718, 6.75473373, 1.01165074, -7. , 0.5 ]) d_z = array([ 0.04573862, 0.64729244, -0.20114519, -0.26821092, 0.11756223, -0.01674612, -0.16620409, -0.31256004, 2.37654769, -0.39305463]) disp = False eta = .eta at 0x7ffb60b2cb80> gamma = 0 go = np.True_ inf1 = np.False_ inf2 = np.False_ ip = False iteration = 3 kappa = np.float64(0.9983153932119021) lstsq = False maxiter = 1000 message = 'Optimization terminated successfully.' obj = np.float64(4.8781270366654095) pc = True permc_spec = 'MMD_AT_PLUS_A' postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) rho_A = np.float64(4.525000895977724) rho_d = np.float64(0.2570248977167409) rho_g = np.float64(0.17461270158031456) rho_mu = np.float64(0.0420348947594014) rho_p = np.float64(0.040001427031220324) sparse = False status = 0 sym_pos = True tau = np.float64(0.05224186400390496) tol = 1e-08 x = array([5.92817770e-02, 1.02679618e-03, 5.65223805e-02, 7.04842033e-02, 5.64136016e-02, 4.24151015e-02, 4.62600048e-02, 6.56856949e-02, 4.58392149e-06, 4.94956501e-02]) y = array([-1.64499244, -0.4551789 , 2.58312913, -2.41015947, -1.36205943, -0.30679332, 2.6747642 , 0.00408249, -1.62048967, -0.48223424]) z = array([1.01746258, 1.53847518, 0.9107881 , 0.92873261, 0.91745608, 1.16958101, 0.94756659, 0.67915715, 2.44094706, 0.83989145]) lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:294: in _get_delta warn( E scipy.optimize._optimize.OptimizeWarning: Solving system with option 'cholesky':True failed. It is normal for this to happen occasionally, especially as the solution is approached. However, if you see this frequently, consider setting option 'cholesky' to False. A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) Dinv = array([5.82643317e-02, 6.67411599e-04, 6.20587604e-02, 7.58928919e-02, 6.14891579e-02, 3.62652104e-02, 4.88197929e-02, 9.67164886e-02, 1.87792745e-06, 5.89310086e-02]) M = array([[0.23401496, 0.2165357 , 0.15576478, 0.0798312 , 0.10346452, 0.05579772, 0.14152879, 0.12476074, 0.0741..., 0.15428212, 0.12648529, 0.07708858, 0.09692196, 0.09110549, 0.16196931, 0.14305221, 0.13886703, 0.27773405]]) alpha = 0 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) cholesky = False d_kappa = 0 d_tau = 0 d_x = 0 d_z = 0 eta = .eta at 0x7ffb60b2cb80> gamma = 0 i = 0 ip = False kappa = np.float64(0.9983153932119021) lstsq = False mu = np.float64(0.0420348947594014) n_corrections = 1 n_x = 10 pc = True permc_spec = 'MMD_AT_PLUS_A' r_D = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) r_G = np.float64(1.2498188442965308) r_P = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhatd = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) rhatg = np.float64(1.2498188442965308) rhatp = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhattk = np.float64(-0.052153857005181097) rhatxs = array([-6.03169895e-02, -1.57970044e-03, -5.14799116e-02, -6.54609779e-02, -5.17570016e-02, -4.96078974e-02, -4.38344352e-02, -4.46109095e-02, -1.11891097e-05, -4.15709732e-02]) solve = None solved = False sparse = False sym_pos = True tau = np.float64(0.05224186400390496) x = array([5.92817770e-02, 1.02679618e-03, 5.65223805e-02, 7.04842033e-02, 5.64136016e-02, 4.24151015e-02, 4.62600048e-02, 6.56856949e-02, 4.58392149e-06, 4.94956501e-02]) y = array([-1.64499244, -0.4551789 , 2.58312913, -2.41015947, -1.36205943, -0.30679332, 2.6747642 , 0.00408249, -1.62048967, -0.48223424]) z = array([1.01746258, 1.53847518, 0.9107881 , 0.92873261, 0.91745608, 1.16958101, 0.94756659, 0.67915715, 2.44094706, 0.83989145]) ___________ TestLinprogIPSparse.test_remove_redundancy_infeasibility ___________ lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:281: in _get_delta p, q = _sym_solve(Dinv, A, c, b, solve) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = Dinv = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) M = alpha = 0 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) cholesky = False d_kappa = 0 d_tau = 0 d_x = 0 d_z = 0 eta = .eta at 0x7ffb60a69080> gamma = 0 i = 0 ip = False kappa = 1 lstsq = True mu = np.float64(1.0) n_corrections = 1 n_x = 10 pc = True permc_spec = 'MMD_AT_PLUS_A' r_D = array([-0.4511865 , -0.28481063, -0.39723662, -0.45511682, -0.5763452 , -0.35410589, -0.56241279, -0.108227 , -0.03633724, -0.61655848]) r_G = np.float64(7.157662833145425) r_P = array([-5.02630828, -4.95610469, -4.8549177 , -3.61281214, -3.27274168, -3.08479688, -3.74193689, -3.86201512, -2.86522248, -8.18644727]) rhatd = array([-0.4511865 , -0.28481063, -0.39723662, -0.45511682, -0.5763452 , -0.35410589, -0.56241279, -0.108227 , -0.03633724, -0.61655848]) rhatg = np.float64(7.157662833145425) rhatp = array([-5.02630828, -4.95610469, -4.8549177 , -3.61281214, -3.27274168, -3.08479688, -3.74193689, -3.86201512, -2.86522248, -8.18644727]) rhattk = np.float64(-1.0) rhatxs = array([-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.]) solve = None solved = False sparse = True sym_pos = False tau = 1 x = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) y = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) z = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:362: in _sym_solve v = solve(r) ^^^^^^^^ E TypeError: 'NoneType' object is not callable A = Dinv = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) r = array([4.02783903, 4.68897037, 4.37886644, 2.62672478, 3.33921092, 2.64522786, 3.57084656, 3.10359114, 3.31978419, 4.18356607]) r1 = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) r2 = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) solve = None During handling of the above exception, another exception occurred: lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py:1080: in test_remove_redundancy_infeasibility res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, A_eq = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) b_eq = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) m = 10 n = 10 rng = RandomState(MT19937) at 0x7FFB60AA4140 self = sup = lib/python3.12/site-packages/scipy/optimize/_linprog.py:704: in linprog x, status, message, iteration = _linprog_ip( A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) A_eq = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) A_ub = None C = 1 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) b_eq = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) b_scale = 1 b_ub = None bounds = None c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None complete = False integrality = None iteration = 0 lp = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) lp_o = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) message = '' meth = 'interior-point' method = 'interior-point' methods = {'highs', 'highs-ds', 'highs-ipm', 'interior-point', 'revised simplex', 'simplex'} options = {'cholesky': False, 'sparse': True, 'sym_pos': False} postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) rr = True rr_method = None solver_options = {'cholesky': False, 'sparse': True, 'sym_pos': False} status = 0 tol = 1e-09 undo = [] x = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) x0 = None lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:1135: in _linprog_ip x, status, message, iteration = _ip_hsd(A, b, c, c0, alpha0, beta, A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) alpha0 = 0.99995 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) beta = 0.1 c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None cholesky = False disp = False ip = False lstsq = False maxiter = 1000 pc = True permc_spec = 'MMD_AT_PLUS_A' postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) sparse = True sym_pos = False tol = 1e-08 unknown_options = {} valid_permc_spec = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', 'COLAMD') lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:765: in _ip_hsd d_x, d_y, d_z, d_tau, d_kappa = _get_delta( A = alpha0 = 0.99995 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) beta = 0.1 c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None cholesky = False disp = False eta = .eta at 0x7ffb60a69080> gamma = 0 go = np.True_ ip = False iteration = 1 kappa = 1 lstsq = False maxiter = 1000 message = 'Optimization terminated successfully.' obj = np.float64(6.157662833145425) pc = True permc_spec = 'MMD_AT_PLUS_A' postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) rho_A = np.float64(6.157662833145425) rho_d = np.float64(1.0) rho_g = np.float64(1.0) rho_mu = np.float64(1.0) rho_p = np.float64(1.0) sparse = True status = 0 sym_pos = False tau = 1 tol = 1e-08 x = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) y = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) z = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:312: in _get_delta warn( E scipy.optimize._optimize.OptimizeWarning: Solving system with option 'sym_pos':False failed. This may happen occasionally, especially as the solution is approached. However, if you see this frequently, your problem may be numerically challenging. If you cannot improve the formulation, consider setting 'lstsq' to True. Consider also setting `presolve` to True, if it is not already. A = Dinv = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) M = alpha = 0 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) cholesky = False d_kappa = 0 d_tau = 0 d_x = 0 d_z = 0 eta = .eta at 0x7ffb60a69080> gamma = 0 i = 0 ip = False kappa = 1 lstsq = True mu = np.float64(1.0) n_corrections = 1 n_x = 10 pc = True permc_spec = 'MMD_AT_PLUS_A' r_D = array([-0.4511865 , -0.28481063, -0.39723662, -0.45511682, -0.5763452 , -0.35410589, -0.56241279, -0.108227 , -0.03633724, -0.61655848]) r_G = np.float64(7.157662833145425) r_P = array([-5.02630828, -4.95610469, -4.8549177 , -3.61281214, -3.27274168, -3.08479688, -3.74193689, -3.86201512, -2.86522248, -8.18644727]) rhatd = array([-0.4511865 , -0.28481063, -0.39723662, -0.45511682, -0.5763452 , -0.35410589, -0.56241279, -0.108227 , -0.03633724, -0.61655848]) rhatg = np.float64(7.157662833145425) rhatp = array([-5.02630828, -4.95610469, -4.8549177 , -3.61281214, -3.27274168, -3.08479688, -3.74193689, -3.86201512, -2.86522248, -8.18644727]) rhattk = np.float64(-1.0) rhatxs = array([-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.]) solve = None solved = False sparse = True sym_pos = False tau = 1 x = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) y = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) z = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) _______________________ TestRRSVD.test_RR_infeasibility ________________________ lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:281: in _get_delta p, q = _sym_solve(Dinv, A, c, b, solve) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) Dinv = array([5.82643317e-02, 6.67411599e-04, 6.20587604e-02, 7.58928919e-02, 6.14891579e-02, 3.62652104e-02, 4.88197929e-02, 9.67164886e-02, 1.87792745e-06, 5.89310086e-02]) M = array([[0.23401496, 0.2165357 , 0.15576478, 0.0798312 , 0.10346452, 0.05579772, 0.14152879, 0.12476074, 0.0741..., 0.15428212, 0.12648529, 0.07708858, 0.09692196, 0.09110549, 0.16196931, 0.14305221, 0.13886703, 0.27773405]]) alpha = 0 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) cholesky = False d_kappa = 0 d_tau = 0 d_x = 0 d_z = 0 eta = .eta at 0x7ffb3f58cc20> gamma = 0 i = 0 ip = False kappa = np.float64(0.9983153932119021) lstsq = False mu = np.float64(0.0420348947594014) n_corrections = 1 n_x = 10 pc = True permc_spec = 'MMD_AT_PLUS_A' r_D = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) r_G = np.float64(1.2498188442965308) r_P = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhatd = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) rhatg = np.float64(1.2498188442965308) rhatp = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhattk = np.float64(-0.052153857005181097) rhatxs = array([-6.03169895e-02, -1.57970044e-03, -5.14799116e-02, -6.54609779e-02, -5.17570016e-02, -4.96078974e-02, -4.38344352e-02, -4.46109095e-02, -1.11891097e-05, -4.15709732e-02]) solve = None solved = False sparse = False sym_pos = True tau = np.float64(0.05224186400390496) x = array([5.92817770e-02, 1.02679618e-03, 5.65223805e-02, 7.04842033e-02, 5.64136016e-02, 4.24151015e-02, 4.62600048e-02, 6.56856949e-02, 4.58392149e-06, 4.94956501e-02]) y = array([-1.64499244, -0.4551789 , 2.58312913, -2.41015947, -1.36205943, -0.30679332, 2.6747642 , 0.00408249, -1.62048967, -0.48223424]) z = array([1.01746258, 1.53847518, 0.9107881 , 0.92873261, 0.91745608, 1.16958101, 0.94756659, 0.67915715, 2.44094706, 0.83989145]) lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:362: in _sym_solve v = solve(r) ^^^^^^^^ E TypeError: 'NoneType' object is not callable A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) Dinv = array([5.82643317e-02, 6.67411599e-04, 6.20587604e-02, 7.58928919e-02, 6.14891579e-02, 3.62652104e-02, 4.88197929e-02, 9.67164886e-02, 1.87792745e-06, 5.89310086e-02]) r = array([ 0.62801568, 1.03960264, 0.84552911, 0.39463931, 0.92397384, 0.47375164, 1.01336757, 0.68393049, 0.95299436, -0.55001359]) r1 = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) r2 = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) solve = None During handling of the above exception, another exception occurred: lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py:1080: in test_remove_redundancy_infeasibility res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, A_eq = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) b_eq = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) m = 10 n = 10 rng = RandomState(MT19937) at 0x7FFB3F575940 self = sup = lib/python3.12/site-packages/scipy/optimize/_linprog.py:704: in linprog x, status, message, iteration = _linprog_ip( A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) A_eq = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) A_ub = None C = 1 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) b_eq = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) b_scale = 1 b_ub = None bounds = None c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None complete = False integrality = None iteration = 0 lp = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) lp_o = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) message = '' meth = 'interior-point' method = 'interior-point' methods = {'highs', 'highs-ds', 'highs-ipm', 'interior-point', 'revised simplex', 'simplex'} options = {'rr_method': 'SVD'} postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) rr = True rr_method = 'SVD' solver_options = {} status = 0 tol = 1e-09 undo = [] x = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) x0 = None lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:1135: in _linprog_ip x, status, message, iteration = _ip_hsd(A, b, c, c0, alpha0, beta, A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) alpha0 = 0.99995 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) beta = 0.1 c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None cholesky = True disp = False ip = False lstsq = False maxiter = 1000 pc = True permc_spec = 'MMD_AT_PLUS_A' postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) sparse = False sym_pos = True tol = 1e-08 unknown_options = {} valid_permc_spec = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', 'COLAMD') lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:765: in _ip_hsd d_x, d_y, d_z, d_tau, d_kappa = _get_delta( A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) alpha = np.float64(0.5776994974599121) alpha0 = 0.99995 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) beta = 0.1 c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None cholesky = True d_kappa = np.float64(-0.0029160606777437655) d_tau = np.float64(-0.11797724099404101) d_x = array([-0.1449841 , 0.00169084, -0.09678013, -0.09215866, -0.12596611, -0.10329511, -0.07871836, -0.08510379, -0.15868777, -0.07324453]) d_y = array([-4.26617804, 0.14735429, 7.03363658, -4.7271256 , -3.62671277, 0.20430718, 6.75473373, 1.01165074, -7. , 0.5 ]) d_z = array([ 0.04573862, 0.64729244, -0.20114519, -0.26821092, 0.11756223, -0.01674612, -0.16620409, -0.31256004, 2.37654769, -0.39305463]) disp = False eta = .eta at 0x7ffb3f58cc20> gamma = 0 go = np.True_ inf1 = np.False_ inf2 = np.False_ ip = False iteration = 3 kappa = np.float64(0.9983153932119021) lstsq = False maxiter = 1000 message = 'Optimization terminated successfully.' obj = np.float64(4.8781270366654095) pc = True permc_spec = 'MMD_AT_PLUS_A' postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) rho_A = np.float64(4.525000895977724) rho_d = np.float64(0.2570248977167409) rho_g = np.float64(0.17461270158031456) rho_mu = np.float64(0.0420348947594014) rho_p = np.float64(0.040001427031220324) sparse = False status = 0 sym_pos = True tau = np.float64(0.05224186400390496) tol = 1e-08 x = array([5.92817770e-02, 1.02679618e-03, 5.65223805e-02, 7.04842033e-02, 5.64136016e-02, 4.24151015e-02, 4.62600048e-02, 6.56856949e-02, 4.58392149e-06, 4.94956501e-02]) y = array([-1.64499244, -0.4551789 , 2.58312913, -2.41015947, -1.36205943, -0.30679332, 2.6747642 , 0.00408249, -1.62048967, -0.48223424]) z = array([1.01746258, 1.53847518, 0.9107881 , 0.92873261, 0.91745608, 1.16958101, 0.94756659, 0.67915715, 2.44094706, 0.83989145]) lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:294: in _get_delta warn( E scipy.optimize._optimize.OptimizeWarning: Solving system with option 'cholesky':True failed. It is normal for this to happen occasionally, especially as the solution is approached. However, if you see this frequently, consider setting option 'cholesky' to False. A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) Dinv = array([5.82643317e-02, 6.67411599e-04, 6.20587604e-02, 7.58928919e-02, 6.14891579e-02, 3.62652104e-02, 4.88197929e-02, 9.67164886e-02, 1.87792745e-06, 5.89310086e-02]) M = array([[0.23401496, 0.2165357 , 0.15576478, 0.0798312 , 0.10346452, 0.05579772, 0.14152879, 0.12476074, 0.0741..., 0.15428212, 0.12648529, 0.07708858, 0.09692196, 0.09110549, 0.16196931, 0.14305221, 0.13886703, 0.27773405]]) alpha = 0 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) cholesky = False d_kappa = 0 d_tau = 0 d_x = 0 d_z = 0 eta = .eta at 0x7ffb3f58cc20> gamma = 0 i = 0 ip = False kappa = np.float64(0.9983153932119021) lstsq = False mu = np.float64(0.0420348947594014) n_corrections = 1 n_x = 10 pc = True permc_spec = 'MMD_AT_PLUS_A' r_D = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) r_G = np.float64(1.2498188442965308) r_P = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhatd = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) rhatg = np.float64(1.2498188442965308) rhatp = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhattk = np.float64(-0.052153857005181097) rhatxs = array([-6.03169895e-02, -1.57970044e-03, -5.14799116e-02, -6.54609779e-02, -5.17570016e-02, -4.96078974e-02, -4.38344352e-02, -4.46109095e-02, -1.11891097e-05, -4.15709732e-02]) solve = None solved = False sparse = False sym_pos = True tau = np.float64(0.05224186400390496) x = array([5.92817770e-02, 1.02679618e-03, 5.65223805e-02, 7.04842033e-02, 5.64136016e-02, 4.24151015e-02, 4.62600048e-02, 6.56856949e-02, 4.58392149e-06, 4.94956501e-02]) y = array([-1.64499244, -0.4551789 , 2.58312913, -2.41015947, -1.36205943, -0.30679332, 2.6747642 , 0.00408249, -1.62048967, -0.48223424]) z = array([1.01746258, 1.53847518, 0.9107881 , 0.92873261, 0.91745608, 1.16958101, 0.94756659, 0.67915715, 2.44094706, 0.83989145]) ___________________________ TestRRSVD.test_bug_7044 ____________________________ lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:281: in _get_delta p, q = _sym_solve(Dinv, A, c, b, solve) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) Dinv = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) M = array([[ 9., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., ... 0., 0., 45., 0., 45., 0., 45., 0., 0., 285., 285., 285., 285., 285., 285., 285., 855.]]) alpha = 0 b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...7676109, 0.60484552, 0.73926358, 0.03918779, 0.28280696, 0.12019656, 0.2961402 , 0.11872772, 0.31798318]) cholesky = False d_kappa = 0 d_tau = 0 d_x = 0 d_z = 0 eta = .eta at 0x7ffb3f58e980> gamma = 0 i = 0 ip = False kappa = 1 lstsq = False mu = np.float64(1.0) n_corrections = 1 n_x = 81 pc = True permc_spec = 'MMD_AT_PLUS_A' r_D = array([-0.4511865 , -0.28481063, -0.39723662, -0.45511682, -0.5763452 , -0.35410589, -0.56241279, -0.108227 , ... -0.39515448, -0.26073642, -0.96081221, -0.71719304, -0.87980344, -0.7038598 , -0.88127228, -0.68201682]) r_G = np.float64(40.40712129821497) r_P = array([ -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -120., -120., -120., -120., -120., -120., -120., -120.]) rhatd = array([-0.4511865 , -0.28481063, -0.39723662, -0.45511682, -0.5763452 , -0.35410589, -0.56241279, -0.108227 , ... -0.39515448, -0.26073642, -0.96081221, -0.71719304, -0.87980344, -0.7038598 , -0.88127228, -0.68201682]) rhatg = np.float64(40.40712129821497) rhatp = array([ -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -120., -120., -120., -120., -120., -120., -120., -120.]) rhattk = np.float64(-1.0) rhatxs = array([-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.,...-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.]) solve = None solved = False sparse = False sym_pos = True tau = 1 x = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) y = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) z = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:362: in _sym_solve v = solve(r) ^^^^^^^^ E TypeError: 'NoneType' object is not callable A = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) Dinv = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) r = array([ 6.77422131, 5.20870628, 6.56950308, 5.58097806, 6.07576133, 4.78830278, 3.91299688, 5.00073897, ... 86.28235475, 71.5110955 , 68.3993318 , 73.9106243 , 70.62209668, 81.66006107, 78.87484442, 72.15156544]) r1 = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...7676109, 0.60484552, 0.73926358, 0.03918779, 0.28280696, 0.12019656, 0.2961402 , 0.11872772, 0.31798318]) r2 = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) solve = None During handling of the above exception, another exception occurred: lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py:1423: in test_bug_7044 res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, A_eq = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) _ = 15.0 b_eq = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...7676109, 0.60484552, 0.73926358, 0.03918779, 0.28280696, 0.12019656, 0.2961402 , 0.11872772, 0.31798318]) self = sup = lib/python3.12/site-packages/scipy/optimize/_linprog.py:704: in linprog x, status, message, iteration = _linprog_ip( A = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) A_eq = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) A_ub = None C = 1 b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) b_eq = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) b_scale = 1 b_ub = None bounds = None c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...7676109, 0.60484552, 0.73926358, 0.03918779, 0.28280696, 0.12019656, 0.2961402 , 0.11872772, 0.31798318]) c0 = np.float64(0.0) callback = None complete = False integrality = None iteration = 0 lp = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) lp_o = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) message = '' meth = 'interior-point' method = 'interior-point' methods = {'highs', 'highs-ds', 'highs-ipm', 'interior-point', 'revised simplex', 'simplex'} options = {'rr_method': 'SVD'} postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) rr = True rr_method = 'SVD' solver_options = {} status = 0 tol = 1e-09 undo = [] x = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) x0 = None lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:1135: in _linprog_ip x, status, message, iteration = _ip_hsd(A, b, c, c0, alpha0, beta, A = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) alpha0 = 0.99995 b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) beta = 0.1 c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...7676109, 0.60484552, 0.73926358, 0.03918779, 0.28280696, 0.12019656, 0.2961402 , 0.11872772, 0.31798318]) c0 = np.float64(0.0) callback = None cholesky = True disp = False ip = False lstsq = False maxiter = 1000 pc = True permc_spec = 'MMD_AT_PLUS_A' postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) sparse = False sym_pos = True tol = 1e-08 unknown_options = {} valid_permc_spec = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', 'COLAMD') lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:765: in _ip_hsd d_x, d_y, d_z, d_tau, d_kappa = _get_delta( A = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) alpha0 = 0.99995 b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) beta = 0.1 c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...7676109, 0.60484552, 0.73926358, 0.03918779, 0.28280696, 0.12019656, 0.2961402 , 0.11872772, 0.31798318]) c0 = np.float64(0.0) callback = None cholesky = True disp = False eta = .eta at 0x7ffb3f58e980> gamma = 0 go = np.True_ ip = False iteration = 1 kappa = 1 lstsq = False maxiter = 1000 message = 'Optimization terminated successfully.' obj = np.float64(39.40712129821497) pc = True permc_spec = 'MMD_AT_PLUS_A' postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) rho_A = np.float64(39.40712129821497) rho_d = np.float64(1.0) rho_g = np.float64(1.0) rho_mu = np.float64(1.0) rho_p = np.float64(1.0) sparse = False status = 0 sym_pos = True tau = 1 tol = 1e-08 x = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) y = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) z = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:294: in _get_delta warn( E scipy.optimize._optimize.OptimizeWarning: Solving system with option 'cholesky':True failed. It is normal for this to happen occasionally, especially as the solution is approached. However, if you see this frequently, consider setting option 'cholesky' to False. A = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) Dinv = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) M = array([[ 9., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., ... 0., 0., 45., 0., 45., 0., 45., 0., 0., 285., 285., 285., 285., 285., 285., 285., 855.]]) alpha = 0 b = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...7676109, 0.60484552, 0.73926358, 0.03918779, 0.28280696, 0.12019656, 0.2961402 , 0.11872772, 0.31798318]) cholesky = False d_kappa = 0 d_tau = 0 d_x = 0 d_z = 0 eta = .eta at 0x7ffb3f58e980> gamma = 0 i = 0 ip = False kappa = 1 lstsq = False mu = np.float64(1.0) n_corrections = 1 n_x = 81 pc = True permc_spec = 'MMD_AT_PLUS_A' r_D = array([-0.4511865 , -0.28481063, -0.39723662, -0.45511682, -0.5763452 , -0.35410589, -0.56241279, -0.108227 , ... -0.39515448, -0.26073642, -0.96081221, -0.71719304, -0.87980344, -0.7038598 , -0.88127228, -0.68201682]) r_G = np.float64(40.40712129821497) r_P = array([ -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -120., -120., -120., -120., -120., -120., -120., -120.]) rhatd = array([-0.4511865 , -0.28481063, -0.39723662, -0.45511682, -0.5763452 , -0.35410589, -0.56241279, -0.108227 , ... -0.39515448, -0.26073642, -0.96081221, -0.71719304, -0.87980344, -0.7038598 , -0.88127228, -0.68201682]) rhatg = np.float64(40.40712129821497) rhatp = array([ -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -8., -120., -120., -120., -120., -120., -120., -120., -120.]) rhattk = np.float64(-1.0) rhatxs = array([-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.,...-1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.]) solve = None solved = False sparse = False sym_pos = True tau = 1 x = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) y = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) z = array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., ...1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) ______________________ TestRRPivot.test_RR_infeasibility _______________________ lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:281: in _get_delta p, q = _sym_solve(Dinv, A, c, b, solve) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) Dinv = array([5.82643317e-02, 6.67411599e-04, 6.20587604e-02, 7.58928919e-02, 6.14891579e-02, 3.62652104e-02, 4.88197929e-02, 9.67164886e-02, 1.87792745e-06, 5.89310086e-02]) M = array([[0.23401496, 0.2165357 , 0.15576478, 0.0798312 , 0.10346452, 0.05579772, 0.14152879, 0.12476074, 0.0741..., 0.15428212, 0.12648529, 0.07708858, 0.09692196, 0.09110549, 0.16196931, 0.14305221, 0.13886703, 0.27773405]]) alpha = 0 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) cholesky = False d_kappa = 0 d_tau = 0 d_x = 0 d_z = 0 eta = .eta at 0x7ffb3f58e700> gamma = 0 i = 0 ip = False kappa = np.float64(0.9983153932119021) lstsq = False mu = np.float64(0.0420348947594014) n_corrections = 1 n_x = 10 pc = True permc_spec = 'MMD_AT_PLUS_A' r_D = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) r_G = np.float64(1.2498188442965308) r_P = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhatd = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) rhatg = np.float64(1.2498188442965308) rhatp = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhattk = np.float64(-0.052153857005181097) rhatxs = array([-6.03169895e-02, -1.57970044e-03, -5.14799116e-02, -6.54609779e-02, -5.17570016e-02, -4.96078974e-02, -4.38344352e-02, -4.46109095e-02, -1.11891097e-05, -4.15709732e-02]) solve = None solved = False sparse = False sym_pos = True tau = np.float64(0.05224186400390496) x = array([5.92817770e-02, 1.02679618e-03, 5.65223805e-02, 7.04842033e-02, 5.64136016e-02, 4.24151015e-02, 4.62600048e-02, 6.56856949e-02, 4.58392149e-06, 4.94956501e-02]) y = array([-1.64499244, -0.4551789 , 2.58312913, -2.41015947, -1.36205943, -0.30679332, 2.6747642 , 0.00408249, -1.62048967, -0.48223424]) z = array([1.01746258, 1.53847518, 0.9107881 , 0.92873261, 0.91745608, 1.16958101, 0.94756659, 0.67915715, 2.44094706, 0.83989145]) lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:362: in _sym_solve v = solve(r) ^^^^^^^^ E TypeError: 'NoneType' object is not callable A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) Dinv = array([5.82643317e-02, 6.67411599e-04, 6.20587604e-02, 7.58928919e-02, 6.14891579e-02, 3.62652104e-02, 4.88197929e-02, 9.67164886e-02, 1.87792745e-06, 5.89310086e-02]) r = array([ 0.62801568, 1.03960264, 0.84552911, 0.39463931, 0.92397384, 0.47375164, 1.01336757, 0.68393049, 0.95299436, -0.55001359]) r1 = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) r2 = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) solve = None During handling of the above exception, another exception occurred: lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py:1080: in test_remove_redundancy_infeasibility res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, A_eq = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) b_eq = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) m = 10 n = 10 rng = RandomState(MT19937) at 0x7FFB3F576A40 self = sup = lib/python3.12/site-packages/scipy/optimize/_linprog.py:704: in linprog x, status, message, iteration = _linprog_ip( A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) A_eq = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) A_ub = None C = 1 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) b_eq = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) b_scale = 1 b_ub = None bounds = None c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None complete = False integrality = None iteration = 0 lp = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) lp_o = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) message = '' meth = 'interior-point' method = 'interior-point' methods = {'highs', 'highs-ds', 'highs-ipm', 'interior-point', 'revised simplex', 'simplex'} options = {'rr_method': 'pivot'} postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) rr = True rr_method = 'pivot' solver_options = {} status = 0 tol = 1e-09 undo = [] x = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) x0 = None lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:1135: in _linprog_ip x, status, message, iteration = _ip_hsd(A, b, c, c0, alpha0, beta, A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) alpha0 = 0.99995 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) beta = 0.1 c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None cholesky = True disp = False ip = False lstsq = False maxiter = 1000 pc = True permc_spec = 'MMD_AT_PLUS_A' postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) sparse = False sym_pos = True tol = 1e-08 unknown_options = {} valid_permc_spec = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', 'COLAMD') lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:765: in _ip_hsd d_x, d_y, d_z, d_tau, d_kappa = _get_delta( A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) alpha = np.float64(0.5776994974599121) alpha0 = 0.99995 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) beta = 0.1 c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None cholesky = True d_kappa = np.float64(-0.0029160606777437655) d_tau = np.float64(-0.11797724099404101) d_x = array([-0.1449841 , 0.00169084, -0.09678013, -0.09215866, -0.12596611, -0.10329511, -0.07871836, -0.08510379, -0.15868777, -0.07324453]) d_y = array([-4.26617804, 0.14735429, 7.03363658, -4.7271256 , -3.62671277, 0.20430718, 6.75473373, 1.01165074, -7. , 0.5 ]) d_z = array([ 0.04573862, 0.64729244, -0.20114519, -0.26821092, 0.11756223, -0.01674612, -0.16620409, -0.31256004, 2.37654769, -0.39305463]) disp = False eta = .eta at 0x7ffb3f58e700> gamma = 0 go = np.True_ inf1 = np.False_ inf2 = np.False_ ip = False iteration = 3 kappa = np.float64(0.9983153932119021) lstsq = False maxiter = 1000 message = 'Optimization terminated successfully.' obj = np.float64(4.8781270366654095) pc = True permc_spec = 'MMD_AT_PLUS_A' postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) rho_A = np.float64(4.525000895977724) rho_d = np.float64(0.2570248977167409) rho_g = np.float64(0.17461270158031456) rho_mu = np.float64(0.0420348947594014) rho_p = np.float64(0.040001427031220324) sparse = False status = 0 sym_pos = True tau = np.float64(0.05224186400390496) tol = 1e-08 x = array([5.92817770e-02, 1.02679618e-03, 5.65223805e-02, 7.04842033e-02, 5.64136016e-02, 4.24151015e-02, 4.62600048e-02, 6.56856949e-02, 4.58392149e-06, 4.94956501e-02]) y = array([-1.64499244, -0.4551789 , 2.58312913, -2.41015947, -1.36205943, -0.30679332, 2.6747642 , 0.00408249, -1.62048967, -0.48223424]) z = array([1.01746258, 1.53847518, 0.9107881 , 0.92873261, 0.91745608, 1.16958101, 0.94756659, 0.67915715, 2.44094706, 0.83989145]) lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:294: in _get_delta warn( E scipy.optimize._optimize.OptimizeWarning: Solving system with option 'cholesky':True failed. It is normal for this to happen occasionally, especially as the solution is approached. However, if you see this frequently, consider setting option 'cholesky' to False. A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) Dinv = array([5.82643317e-02, 6.67411599e-04, 6.20587604e-02, 7.58928919e-02, 6.14891579e-02, 3.62652104e-02, 4.88197929e-02, 9.67164886e-02, 1.87792745e-06, 5.89310086e-02]) M = array([[0.23401496, 0.2165357 , 0.15576478, 0.0798312 , 0.10346452, 0.05579772, 0.14152879, 0.12476074, 0.0741..., 0.15428212, 0.12648529, 0.07708858, 0.09692196, 0.09110549, 0.16196931, 0.14305221, 0.13886703, 0.27773405]]) alpha = 0 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) cholesky = False d_kappa = 0 d_tau = 0 d_x = 0 d_z = 0 eta = .eta at 0x7ffb3f58e700> gamma = 0 i = 0 ip = False kappa = np.float64(0.9983153932119021) lstsq = False mu = np.float64(0.0420348947594014) n_corrections = 1 n_x = 10 pc = True permc_spec = 'MMD_AT_PLUS_A' r_D = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) r_G = np.float64(1.2498188442965308) r_P = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhatd = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) rhatg = np.float64(1.2498188442965308) rhatp = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhattk = np.float64(-0.052153857005181097) rhatxs = array([-6.03169895e-02, -1.57970044e-03, -5.14799116e-02, -6.54609779e-02, -5.17570016e-02, -4.96078974e-02, -4.38344352e-02, -4.46109095e-02, -1.11891097e-05, -4.15709732e-02]) solve = None solved = False sparse = False sym_pos = True tau = np.float64(0.05224186400390496) x = array([5.92817770e-02, 1.02679618e-03, 5.65223805e-02, 7.04842033e-02, 5.64136016e-02, 4.24151015e-02, 4.62600048e-02, 6.56856949e-02, 4.58392149e-06, 4.94956501e-02]) y = array([-1.64499244, -0.4551789 , 2.58312913, -2.41015947, -1.36205943, -0.30679332, 2.6747642 , 0.00408249, -1.62048967, -0.48223424]) z = array([1.01746258, 1.53847518, 0.9107881 , 0.92873261, 0.91745608, 1.16958101, 0.94756659, 0.67915715, 2.44094706, 0.83989145]) ________________________ TestRRID.test_RR_infeasibility ________________________ lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:281: in _get_delta p, q = _sym_solve(Dinv, A, c, b, solve) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) Dinv = array([5.82643317e-02, 6.67411599e-04, 6.20587604e-02, 7.58928919e-02, 6.14891579e-02, 3.62652104e-02, 4.88197929e-02, 9.67164886e-02, 1.87792745e-06, 5.89310086e-02]) M = array([[0.23401496, 0.2165357 , 0.15576478, 0.0798312 , 0.10346452, 0.05579772, 0.14152879, 0.12476074, 0.0741..., 0.15428212, 0.12648529, 0.07708858, 0.09692196, 0.09110549, 0.16196931, 0.14305221, 0.13886703, 0.27773405]]) alpha = 0 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) cholesky = False d_kappa = 0 d_tau = 0 d_x = 0 d_z = 0 eta = .eta at 0x7ffb3f58eac0> gamma = 0 i = 0 ip = False kappa = np.float64(0.9983153932119021) lstsq = False mu = np.float64(0.0420348947594014) n_corrections = 1 n_x = 10 pc = True permc_spec = 'MMD_AT_PLUS_A' r_D = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) r_G = np.float64(1.2498188442965308) r_P = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhatd = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) rhatg = np.float64(1.2498188442965308) rhatp = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhattk = np.float64(-0.052153857005181097) rhatxs = array([-6.03169895e-02, -1.57970044e-03, -5.14799116e-02, -6.54609779e-02, -5.17570016e-02, -4.96078974e-02, -4.38344352e-02, -4.46109095e-02, -1.11891097e-05, -4.15709732e-02]) solve = None solved = False sparse = False sym_pos = True tau = np.float64(0.05224186400390496) x = array([5.92817770e-02, 1.02679618e-03, 5.65223805e-02, 7.04842033e-02, 5.64136016e-02, 4.24151015e-02, 4.62600048e-02, 6.56856949e-02, 4.58392149e-06, 4.94956501e-02]) y = array([-1.64499244, -0.4551789 , 2.58312913, -2.41015947, -1.36205943, -0.30679332, 2.6747642 , 0.00408249, -1.62048967, -0.48223424]) z = array([1.01746258, 1.53847518, 0.9107881 , 0.92873261, 0.91745608, 1.16958101, 0.94756659, 0.67915715, 2.44094706, 0.83989145]) lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:362: in _sym_solve v = solve(r) ^^^^^^^^ E TypeError: 'NoneType' object is not callable A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) Dinv = array([5.82643317e-02, 6.67411599e-04, 6.20587604e-02, 7.58928919e-02, 6.14891579e-02, 3.62652104e-02, 4.88197929e-02, 9.67164886e-02, 1.87792745e-06, 5.89310086e-02]) r = array([ 0.62801568, 1.03960264, 0.84552911, 0.39463931, 0.92397384, 0.47375164, 1.01336757, 0.68393049, 0.95299436, -0.55001359]) r1 = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) r2 = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) solve = None During handling of the above exception, another exception occurred: lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py:1080: in test_remove_redundancy_infeasibility res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, A_eq = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) b_eq = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) m = 10 n = 10 rng = RandomState(MT19937) at 0x7FFB3F577640 self = sup = lib/python3.12/site-packages/scipy/optimize/_linprog.py:704: in linprog x, status, message, iteration = _linprog_ip( A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) A_eq = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) A_ub = None C = 1 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) b_eq = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) b_scale = 1 b_ub = None bounds = None c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None complete = False integrality = None iteration = 0 lp = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) lp_o = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) message = '' meth = 'interior-point' method = 'interior-point' methods = {'highs', 'highs-ds', 'highs-ipm', 'interior-point', 'revised simplex', 'simplex'} options = {'rr_method': 'ID'} postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) rr = True rr_method = 'ID' solver_options = {} status = 0 tol = 1e-09 undo = [] x = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) x0 = None lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:1135: in _linprog_ip x, status, message, iteration = _ip_hsd(A, b, c, c0, alpha0, beta, A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) alpha0 = 0.99995 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) beta = 0.1 c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None cholesky = True disp = False ip = False lstsq = False maxiter = 1000 pc = True permc_spec = 'MMD_AT_PLUS_A' postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) sparse = False sym_pos = True tol = 1e-08 unknown_options = {} valid_permc_spec = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', 'COLAMD') lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:765: in _ip_hsd d_x, d_y, d_z, d_tau, d_kappa = _get_delta( A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) alpha = np.float64(0.5776994974599121) alpha0 = 0.99995 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) beta = 0.1 c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) c0 = np.float64(0.0) callback = None cholesky = True d_kappa = np.float64(-0.0029160606777437655) d_tau = np.float64(-0.11797724099404101) d_x = array([-0.1449841 , 0.00169084, -0.09678013, -0.09215866, -0.12596611, -0.10329511, -0.07871836, -0.08510379, -0.15868777, -0.07324453]) d_y = array([-4.26617804, 0.14735429, 7.03363658, -4.7271256 , -3.62671277, 0.20430718, 6.75473373, 1.01165074, -7. , 0.5 ]) d_z = array([ 0.04573862, 0.64729244, -0.20114519, -0.26821092, 0.11756223, -0.01674612, -0.16620409, -0.31256004, 2.37654769, -0.39305463]) disp = False eta = .eta at 0x7ffb3f58eac0> gamma = 0 go = np.True_ inf1 = np.False_ inf2 = np.False_ ip = False iteration = 3 kappa = np.float64(0.9983153932119021) lstsq = False maxiter = 1000 message = 'Optimization terminated successfully.' obj = np.float64(4.8781270366654095) pc = True permc_spec = 'MMD_AT_PLUS_A' postsolve_args = (_LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.8917...f], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None), [], 1, 1) rho_A = np.float64(4.525000895977724) rho_d = np.float64(0.2570248977167409) rho_g = np.float64(0.17461270158031456) rho_mu = np.float64(0.0420348947594014) rho_p = np.float64(0.040001427031220324) sparse = False status = 0 sym_pos = True tau = np.float64(0.05224186400390496) tol = 1e-08 x = array([5.92817770e-02, 1.02679618e-03, 5.65223805e-02, 7.04842033e-02, 5.64136016e-02, 4.24151015e-02, 4.62600048e-02, 6.56856949e-02, 4.58392149e-06, 4.94956501e-02]) y = array([-1.64499244, -0.4551789 , 2.58312913, -2.41015947, -1.36205943, -0.30679332, 2.6747642 , 0.00408249, -1.62048967, -0.48223424]) z = array([1.01746258, 1.53847518, 0.9107881 , 0.92873261, 0.91745608, 1.16958101, 0.94756659, 0.67915715, 2.44094706, 0.83989145]) lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py:294: in _get_delta warn( E scipy.optimize._optimize.OptimizeWarning: Solving system with option 'cholesky':True failed. It is normal for this to happen occasionally, especially as the solution is approached. However, if you see this frequently, consider setting option 'cholesky' to False. A = array([[0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606, 0.0871293 , 0.0202184 , 0.83261985, 0.7781..., 1.33482076, 0.26359572, 1.43265441, 0.57881219, 0.36638272, 1.17302587, 0.04021509, 1.65788006, 0.00939095]]) Dinv = array([5.82643317e-02, 6.67411599e-04, 6.20587604e-02, 7.58928919e-02, 6.14891579e-02, 3.62652104e-02, 4.88197929e-02, 9.67164886e-02, 1.87792745e-06, 5.89310086e-02]) M = array([[0.23401496, 0.2165357 , 0.15576478, 0.0798312 , 0.10346452, 0.05579772, 0.14152879, 0.12476074, 0.0741..., 0.15428212, 0.12648529, 0.07708858, 0.09692196, 0.09110549, 0.16196931, 0.14305221, 0.13886703, 0.27773405]]) alpha = 0 b = array([ 0.44712538, 0.84640867, 0.69947928, 0.29743695, 0.81379782, 0.39650574, 0.8811032 , 0.58127287, 0.88173536, -0.69253159]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152]) cholesky = False d_kappa = 0 d_tau = 0 d_x = 0 d_z = 0 eta = .eta at 0x7ffb3f58eac0> gamma = 0 i = 0 ip = False kappa = np.float64(0.9983153932119021) lstsq = False mu = np.float64(0.0420348947594014) n_corrections = 1 n_x = 10 pc = True permc_spec = 'MMD_AT_PLUS_A' r_D = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) r_G = np.float64(1.2498188442965308) r_P = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhatd = array([-0.02207024, -0.1126841 , 0.0436992 , 0.06684207, -0.05290968, 0.02015527, -0.00128161, -0.01092538, -0.31006007, -0.03140025]) rhatg = np.float64(1.2498188442965308) rhatp = array([-0.22786134, -0.21873944, -0.17563235, -0.15216341, -0.13237213, -0.1115072 , -0.18040029, -0.16093862, -0.08423201, -0.29677015]) rhattk = np.float64(-0.052153857005181097) rhatxs = array([-6.03169895e-02, -1.57970044e-03, -5.14799116e-02, -6.54609779e-02, -5.17570016e-02, -4.96078974e-02, -4.38344352e-02, -4.46109095e-02, -1.11891097e-05, -4.15709732e-02]) solve = None solved = False sparse = False sym_pos = True tau = np.float64(0.05224186400390496) x = array([5.92817770e-02, 1.02679618e-03, 5.65223805e-02, 7.04842033e-02, 5.64136016e-02, 4.24151015e-02, 4.62600048e-02, 6.56856949e-02, 4.58392149e-06, 4.94956501e-02]) y = array([-1.64499244, -0.4551789 , 2.58312913, -2.41015947, -1.36205943, -0.30679332, 2.6747642 , 0.00408249, -1.62048967, -0.48223424]) z = array([1.01746258, 1.53847518, 0.9107881 , 0.92873261, 0.91745608, 1.16958101, 0.94756659, 0.67915715, 2.44094706, 0.83989145]) ___________________________ TestRRID.test_bug_10349 ____________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py:1668: in test_bug_10349 _assert_success(res, desired_x=[129, 92, 12, 198, 0, 10], desired_fun=92) A_eq = array([[1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1], [1, 0, 1, 0, 0, 0], [0, 0, 0, 1, 1, 0], [0, 1, 0, 0, 0, 1]]) b_eq = array([221, 210, 10, 141, 198, 102]) c = array([0., 1., 0., 0., 0., 0.]) res = message: There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. Howev...s: 2 fun: 0.0 x: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00] nit: 0 self = sup = lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py:68: in _assert_success raise AssertionError(msg) E AssertionError: linprog status 2, message: There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. However the same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible. atol = 1e-08 desired_fun = 92 desired_x = [129, 92, 12, 198, 0, 10] msg = 'linprog status 2, message: There is a linear combination of rows of A_eq that results in zero, suggesting a redundant...he same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible.' res = message: There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. Howev...s: 2 fun: 0.0 x: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00] nit: 0 rtol = 1e-08 ____________________________ TestRRID.test_bug_7044 ____________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py:1423: in test_bug_7044 res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, A_eq = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) _ = 15.0 b_eq = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...7676109, 0.60484552, 0.73926358, 0.03918779, 0.28280696, 0.12019656, 0.2961402 , 0.11872772, 0.31798318]) self = sup = lib/python3.12/site-packages/scipy/optimize/_linprog.py:686: in linprog (lp, c0, x, undo, complete, status, message) = _presolve(lp, rr, A_eq = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) A_ub = None b_eq = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) b_ub = None bounds = None c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...7676109, 0.60484552, 0.73926358, 0.03918779, 0.28280696, 0.12019656, 0.2961402 , 0.11872772, 0.31798318]) c0 = 0 callback = None complete = False integrality = None iteration = 0 lp = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) lp_o = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) meth = 'interior-point' method = 'interior-point' methods = {'highs', 'highs-ds', 'highs-ipm', 'interior-point', 'revised simplex', 'simplex'} options = {'rr_method': 'ID'} rr = True rr_method = 'ID' solver_options = {} tol = 1e-09 undo = [] x0 = None lib/python3.12/site-packages/scipy/optimize/_linprog_util.py:901: in _presolve rr_res = _remove_redundancy_id(A_eq, b_eq, rank) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) A_eq = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) A_ub = array([], shape=(0, 81), dtype=float64) _ = None b_eq = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) b_ub = array([], dtype=float64) bounds = array([[ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], ...nf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]) c = array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.891773 , 0.963662...7676109, 0.60484552, 0.73926358, 0.03918779, 0.28280696, 0.12019656, 0.2961402 , 0.11872772, 0.31798318]) c0 = 0 cols = array([], dtype=int64) complete = False dim_row_nullspace = np.int64(26) i_f = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, False,...False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]) i_nf = array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,... True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) lb = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) lb_mod = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) lp = _LPProblem(c=array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 , 0.64589411, 0.43758721, 0.89177... [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf], [ 0., inf]]), x0=None, integrality=None) m_eq = 26 m_ub = 0 message = '' n = 81 n_rows_A = 26 rank = np.int64(0) redundancy_warning = 'A_eq does not appear to be of full row rank. To improve performance, check the problem formulation for redundant equality constraints.' revstack = [] rows = array([], dtype=int64) rr = True rr_method = 'id' singleton_row = array([], dtype=bool) small_nullspace = 5 status = 0 tol = 1e-09 ub = array([inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf,...inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf]) ub_mod = array([inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf,...inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf]) vstack = where = x = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) x0 = None zero_col = array([False, False, False, False, False, False, False, False, False, False, False, False, False, False, False,...False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]) zero_row = array([], dtype=bool) lib/python3.12/site-packages/scipy/optimize/_remove_redundancy.py:505: in _remove_redundancy_id idx, proj = interp_decomp(A.T, k, rand=randomized) ^^^^^^^^^ E ValueError: too many values to unpack (expected 2) A = array([[1., 1., 1., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ... 0., 1., ..., 0., 0., 9.], [1., 0., 0., ..., 0., 0., 9.], [0., 0., 1., ..., 9., 0., 0.]], shape=(26, 81)) inconsistent = 'There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. However the same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible.' k = np.int64(0) m = 26 message = '' n = 81 randomized = True rank = np.int64(0) rhs = array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 15., 15., 15., 15., 15., 15., 15., 15.]) status = 0 _________________________ TestRRID.test_enzo_example_b _________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py:1206: in test_enzo_example_b _assert_success(res, desired_fun=-1.77, A_eq = [[-1, -1, -1, 0, 0, 0], [0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 0, 1]] b_eq = [-0.5, 0.4, 0.3, 0.3, 0.3] c = [2.8, 6.3, 10.8, -2.8, -6.3, -10.8] res = message: There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. Howev...s: 2 fun: 0.0 x: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00] nit: 0 self = sup = lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py:68: in _assert_success raise AssertionError(msg) E AssertionError: linprog status 2, message: There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. However the same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible. atol = 1e-08 desired_fun = -1.77 desired_x = [0.3, 0.2, 0.0, 0.0, 0.1, 0.3] msg = 'linprog status 2, message: There is a linear combination of rows of A_eq that results in zero, suggesting a redundant...he same linear combination of b_eq is nonzero, suggesting that the constraints conflict and the problem is infeasible.' res = message: There is a linear combination of rows of A_eq that results in zero, suggesting a redundant constraint. Howev...s: 2 fun: 0.0 x: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00] nit: 0 rtol = 1e-08 ____________________ TestCurveFit.test_curvefit_omitnan[2] _____________________ lib/python3.12/site-packages/scipy/optimize/tests/test_minpack.py:836: in test_curvefit_omitnan y += rng.multivariate_normal(np.zeros_like(x), sigma) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ N = 100 a = array([[ 0.45108022, -1.56460758, 2.00073573, ..., 5.1299874 , 2.62159198, 3.03232323], [ 0.2586857... [ 1.60889851, 0.36745767, -2.2355306 , ..., 1.07820194, -3.53209376, 1.73890436]], shape=(100, 100)) exponential = .exponential at 0x7ffb40035da0> rng = Generator(PCG64) at 0x7FFB3F5A2B20 self = sigma = array([[551.77268277, -95.51274433, -38.94319224, ..., 40.68200471, 28.68911569, -2.50890044], [-95.... [ -2.50890044, -17.8468959 , -1.26411159, ..., 4.06824005, -56.94818192, 326.66192071]], shape=(100, 100)) sigma_dim = 2 x = array([ 1. , 1.09090909, 1.18181818, 1.27272727, 1.36363636, 1.45454545, 1.54545455, 1.63636364, ...272727, 9.36363636, 9.45454545, 9.54545455, 9.63636364, 9.72727273, 9.81818182, 9.90909091, 10. ]) y = array([0.61070138, 0.6219066 , 0.63331741, 0.64493759, 0.65677098, 0.66882149, 0.6810931 , 0.69358987, 0.706315...67, 3.1943968 , 3.25300795, 3.31269451, 3.37347621, 3.43537313, 3.49840575, 3.5625949 , 3.62796179, 3.69452805]) numpy/random/_generator.pyx:3939: in numpy.random._generator.Generator.multivariate_normal ??? E RuntimeWarning: covariance is not symmetric positive-semidefinite. __________________________ TestCurveFit.test_dtypes2 ___________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_minpack.py:997: in test_dtypes2 popt_64, _ = curve_fit(f=hyperbola, xdata=xdata, ydata=ydata, p0=guess, guess = array([-0.83333333, 1.33333333, 1. , -4. , 0.5 ]) hyperbola = .hyperbola at 0x7ffb4009bf60> max_fit = array([ 0., 3., 3., 0., 10.]) min_fit = array([ -3., 0., -2., -10., 0.]) params = [-2, 0.4, -1, -5, 9.5] self = xdata = array([-32, -16, -8, 4, 4, 8, 16, 32]) ydata = array([-67.28944001, -35.58729518, -20.16756973, -4.51724569, -4.51724569, -2.34125297, 1.27909351, 7.92791722]) lib/python3.12/site-packages/scipy/optimize/_minpack_py.py:1036: in curve_fit raise RuntimeError("Optimal parameters not found: " + res.message) E RuntimeError: Optimal parameters not found: The maximum number of function evaluations is exceeded. absolute_sigma = False bounded_problem = np.True_ bounds = (array([ -3., 0., -2., -10., 0.]), array([ 0., 3., 3., 0., 10.])) check_finite = True f = .hyperbola at 0x7ffb4009bf60> full_output = False func = ._memoized_func at 0x7ffb400bc0e0> jac = '2-point' kwargs = {'max_nfev': None} lb = array([ -3., 0., -2., -10., 0.]) method = 'trf' n = 5 nan_policy = None p0 = array([-0.83333333, 1.33333333, 1. , -4. , 0.5 ]) res = message: The maximum number of function evaluations is exceeded. success: False status: 0 fun... 3.966e-02 -6.095e-03] optimality: 0.13935605845093574 active_mask: [0 0 0 0 0] nfev: 500 njev: 500 sigma = None transform = None ub = array([ 0., 3., 3., 0., 10.]) xdata = array([-32., -16., -8., 4., 4., 8., 16., 32.]) ydata = array([-67.28944001, -35.58729518, -20.16756973, -4.51724569, -4.51724569, -2.34125297, 1.27909351, 7.92791722]) ____________________________ TestLinear.test_krylov ____________________________ lib/python3.12/site-packages/scipy/optimize/tests/test_nonlin.py:371: in test_krylov self._check(nonlin.KrylovJacobian, 20, 2, False, inner_m=10) self = lib/python3.12/site-packages/scipy/optimize/tests/test_nonlin.py:350: in _check sol = nonlin.nonlin_solve(func, np.zeros(N), jac, maxiter=maxiter, A = array([[-1.08563060e+00, 9.97345447e-01, 2.82978498e-01, -1.50629471e+00, -5.78600252e-01, 1.65143654e+00, ...-1.77377135e+00, -4.07512592e-01, -2.91506713e-01, 2.45379407e-01, -1.68426432e-01, 2.44026938e-01]]) N = 20 b = array([ 1.53409029, -0.5299141 , -0.49097228, -1.30916531, -0.00866047, 0.97681298, -1.75107035, -0.66585697, ...546363, -0.22431279, 0.48187426, 1.01430388, -1.70899178, 0.7285354 , -0.09875981, -0.52998886, -2.44307579]) complex = False func = .func at 0x7ffb3fdc4cc0> jac = kw = {'inner_m': 10} maxiter = 2 self = lib/python3.12/site-packages/scipy/optimize/_nonlin.py:216: in nonlin_solve raise ValueError("Jacobian inversion yielded zero vector. " E ValueError: Jacobian inversion yielded zero vector. This indicates a bug in the Jacobian approximation. F = .func at 0x7ffb3fdc4cc0> Fx = array([-1.92507816e+08, 2.04751481e+08, 2.12018039e+07, 3.46546533e+08, -3.36107606e+08, -1.69286025e+08, -1...6965e+08, -1.77354230e+08, -4.03599131e+07, 7.58175871e+07, 3.26582612e+08, 3.46334329e+07, -3.73334745e+07]) Fx_norm = 879822799.1752902 Fx_norm_new = 879822799.1752902 callback = None condition = dx = array([-0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0.]) eta = 0.9999 eta_A = 3.3093964274043644e+16 eta_max = 0.9999 eta_treshold = 0.1 f_rtol = None f_tol = 1e-06 full_output = False func = .func at 0x7ffb3fdc4d60> gamma = 0.9 iter = None jacobian = line_search = None maxiter = 2 n = 1 raise_exception = True s = 1.0 status = 0 tol = 0.9999 tol_norm = verbose = 0 x = array([ 1.62216770e+08, 1.22043603e+07, -2.10007034e+07, -4.33505508e+07, 2.91628855e+07, 7.26895083e+07, 6...5482e+07, 1.70176103e+06, -7.66445543e+07, 1.19033413e+08, -2.41566904e+07, -1.04116513e+07, -1.63517984e+08]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) x_rtol = None x_tol = None _______________________ TestJacobianDotSolve.test_krylov _______________________ lib/python3.12/site-packages/scipy/optimize/tests/test_nonlin.py:496: in test_krylov self._check_dot(nonlin.KrylovJacobian, complex=False, tol=1e-3) self = lib/python3.12/site-packages/scipy/optimize/tests/test_nonlin.py:460: in _check_dot assert_close(Jv, Jv2, 'dot vs solve') A = array([[0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897, 0.42310646, 0.9807642 ], [0.6848297...295, 0.1156184 ], [0.31728548, 0.41482621, 0.86630916, 0.25045537, 0.48303426, 0.98555979, 0.51948512]]) Jv = array([2.81892037, 2.07829646, 3.42879096, 2.93789916, 2.42777086, 2.86014643, 2.90668816]) Jv2 = array([2.72305586, 2.22041038, 3.45492255, 3.12548578, 2.47891592, 2.81658133, 2.59881627]) N = 7 assert_close = .assert_close at 0x7ffb3fdc6480> complex = False jac = jac_cls = k = 0 kw = {} rand = .rand at 0x7ffb3fdc68e0> rng = RandomState(MT19937) at 0x7FFB3F67EE40 self = tol = 0.001 v = array([0.41702221, 0.68130077, 0.87545684, 0.51042234, 0.66931378, 0.58593655, 0.6249035 ]) x0 = array([0.61289453, 0.12062867, 0.8263408 , 0.60306013, 0.54506801, 0.34276383, 0.30412079]) lib/python3.12/site-packages/scipy/optimize/tests/test_nonlin.py:425: in assert_close raise AssertionError(f'{msg}: err {d:g}') E AssertionError: dot vs solve: err 0.307872 a = array([2.81892037, 2.07829646, 3.42879096, 2.93789916, 2.42777086, 2.86014643, 2.90668816]) b = array([2.72305586, 2.22041038, 3.45492255, 3.12548578, 2.47891592, 2.81658133, 2.59881627]) d = np.float64(0.30787188386725894) f = np.float64(0.004454922550523403) msg = 'dot vs solve' tol = 0.001 _____________________ TestFirls.test_rank_deficient[numpy] _____________________ lib/python3.12/site-packages/scipy/signal/tests/test_fir_filter_design.py:674: in test_rank_deficient xp_assert_close(habs, xp.ones_like(habs), atol=1e-4) E AssertionError: E Not equal to tolerance rtol=5.96046e-08, atol=0.0001 E E nan location mismatch: E ACTUAL: array([nan, nan, nan, nan, nan, nan]) E DESIRED: array([1., 1., 1., 1., 1., 1.]) absh2 = array([3.62405818e-09, 3.88016401e-09]) h = array([nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+...anj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+nanj, nan+nanj]) habs = array([nan, nan, nan, nan, nan, nan]) mask = array([ True, True, True, True, True, True, False, False, False, False, False, False, False, False, False,...False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]) self = w = array([0. , 0.00195312, 0.00390625, 0.00585938, 0.0078125 , 0.00976562, 0.01171875, 0.01367188, 0.015625...8242188, 0.984375 , 0.98632812, 0.98828125, 0.99023438, 0.9921875 , 0.99414062, 0.99609375, 0.99804688]) x = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,..., nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) xp = _________________________ TestPlacePoles.test_complex __________________________ lib/python3.12/site-packages/scipy/signal/tests/test_ltisys.py:136: in test_complex self._check(big_A[:-1,:-1], big_B[:-1,:-1], P) A = array([[-2148, -2902, -2267, -598, -1722, -1829], [ -165, -283, -2546, -167, -754, -2285], [ -543, -..., -764, -897], [ -517, -1598, 2, -1709, -291, -338], [ -153, -1804, -1106, -1168, -867, -2297]]) B = array([[ -108, -374, -524, -1285, -1232], [ -161, -1204, -672, -637, -15], [ -483, -23, -931, ..., -1290, -1502, -952, -1374], [ -62, -964, -930, -939, -792], [ -756, -1437, -491, -1543, -686]]) P = [-10, -20, -30, -40, -50, -60, ...] big_A = array([[-2.148e+03, -2.902e+03, -2.267e+03, -5.980e+02, -1.722e+03, -1.829e+03, 1.000e+00, 1.000e+00, 1.000...e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 0.000e+00]]) big_B = array([[-1.080e+02, -3.740e+02, -5.240e+02, -1.285e+03, -1.232e+03, 1.000e+00, 1.000e+00, 1.000e+00, 1.000..., 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00]]) self = lib/python3.12/site-packages/scipy/signal/tests/test_ltisys.py:47: in _check fsf = place_poles(A, B, P, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[-2.148e+03, -2.902e+03, -2.267e+03, -5.980e+02, -1.722e+03, -1.829e+03, 1.000e+00, 1.000e+00, 1.000..., 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 0.000e+00]]) B = array([[-1.080e+02, -3.740e+02, -5.240e+02, -1.285e+03, -1.232e+03, 1.000e+00, 1.000e+00, 1.000e+00, 1.000... [ 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00]]) P = [-10, -20, -30, -40, -50, -60, ...] kwargs = {} self = lib/python3.12/site-packages/scipy/signal/_ltisys.py:2990: in place_poles warnings.warn(err_msg, stacklevel=2) E UserWarning: Convergence was not reached after maxiter iterations. E You asked for a tolerance of 0.001, we got 0.999900240290379. A = array([[-2.148e+03, -2.902e+03, -2.267e+03, -5.980e+02, -1.722e+03, -1.829e+03, 1.000e+00, 1.000e+00, 1.000..., 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 0.000e+00]]) B = array([[-1.080e+02, -3.740e+02, -5.240e+02, -1.285e+03, -1.232e+03, 1.000e+00, 1.000e+00, 1.000e+00, 1.000... [ 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00]]) Q = array([[-3.46779575e-01, -1.22117000e-02, -7.19382763e-01, 3.47149947e-01, -2.84781106e-01, -4.00581267e-01, ... 2.71596327e-04, 3.82035179e-04, 9.33629928e-07, 9.33629928e-07, 9.33629928e-07, 9.99998775e-01]]) _ = array([[-2398.33525831], [ 0. ], [ 0. ], [ 0. ], [ 0. ... [ 0. ], [ 0. ], [ 0. ], [ 0. ], [ 0. ]]) cur_rtol = np.float64(0.999900240290379) err_msg = 'Convergence was not reached after maxiter iterations.\nYou asked for a tolerance of 0.001, we got 0.999900240290379.' j = 9 ker_pole = [array([[ 3.05379988e-03, -7.17552304e-01, 3.49206486e-01, -3.01135246e-01, -4.05638317e-01, -9.69977870e-03,... 1.61502607e-03, 2.22741190e-03, 2.69536257e-05, 2.69536257e-05, 2.69536257e-05, 9.99959096e-01]]), ...] ker_pole_j = array([[-1.22117000e-02, -7.19382763e-01, 3.47149947e-01, -2.84781106e-01, -4.00581267e-01, -9.78953460e-04, ... 2.71596327e-04, 3.82035179e-04, 9.33629928e-07, 9.33629928e-07, 9.33629928e-07, 9.99998775e-01]]) maxiter = 30 method = 'YT' nb_iter = 30 pole_space_j = array([[ 831.69368095], [ 29.28775076], [1725.32104586], [-832.58195664], [ 683.00056854], [ 960.7281774 ], [ 2.3478586 ], [ 2.3478586 ], [ 2.3478586 ], [ -3.08048524]]) poles = array([-100., -90., -80., -70., -60., -50., -40., -30., -20., -10.]) rankB = np.int64(9) rtol = 0.001 skip_conjugate = False stop = False transfer_matrix = array([[ 3.12395673e-03, 7.57466788e-03, 3.92285462e-04, -4.85267192e-04, 4.45902262e-02, -5.75940640e-01, ... 8.47882326e-01, 2.96525553e-03, -1.86565585e-02, -1.57531073e-03, 6.39690244e-04, -2.08298886e-02]]) transfer_matrix_j = array([[-0.35715311], [ 0.33009491], [ 0.14255988], [ 0.42539419], [ 0.2578121 ], [ 0.227103 ], [ 0.33307372], [ 0.33307372], [ 0.33307372], [ 0.33367395]]) u = array([[-7.41589824e-02, -1.47063512e-01, -2.87677597e-01, 7.08064292e-01, -3.59840183e-01, 9.99648737e-02, ...-3.21991150e-04, 4.90200122e-01, 3.02545860e-01, 4.03381535e-01, 6.08079677e-01, -3.68363456e-01]]) u0 = array([[-7.41589824e-02, -1.47063512e-01, -2.87677597e-01, 7.08064292e-01, -3.59840183e-01, 9.99648737e-02, ... 5.05140390e-05, -3.21991150e-04, 4.90200122e-01, 3.02545860e-01, 4.03381535e-01, 6.08079677e-01]]) u1 = array([[-0.42575463], [-0.40755065], [ 0.12816 ], [-0.14091248], [ 0.51006364], [ 0.23478586], [ 0.23478586], [ 0.23478586], [ 0.23478586], [-0.36836346]]) update_loop = z = array([[ 1.45633066e+03, 1.95553048e+03, 1.88080569e+03, 2.00340148e+03, 1.96093928e+03, -1.33142840e+00, ... 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 7.81772445e-01]]) ____________________________ test_sg_coeffs_trivial ____________________________ lib/python3.12/site-packages/scipy/signal/tests/test_savitzky_golay.py:70: in test_sg_coeffs_trivial xp_assert_close(h, [0.0, 0, 1, 0, 0], atol=1e-10) E AssertionError: E Not equal to tolerance rtol=5.96046e-08, atol=1e-10 E E Mismatched elements: 4 / 5 (80%) E Max absolute difference among violations: 0.02771257 E Max relative difference among violations: 0.00013518 E ACTUAL: array([-1.670842e-02, 8.951173e-16, 1.000135e+00, 1.487016e-03, E 2.771257e-02]) E DESIRED: array([0., 0., 1., 0., 0.]) h = array([-1.67084156e-02, 8.95117314e-16, 1.00013518e+00, 1.48701608e-03, 2.77125725e-02]) ____________________________ test_sg_coeffs_compare ____________________________ lib/python3.12/site-packages/scipy/signal/tests/test_savitzky_golay.py:96: in test_sg_coeffs_compare compare_coeffs_to_alt(window_length, order) order = 4 window_length = 5 lib/python3.12/site-packages/scipy/signal/tests/test_savitzky_golay.py:86: in compare_coeffs_to_alt xp_assert_close( E AssertionError: E Not equal to tolerance rtol=5.96046e-08, atol=1e-10 E window_length = 5, order = 4, pos = None E Mismatched elements: 5 / 5 (100%) E Max absolute difference among violations: 76.39404585 E Max relative difference among violations: 1.01326546 E ACTUAL: array([-1.670842e-02, 8.951173e-16, 1.000135e+00, 1.487016e-03, E 2.771257e-02]) E DESIRED: array([-30.084374, -53.49254 , -75.393911, -67.298453, 26.277226]) h1 = array([-1.67084156e-02, 8.95117314e-16, 1.00013518e+00, 1.48701608e-03, 2.77125725e-02]) h2 = array([-30.08437432, -53.49253968, -75.39391066, -67.29845259, 26.27722566]) order = 4 pos = None window_length = 5 _____________________________ test_sg_coeffs_exact _____________________________ lib/python3.12/site-packages/scipy/signal/tests/test_savitzky_golay.py:113: in test_sg_coeffs_exact xp_assert_close(y0[halflen:-halflen], y[halflen:-halflen]) E AssertionError: E Not equal to tolerance rtol=5.96046e-08, atol=0 E E Mismatched elements: 35 / 35 (100%) E Max absolute difference among violations: 33206.02008022 E Max relative difference among violations: 21.96785148 E ACTUAL: array([ 45.935703, 87.328373, 148.725158, 234.126882, E 347.534366, 492.948435, 674.369911, 895.799617, E 1161.238377, 1474.687013, 1840.146348, 2261.617206,... E DESIRED: array([2.000000e+00, 5.312500e+00, 1.050000e+01, 1.793750e+01, E 2.800000e+01, 4.106250e+01, 5.750000e+01, 7.768750e+01, E 1.020000e+02, 1.308125e+02, 1.645000e+02, 2.034375e+02,... delta = np.float64(0.5) h = array([-0.00846235, 0.95147051, 1.59523773, 1.81131987, 1.86132361, 1.84039091, 1.67719893, 1.1339601 , -0.19357791]) halflen = 4 polyorder = 4 window_length = 9 x = array([ 0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. , 5.5, 6. , 6.5, 7. , 7.5, 8. , 8.... , 12.5, 13. , 13.5, 14. , 14.5, 15. , 15.5, 16. , 16.5, 17. , 17.5, 18. , 18.5, 19. , 19.5, 20. , 20.5, 21. ]) y = array([ 0.0000000e+00, -4.3750000e-01, -5.0000000e-01, 1.8750000e-01, 2.0000000e+00, 5.3125000e+00, 1.05000... 2.8980000e+03, 3.1473125e+03, 3.4105000e+03, 3.6879375e+03, 3.9800000e+03, 4.2870625e+03, 4.6095000e+03]) y0 = array([-2.76564572e+00, 3.77842599e-02, 6.84478786e+00, 2.06310153e+01, 4.59357030e+01, 8.73283730e+01, 1...6245e+04, 3.38025571e+04, 3.66165201e+04, 3.95853762e+04, 4.23913541e+04, 4.44957527e+04, 4.56104771e+04]) _____________________________ test_sg_coeffs_large _____________________________ lib/python3.12/site-packages/scipy/signal/tests/test_savitzky_golay.py:162: in test_sg_coeffs_large assert_array_almost_equal(coeffs0, coeffs0[::-1]) coeffs0 = array([-7.34118492e-05, 1.21591258e-04, -2.18811722e-05, 9.75358405e-05, 9.23310349e-05, 7.09426060e-05, 1...1018e-04, 1.32509509e-04, 1.31197184e-04, 1.21811853e-04, 9.55416585e-05, 3.74374624e-05, -7.65457344e-05]) lib/python3.12/site-packages/scipy/_lib/_array_api.py:414: in assert_array_almost_equal return xp_assert_close(actual, desired, E AssertionError: E Not equal to tolerance rtol=0, atol=1.5e-06 E E Mismatched elements: 30 / 31 (96.8%) E Max absolute difference among violations: 0.00011742 E Max relative difference among violations: 5.36638666 E ACTUAL: array([-7.341185e-05, 1.215913e-04, -2.188117e-05, 9.753584e-05, E 9.233103e-05, 7.094261e-05, 1.341223e-04, 1.425176e-04, E 1.476235e-04, 1.499965e-04, 1.500681e-04, 1.482757e-04,... E DESIRED: array([-7.654573e-05, 3.743746e-05, 9.554166e-05, 1.218119e-04, E 1.311972e-04, 1.325095e-04, 1.306010e-04, 1.279138e-04, E 1.255351e-04, 1.238739e-04, 1.230581e-04, 1.231338e-04,... actual = array([-7.34118492e-05, 1.21591258e-04, -2.18811722e-05, 9.75358405e-05, 9.23310349e-05, 7.09426060e-05, 1...1018e-04, 1.32509509e-04, 1.31197184e-04, 1.21811853e-04, 9.55416585e-05, 3.74374624e-05, -7.65457344e-05]) args = () atol = 1.5e-06 decimal = 6 desired = array([-7.65457344e-05, 3.74374624e-05, 9.55416585e-05, 1.21811853e-04, 1.31197184e-04, 1.32509509e-04, 1...2269e-04, 7.09426060e-05, 9.23310349e-05, 9.75358405e-05, -2.18811722e-05, 1.21591258e-04, -7.34118492e-05]) kwds = {} rtol = 0 __________________________ test_filtfilt_gust[numpy] ___________________________ lib/python3.12/site-packages/scipy/signal/tests/test_signaltools.py:3184: in test_filtfilt_gust check_filtfilt_gust(b, a, (signal_len,), 0, irlen) a = array([ 1. , -2.10127977, 1.59205805, -0.42031682]) approx_impulse_len = 110 b = array([0.00883664, 0.02639408, 0.02639408, 0.00883664]) eps = 1e-10 irlen = None k = np.float64(0.008836642434269565) p = array([0.63954204+0.j , 0.73086887-0.35077916j, 0.73086887+0.35077916j]) r = np.float64(0.8106881769120515) signal_len = 550 xp = z = array([-0.99344528+0.1143087j, -0.99344528-0.1143087j, -1. +0.j ]) lib/python3.12/site-packages/scipy/signal/tests/test_signaltools.py:3104: in check_filtfilt_gust xp_assert_close(y, yo, rtol=1e-8, atol=1e-9) E AssertionError: E Not equal to tolerance rtol=1e-08, atol=1e-09 E E Mismatched elements: 87 / 550 (15.8%) E Max absolute difference among violations: 0.19966432 E Max relative difference among violations: 0.84753387 E ACTUAL: array([-6.774454e-02, -3.335876e-02, -4.180455e-02, -9.020253e-02, E -1.639662e-01, -2.442248e-01, -3.128474e-01, -3.553537e-01, E -3.621496e-01, -3.275279e-01, -2.480757e-01, -1.227942e-01,... E DESIRED: array([-2.069299e-01, -2.187946e-01, -2.414689e-01, -2.730305e-01, E -3.082035e-01, -3.401573e-01, -3.616399e-01, -3.657756e-01, E -3.466906e-01, -2.989602e-01, -2.170391e-01, -9.656134e-02,... a = array([ 1. , -2.10127977, 1.59205805, -0.42031682]) axis = 0 b = array([0.00883664, 0.02639408, 0.02639408, 0.00883664]) indx = () irlen = None m = 3 out_shape = () shape = (550,) x = array([-1.08563060e+00, 9.97345447e-01, 2.82978498e-01, -1.50629471e+00, -5.78600252e-01, 1.65143654e+00, -2...0, -3.31128298e-01, 1.50258091e+00, -2.78811288e+00, -1.58720643e+00, -1.23688733e-01, 8.88194541e-01]) xx = array([-1.08563060e+00, 9.97345447e-01, 2.82978498e-01, -1.50629471e+00, -5.78600252e-01, 1.65143654e+00, -2...0, -3.31128298e-01, 1.50258091e+00, -2.78811288e+00, -1.58720643e+00, -1.23688733e-01, 8.88194541e-01]) y = array([-6.77445400e-02, -3.33587589e-02, -4.18045514e-02, -9.02025276e-02, -1.63966179e-01, -2.44224794e-01, -3...1, -4.41756504e-01, -4.72233127e-01, -4.86926810e-01, -4.82971297e-01, -4.62129036e-01, -4.32630852e-01]) yg = array([-6.77445400e-02, -3.33587589e-02, -4.18045514e-02, -9.02025276e-02, -1.63966179e-01, -2.44224794e-01, -3...1, -4.41756504e-01, -4.72233127e-01, -4.86926810e-01, -4.82971297e-01, -4.62129036e-01, -4.32630852e-01]) yo = array([-2.06929852e-01, -2.18794551e-01, -2.41468867e-01, -2.73030498e-01, -3.08203498e-01, -3.40157284e-01, -3...1, -4.41756504e-01, -4.72233127e-01, -4.86926810e-01, -4.82971297e-01, -4.62129036e-01, -4.32630852e-01]) zg1 = array([-0.29924646, 0.22870626, 0.0528987 ]) zg2 = array([-0.42832807, 0.46316976, -0.17489032]) zo1 = array([-0.20383629, 0.22870626, -0.0882096 ]) zo2 = array([-0.42832807, 0.46316976, -0.17489032]) _____________________________ test_MikotaPair[128] _____________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py:609: in test_MikotaPair assert_allclose(accuracy, 0., atol=tol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=3.63798e-09 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 8.39451935 E Max relative difference among violations: inf E ACTUAL: array(8.394519) E DESIRED: array(0.) Ab = array([[ 0., -127., -126., -125., -124., -123., -122., -121., -120., -119., -118., -117., -116., -115., -114...9., 27., 25., 23., 21., 19., 17., 15., 13., 11., 9., 7., 5., 3., 1.]]) Ac = <128x128 MikotaK with dtype=float64> Bc = <128x128 MikotaM with dtype=float64> X = array([[-0.55868319, -0.42502316, -0.09840499, ..., -0.02619328, -0.06890986, 0.04364301], [ 0.7898491..., [ 0.25869182, -0.04036556, -0.56602239, ..., 0.49755498, 0.39662529, 0.76993571]], shape=(128, 10)) _ = array([[-0.01100564, -0.03076737, 0.05543408, ..., 0.23374159, -0.24028403, 0.05969865], [-0.0220112..., [-1.40872145, 1.96911151, 2.36518744, ..., -0.38184028, -2.29292807, 1.80839775]], shape=(128, 10)) a = .a at 0x7ffb3974dee0> accuracy = np.float64(8.394519346176454) c = array([[ 0. , -7.953048 , -9.147044 , -9.663202 , -9.93998 , -10.103822 , -10.205265 , -10.268533 ...1 , 2.5169854, 2.305966 , 2.0732882, 1.8104674, 1.5014158, 1.1070563, 0.4290169]], dtype=float32) ee = array([ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100], dtype=uint64) eigenvalues = > el = array([ 1. , 4. , 9. , 16. , 25. , 36. , 388.83204351, 574.21245802, 667.3984811 , 939.45193462]) m = 10 mik = mik_k = <128x128 MikotaK with dtype=float64> mik_m = <128x128 MikotaM with dtype=float64> n = 128 rng = Generator(PCG64) at 0x7FFB39CAF920 tol = np.float64(3.637978807091713e-09) _____________________________ test_MikotaPair[256] _____________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py:609: in test_MikotaPair assert_allclose(accuracy, 0., atol=tol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1.45519e-08 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 9.82423431 E Max relative difference among violations: inf E ACTUAL: array(9.824234) E DESIRED: array(0.) Ab = array([[ 0., -255., -254., -253., -252., -251., -250., -249., -248., -247., -246., -245., -244., -243., -242...9., 27., 25., 23., 21., 19., 17., 15., 13., 11., 9., 7., 5., 3., 1.]]) Ac = <256x256 MikotaK with dtype=float64> Bc = <256x256 MikotaM with dtype=float64> X = array([[-0.5669376 , 0.03086287, -0.37104277, ..., 0.00852287, -0.04625069, -0.00427018], [ 0.6847182..., [-0.10209809, 0.71659942, 0.50437604, ..., 0.5929993 , -0.46343346, 0.71827083]], shape=(256, 10)) _ = array([[-5.51351359e-03, 1.55036403e-02, -2.82057409e-02, ..., 2.85204391e-01, -5.29380842e-02, -1.27429977e...98446596e+00, -2.40689014e+00, ..., -5.84935825e+00, -1.79692213e+00, -1.91165586e+00]], shape=(256, 10)) a = .a at 0x7ffb3974e0c0> accuracy = np.float64(9.824234307796303) c = array([[ 0. , -11.280537 , -13.000034 , -13.761404 , -14.184555 , -14.448251 , -14.623933 , -14....53 , 2.2935426 , 2.060935 , 1.7980648 , 1.4887041 , 1.0932252 , 0.40407786]], dtype=float32) ee = array([ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100], dtype=uint64) eigenvalues = > el = array([1.00000000e+00, 4.00000000e+00, 9.00000000e+00, 1.60000000e+01, 2.50000000e+01, 3.60000000e+01, 4.90000000e+01, 1.94466379e+02, 7.49501711e+02, 1.08242343e+03]) m = 10 mik = mik_k = <256x256 MikotaK with dtype=float64> mik_m = <256x256 MikotaM with dtype=float64> n = 256 rng = Generator(PCG64) at 0x7FFB39CAE880 tol = np.float64(1.4551915228366852e-08) _____________________________ test_MikotaPair[512] _____________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py:609: in test_MikotaPair assert_allclose(accuracy, 0., atol=tol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=5.82077e-08 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 4.46319895 E Max relative difference among violations: inf E ACTUAL: array(4.463199) E DESIRED: array(0.) Ab = array([[ 0.000e+00, -5.110e+02, -5.100e+02, ..., -3.000e+00, -2.000e+00, -1.000e+00], [ 1.023e+03, 1.021e+03, 1.019e+03, ..., 5.000e+00, 3.000e+00, 1.000e+00]], shape=(2, 512)) Ac = <512x512 MikotaK with dtype=float64> Bc = <512x512 MikotaM with dtype=float64> X = array([[-5.79713799e-01, 1.10983125e-01, -2.52907091e-01, ..., -2.96231983e-02, -2.97587499e-02, -3.44776035e...29578254e-01, 6.11715486e-01, ..., -6.12221865e-05, 3.70420259e-01, -5.12743833e-01]], shape=(512, 10)) _ = array([[-2.75944203e-03, -7.78207150e-03, 1.42270070e-02, ..., 1.31094522e-01, 8.30503099e-02, 4.80581568e...99221032e+00, 2.42807635e+00, ..., -1.82827144e+00, 1.03117943e-01, -5.89541469e+00]], shape=(512, 10)) a = .a at 0x7ffb3974e5c0> accuracy = np.float64(4.4631989523105355) c = array([[ 0. , -15.976553 , -18.43006 , ..., -1.6768792 , -1.3520687 , -0.9237465 ], [ 31.... , 27.672184 , 26.064014 , ..., 1.4792148 , 1.082548 , 0.38300437]], shape=(2, 512), dtype=float32) ee = array([ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100], dtype=uint64) eigenvalues = > el = array([ 1. , 4. , 9. , 16. , 25. , 36.00000003, 49.00000031, 234.04035014, 441.90418066, 546.31989523]) m = 10 mik = mik_k = <512x512 MikotaK with dtype=float64> mik_m = <512x512 MikotaM with dtype=float64> n = 512 rng = Generator(PCG64) at 0x7FFB39CAD8C0 tol = np.float64(5.820766091346741e-08) ____________________________ test_MikotaPair[1024] _____________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py:609: in test_MikotaPair assert_allclose(accuracy, 0., atol=tol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2.32831e-07 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 13.42746535 E Max relative difference among violations: inf E ACTUAL: array(13.427465) E DESIRED: array(0.) Ab = array([[ 0.000e+00, -1.023e+03, -1.022e+03, ..., -3.000e+00, -2.000e+00, -1.000e+00], [ 2.047e+03, 2.045e+03, 2.043e+03, ..., 5.000e+00, 3.000e+00, 1.000e+00]], shape=(2, 1024)) Ac = <1024x1024 MikotaK with dtype=float64> Bc = <1024x1024 MikotaM with dtype=float64> X = array([[-0.57197613, 0.14647877, -0.14383889, ..., 0.00633149, 0.0156782 , 0.03955422], [ 0.5876058... [ 0.08893732, -0.21481029, -0.97713225, ..., -0.16556053, -0.06488253, -0.45741359]], shape=(1024, 10)) _ = array([[-1.38039394e-03, 3.89863180e-03, 7.14478903e-03, ..., 4.51448936e-02, -1.38236519e-02, 3.56637943e...9609947e+00, 2.43875400e+00, ..., -4.02891554e+00, 2.78257905e+00, -1.67184698e+00]], shape=(1024, 10)) a = .a at 0x7ffb3974ec00> accuracy = np.float64(13.427465350515554) c = array([[ 0. , -22.61084 , -26.09598 , ..., -1.6833236 , -1.3588094 , -0.9310337 ], [ 45.... , 39.16312 , 36.90528 , ..., 1.4718769 , 1.074075 , 0.36493328]], shape=(2, 1024), dtype=float32) ee = array([ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100], dtype=uint64) eigenvalues = > el = array([1.00000000e+00, 4.00000000e+00, 9.00000000e+00, 1.60000000e+01, 2.50000000e+01, 3.60000002e+01, 4.90000042e+01, 4.24438602e+02, 7.74344452e+02, 1.44274654e+03]) m = 10 mik = mik_k = <1024x1024 MikotaK with dtype=float64> mik_m = <1024x1024 MikotaM with dtype=float64> n = 1024 rng = Generator(PCG64) at 0x7FFB39CAC200 tol = np.float64(2.3283064365386963e-07) ____________________________ test_MikotaPair[2048] _____________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py:609: in test_MikotaPair assert_allclose(accuracy, 0., atol=tol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=9.31323e-07 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 6.43417443 E Max relative difference among violations: inf E ACTUAL: array(6.434174) E DESIRED: array(0.) Ab = array([[ 0.000e+00, -2.047e+03, -2.046e+03, ..., -3.000e+00, -2.000e+00, -1.000e+00], [ 4.095e+03, 4.093e+03, 4.091e+03, ..., 5.000e+00, 3.000e+00, 1.000e+00]], shape=(2, 2048)) Ac = <2048x2048 MikotaK with dtype=float64> Bc = <2048x2048 MikotaM with dtype=float64> X = array([[-0.5601254 , 0.12421292, -0.09056351, ..., 0.01544741, 0.00357763, 0.02010653], [ 0.5621870... [ 0.37711915, 0.12277678, -0.15422934, ..., -0.0703576 , 0.00159464, -0.70726554]], shape=(2048, 10)) _ = array([[ 6.90365573e-04, -1.95121892e-03, -3.58024635e-03, ..., -1.53827947e-02, 1.48835217e-02, -1.40918061e...9804831e+00, -2.44411478e+00, ..., 3.93796999e+00, -8.46614550e+00, 9.25508807e-01]], shape=(2048, 10)) a = .a at 0x7ffb3974f240> accuracy = np.float64(6.434174431714716) c = array([[ 0. , -31.98828 , -36.92786 , ..., -1.6884365 , -1.3642482 , -0.93706805], [ 63.... , 55.405323 , 52.223877 , ..., 1.4660089 , 1.0671583 , 0.34914678]], shape=(2, 2048), dtype=float32) ee = array([ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100], dtype=uint64) eigenvalues = > el = array([ 1. , 4. , 9. , 16. , 25. , 36. , 49. , 64. , 459.29011421, 743.41744317]) m = 10 mik = mik_k = <2048x2048 MikotaK with dtype=float64> mik_m = <2048x2048 MikotaM with dtype=float64> n = 2048 rng = Generator(PCG64) at 0x7FFB39CAE0A0 tol = np.float64(9.313225746154785e-07) ______________ Test_SVDS_ARPACK.test_svds_parameter_k_which[LM-3] ______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:304: in test_svds_parameter_k_which _check_svds(A, k, *res, which=which, atol=1e-9, rtol=2e-13) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) k = 3 res = (array([[-0.53137496, -0.02426458, 0.31783075], [-0.06308732, 0.593292 , 0.2603729 ], [ 0.29852945, ...54 , 0.21588656, 0.29722489, 0.31843038, 0.31819307, 0.28881893, 0.46509902, 0.29898348, 0.31066731]])) rng = Generator(PCG64) at 0x7FFB39CACD60 self = which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=2e-13, atol=1e-09 E E Mismatched elements: 30 / 30 (100%) E Max absolute difference among violations: 0.39456733 E Max relative difference among violations: 783.03279692 E ACTUAL: array([[0.531375, 0.024265, 0.317831], E [0.063087, 0.593292, 0.260373], E [0.298529, 0.274278, 0.323269],... E DESIRED: array([[1.418228e-01, 1.566015e-01, 3.514857e-01], E [3.561677e-01, 4.000042e-01, 3.183227e-01], E [6.442399e-01, 6.688448e-01, 7.597775e-02],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) A_rebuilt = array([[ 0.74737372, 0.38299487, 0.29278206, 0.27265922, 0.68903058, 0.94608907, 0.38643623, 0.71353767...2225, -0.04600463, 0.92119575, 0.78526736, 1.07770596, 0.27435433, 1.06951112, 0.85196693, 0.87499717]]) atol = 1e-09 check_svd = True check_usvh_A = False k = 3 m = 10 n = 10 rtol = 2e-13 s = array([1.26999904, 1.59849819, 5.71090105]) s2 = array([1.19300089, 1.9556069 , 5.36807778]) u = array([[-0.53137496, -0.02426458, 0.31783075], [-0.06308732, 0.593292 , 0.2603729 ], [ 0.29852945, ...826545 , 0.38210697], [-0.12697327, 0.09277105, 0.34919585], [-0.15837359, -0.53003248, 0.42841613]]) u2 = array([[-1.41822767e-01, 1.56601465e-01, -3.51485673e-01], [ 3.56167720e-01, -4.00004201e-01, -3.18322667e-01]... [ 2.00904359e-01, -1.18325476e-04, -3.74929852e-01], [-1.60341735e-01, 4.81003541e-01, -4.60513977e-01]]) uh_u = array([[ 1.00000000e+00, 4.05221081e-19, 5.98272866e-17], [ 4.05221081e-19, 1.00000000e+00, -1.22030479e-16], [ 5.98272866e-17, -1.22030479e-16, 1.00000000e+00]]) vh = array([[-0.18671618, 0.10199068, 0.10934924, 0.41421103, -0.16640367, -0.53308201, 0.17728763, 0.19159265...554 , 0.21588656, 0.29722489, 0.31843038, 0.31819307, 0.28881893, 0.46509902, 0.29898348, 0.31066731]]) vh2 = array([[ 0.17257935, 0.11034655, 0.24475142, -0.31825789, -0.13828301, -0.17477547, -0.11768796, -0.30968362...6756, -0.21822576, -0.27757021, -0.3243266 , -0.33152761, -0.27209669, -0.45826775, -0.28176626, -0.31471247]]) vh_v = array([[ 1.00000000e+00, -4.26563338e-17, -3.83091413e-17], [-4.26563338e-17, 1.00000000e+00, -9.35035005e-17], [-3.83091413e-17, -9.35035005e-17, 1.00000000e+00]]) which = 'LM' ______________ Test_SVDS_ARPACK.test_svds_parameter_k_which[LM-5] ______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:304: in test_svds_parameter_k_which _check_svds(A, k, *res, which=which, atol=1e-9, rtol=2e-13) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) k = 5 res = (array([[-0.49035174, -0.32771492, 0.50562267, 0.02444494, 0.24527581], [ 0.04459246, -0.39239685, 0.071703...191, 0.21180022, 0.29792276, 0.31826179, 0.32023113, 0.28552679, 0.46404794, 0.29918286, 0.3114376 ]])) rng = Generator(PCG64) at 0x7FFB39CAC2E0 self = which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:57: in _check_svds assert_allclose(vh_v, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=2e-13, atol=1e-09 E E Mismatched elements: 15 / 25 (60%) E Max absolute difference among violations: 0.97753516 E Max relative difference among violations: 0.00196537 E ACTUAL: array([[ 1.000000e+00, 9.304525e-17, -6.775535e-02, 1.884639e-01, E -9.775352e-01], E [ 9.304525e-17, 1.000000e+00, -1.406966e-17, 3.280979e-17,... E DESIRED: array([[1., 0., 0., 0., 0.], E [0., 1., 0., 0., 0.], E [0., 0., 1., 0., 0.],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) A_rebuilt = array([[ 0.74403309, 0.27354079, 0.19952352, 0.00514651, 0.69022417, 0.70389692, 0.30671959, 0.48624234...3519, -0.08708142, 0.84843958, 0.92629307, 1.05612419, 0.28886209, 1.07789876, 1.00122576, 0.88615634]]) atol = 1e-09 check_svd = True check_usvh_A = False k = 5 m = 10 n = 10 rtol = 2e-13 s = array([0.03451396, 0.90017941, 1.27183568, 1.60931115, 5.78989894]) u = array([[-0.49035174, -0.32771492, 0.50562267, 0.02444494, 0.24527581], [ 0.04459246, -0.39239685, 0.0717036...195, 0.13526982, 0.07578073, 0.37640978], [-0.00759922, -0.26457914, 0.1523824 , -0.53463817, 0.44573055]]) uh_u = array([[ 1.00000000e+00, 9.47850197e-17, -5.71566379e-17, 2.09474273e-16, 1.25769642e-16], [ 9.47850...4.68950564e-17], [ 1.25769642e-16, -1.28937579e-16, -1.71340922e-16, 4.68950564e-17, 1.00000000e+00]]) vh = array([[-0.31083411, -0.28748073, -0.06560417, -0.32205901, -0.32473369, -0.39521938, -0.19166779, -0.43102296...3191, 0.21180022, 0.29792276, 0.31826179, 0.32023113, 0.28552679, 0.46404794, 0.29918286, 0.3114376 ]]) vh_v = array([[ 1.00000000e+00, 9.30452493e-17, -6.77553513e-02, 1.88463925e-01, -9.77535157e-01], [ 9.30452...2.64284261e-03], [-9.77535157e-01, -1.29614501e-16, -1.48073035e-03, 2.64284261e-03, 9.98034625e-01]]) which = 'LM' ______________ Test_SVDS_ARPACK.test_svds_parameter_k_which[SM-3] ______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:304: in test_svds_parameter_k_which _check_svds(A, k, *res, which=which, atol=1e-9, rtol=2e-13) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) k = 3 res = (array([[-0.00389096, 0.0109044 , 0.53787233], [ 0.43228985, -0.13837962, -0.39600172], [-0.23941782, ...644, -0.16734276, -0.52006152, -0.50489069, 0.09506734, 0.36226842, 0.22095202, 0.06513696, -0.00748277]])) rng = Generator(PCG64) at 0x7FFB3A384580 self = which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=2e-13, atol=1e-09 E E Mismatched elements: 30 / 30 (100%) E Max absolute difference among violations: 0.67246531 E Max relative difference among violations: 48.5507415 E ACTUAL: array([[0.003891, 0.010904, 0.537872], E [0.43229 , 0.13838 , 0.396002], E [0.239418, 0.149559, 0.151241],... E DESIRED: array([[0.152488, 0.24414 , 0.030354], E [0.008724, 0.493199, 0.289267], E [0.181941, 0.174128, 0.126271],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) A_rebuilt = array([[-1.03312362e-02, 7.92881916e-02, -2.67711810e-02, -8.36232845e-02, -8.27122722e-02, 1.49890497e-02, ... 1.12981298e-01, -2.30280856e-02, -3.39569388e-02, -4.67577429e-03, -5.20441067e-02, -2.23199545e-02]]) atol = 1e-09 check_svd = True check_usvh_A = False k = 3 m = 10 n = 10 rtol = 2e-13 s = array([0.10442037, 0.22436325, 0.29918727]) s2 = array([0.00347171, 0.10994708, 0.22852246]) u = array([[-0.00389096, 0.0109044 , 0.53787233], [ 0.43228985, -0.13837962, -0.39600172], [-0.23941782, -...1433744, 0.46767195], [-0.25604536, -0.13622988, 0.08320741], [-0.23630281, -0.38480107, -0.38905094]]) u2 = array([[-0.1524881 , 0.24413973, -0.03035358], [ 0.00872419, -0.49319944, -0.28926727], [ 0.18194082, ...8582444, 0.29947073], [-0.20208574, 0.08879142, -0.59542016], [ 0.46803153, 0.1469246 , -0.139594 ]]) uh_u = array([[ 1.00000000e+00, -3.41027599e-17, -4.40421065e-18], [-3.41027599e-17, 1.00000000e+00, 2.01789091e-17], [-4.40421065e-18, 2.01789091e-17, 1.00000000e+00]]) vh = array([[ 0.02728559, -0.0108255 , 0.16356033, 0.09470632, -0.06630094, 0.58669385, 0.26188217, -0.54284172...2644, -0.16734276, -0.52006152, -0.50489069, 0.09506734, 0.36226842, 0.22095202, 0.06513696, -0.00748277]]) vh2 = array([[-0.87795024, 0.27578593, 0.15473879, 0.03179645, 0.17709528, 0.03117201, 0.12677202, 0.25970814...8459, -0.00778189, -0.08990198, -0.77048121, -0.19411261, -0.17769573, -0.53476961, 0.70666665, 0.38046054]]) vh_v = array([[ 1.00000000e+00, 9.72188643e-17, -2.35468158e-17], [ 9.72188643e-17, 1.00000000e+00, -3.78159156e-16], [-2.35468158e-17, -3.78159156e-16, 1.00000000e+00]]) which = 'SM' ______________ Test_SVDS_ARPACK.test_svds_parameter_k_which[SM-5] ______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:304: in test_svds_parameter_k_which _check_svds(A, k, *res, which=which, atol=1e-9, rtol=2e-13) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) k = 5 res = (array([[ 0.08686126, -0.00389096, 0.53386385, 0.06731701, 0.19658035], [ 0.11613651, 0.43228985, -0.401518...799, -0.2757074 , -0.14210248, -0.03188506, 0.29853199, -0.0455909 , 0.56275993, 0.01724093, -0.43082898]])) rng = Generator(PCG64) at 0x7FFB3A384D60 self = which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:57: in _check_svds assert_allclose(vh_v, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=2e-13, atol=1e-09 E E Mismatched elements: 15 / 25 (60%) E Max absolute difference among violations: 0.9409662 E Max relative difference among violations: 0.02152331 E ACTUAL: array([[ 1.000000e+00, 2.505275e-16, 4.348735e-02, 2.796851e-01, E 9.409662e-01], E [ 2.505275e-16, 1.000000e+00, 6.467182e-16, 4.522334e-15,... E DESIRED: array([[1., 0., 0., 0., 0.], E [0., 1., 0., 0., 0.], E [0., 0., 1., 0., 0.],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) A_rebuilt = array([[ 0.01003548, 0.00814777, -0.07598964, -0.09319209, -0.08782977, 0.04909249, 0.06592561, 0.10381672...5834, 0.1147901 , 0.05825314, 0.07832419, -0.06823731, -0.08784645, -0.1061781 , 0.01263295, 0.09170476]]) atol = 1e-09 check_svd = True check_usvh_A = False k = 5 m = 10 n = 10 rtol = 2e-13 s = array([0.02135519, 0.10442037, 0.29938773, 0.41556561, 0.65849412]) u = array([[ 0.08686126, -0.00389096, 0.53386385, 0.06731701, 0.19658035], [ 0.11613651, 0.43228985, -0.4015185...536, 0.07195505, 0.65519568, -0.16614812], [ 0.25507377, -0.23630281, -0.3964507 , -0.22621772, -0.30488815]]) uh_u = array([[ 1.00000000e+00, 5.02910907e-17, -2.31613233e-17, 9.12711355e-17, 2.54531137e-16], [ 5.02910...7.50437622e-17], [ 2.54531137e-16, 3.54801430e-17, -1.46426836e-16, 7.50437622e-17, 1.00000000e+00]]) vh = array([[ 0.16662834, -0.48463041, -0.42747187, -0.07387373, -0.03259945, 0.24556963, 0.13983001, 0.51042596...2799, -0.2757074 , -0.14210248, -0.03188506, 0.29853199, -0.0455909 , 0.56275993, 0.01724093, -0.43082898]]) vh_v = array([[ 1.00000000e+00, 2.50527500e-16, 4.34873525e-02, 2.79685063e-01, 9.40966200e-01], [ 2.50527...1.12449644e-02], [ 9.40966200e-01, 1.46943324e-14, -2.91463101e-03, -1.12449644e-02, 9.78476685e-01]]) which = 'SM' ___________________ Test_SVDS_ARPACK.test_svds_parameter_tol ___________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:341: in test_svds_parameter_tol assert error < accuracy E assert np.float64(0.5058797936640906) < 2.5e-15 A = _ = array([[-1.16814697e-01, 4.10985262e-01, -1.30231839e-01, ..., -9.61414459e-02, -8.84343221e-02, -8.31654985e...6146363e-02, 4.49071731e-03, ..., -2.12860770e-03, -2.52212822e-02, -3.20390895e-02]], shape=(100, 100)) accuracies = {'arpack': [2.5e-15, 1e-10, 1e-10], 'lobpcg': [2e-12, 0.04, 2], 'propack': [1e-12, 1e-06, 0.0001]} accuracy = 2.5e-15 err = .err at 0x7ffb39c27740> error = np.float64(0.5058797936640906) k = 3 n = 100 rng = Generator(PCG64) at 0x7FFB3A385540 s = array([2.50832690e-01, 1.68703472e-01, 1.06611620e-01, 1.05988382e-01, 9.70794775e-02, 9.66288940e-02, 9.033001...2.60252521e-03, 1.68887784e-03, 1.37826802e-03, 1.23256703e-03, 8.51854490e-04, 4.25833531e-04, 7.43826407e-31]) self = tol = 0.0001 tols = [0.0001, 0.01, 1.0] _________________________ Test_SVDS_ARPACK.test_svd_v0 _________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:362: in test_svd_v0 _check_svds(A, k, *res1a) A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) idx = 2 k = 1 n = 100 res1a = (array([[-0.10985756], [-0.10620657], [-0.108685 ], [-0.09953867], [-0.10622065], ...576, -0.09244331, -0.10042804, -0.09984006, -0.10149374, -0.09740796, -0.10424221, -0.10583108, -0.10573306]])) res2a = (array([[-0.10985756], [-0.10620657], [-0.108685 ], [-0.09953867], [-0.10622065], ...576, -0.09244331, -0.10042804, -0.09984006, -0.10149374, -0.09740796, -0.10424221, -0.10583108, -0.10573306]])) rng = Generator(PCG64) at 0x7FFB3A385D20 self = v0a = array([0.56800691, 0.96248607, 0.76620516, 0.83313226, 0.56943483, 0.60758278, 0.6291627 , 0.26593743, 0.624004...13, 0.18254685, 0.90915402, 0.1370293 , 0.69212858, 0.95074203, 0.6070844 , 0.68496465, 0.76751498, 0.24129202]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 100 / 100 (100%) E Max absolute difference among violations: 0.06619726 E Max relative difference among violations: 2.43965461 E ACTUAL: array([[0.109858], E [0.106207], E [0.108685],... E DESIRED: array([[0.119969], E [0.090086], E [0.075719],... A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) A_rebuilt = array([[0.55456755, 0.5179022 , 0.54065291, ..., 0.57386071, 0.58260754, 0.58206793], [0.53613714, 0.50...6431], [0.52600049, 0.49122385, 0.51280261, ..., 0.54429981, 0.55259607, 0.55208425]], shape=(100, 100)) atol = 1e-10 check_svd = True check_usvh_A = False k = 1 m = 100 n = 100 rtol = 1e-07 s = array([50.110981]) s2 = array([44.18457103]) u = array([[-0.10985756], [-0.10620657], [-0.108685 ], [-0.09953867], [-0.10622065], [...571693], [-0.10171938], [-0.09808839], [-0.09958263], [-0.0950033 ], [-0.10419854]]) u2 = array([[-0.11996892], [-0.09008622], [-0.07571893], [-0.13775214], [-0.0614965 ], [...889387], [-0.10245398], [-0.06055117], [-0.11922384], [-0.10754093], [-0.11815058]]) uh_u = array([[1.]]) vh = array([[-0.1007376 , -0.09407731, -0.09820999, -0.09227948, -0.10034118, -0.10276925, -0.10554759, -0.09118638...1576, -0.09244331, -0.10042804, -0.09984006, -0.10149374, -0.09740796, -0.10424221, -0.10583108, -0.10573306]]) vh2 = array([[-0.12945794, -0.02731772, -0.0978665 , -0.09042068, -0.10420046, -0.10171941, -0.10795285, -0.08972567...9331, -0.09291809, -0.10083593, -0.09843892, -0.10422477, -0.09553719, -0.10313795, -0.10558313, -0.10735755]]) vh_v = array([[1.]]) which = 'LM' ________________________ Test_SVDS_ARPACK.test_svd_rng _________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:394: in test_svd_rng _check_svds(A, k, *res1a) A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) idx = 2 k = 1 n = 100 res1a = (array([[-0.10985756], [-0.10620657], [-0.108685 ], [-0.09953867], [-0.10622065], ...576, -0.09244331, -0.10042804, -0.09984006, -0.10149374, -0.09740796, -0.10424221, -0.10583108, -0.10573306]])) res2a = (array([[-0.10985756], [-0.10620657], [-0.108685 ], [-0.09953867], [-0.10622065], ...576, -0.09244331, -0.10042804, -0.09984006, -0.10149374, -0.09740796, -0.10424221, -0.10583108, -0.10573306]])) rng = Generator(PCG64) at 0x7FFB3A386500 self = lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 100 / 100 (100%) E Max absolute difference among violations: 0.06619726 E Max relative difference among violations: 2.43965461 E ACTUAL: array([[0.109858], E [0.106207], E [0.108685],... E DESIRED: array([[0.119969], E [0.090086], E [0.075719],... A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) A_rebuilt = array([[0.55456755, 0.5179022 , 0.54065291, ..., 0.57386071, 0.58260754, 0.58206793], [0.53613714, 0.50...6431], [0.52600049, 0.49122385, 0.51280261, ..., 0.54429981, 0.55259607, 0.55208425]], shape=(100, 100)) atol = 1e-10 check_svd = True check_usvh_A = False k = 1 m = 100 n = 100 rtol = 1e-07 s = array([50.110981]) s2 = array([44.18457103]) u = array([[-0.10985756], [-0.10620657], [-0.108685 ], [-0.09953867], [-0.10622065], [...571693], [-0.10171938], [-0.09808839], [-0.09958263], [-0.0950033 ], [-0.10419854]]) u2 = array([[-0.11996892], [-0.09008622], [-0.07571893], [-0.13775214], [-0.0614965 ], [...889387], [-0.10245398], [-0.06055117], [-0.11922384], [-0.10754093], [-0.11815058]]) uh_u = array([[1.]]) vh = array([[-0.1007376 , -0.09407731, -0.09820999, -0.09227948, -0.10034118, -0.10276925, -0.10554759, -0.09118638...1576, -0.09244331, -0.10042804, -0.09984006, -0.10149374, -0.09740796, -0.10424221, -0.10583108, -0.10573306]]) vh2 = array([[-0.12945794, -0.02731772, -0.0978665 , -0.09042068, -0.10420046, -0.10171941, -0.10795285, -0.08972567...9331, -0.09291809, -0.10083593, -0.09843892, -0.10422477, -0.09553719, -0.10313795, -0.10558313, -0.10735755]]) vh_v = array([[1.]]) which = 'LM' _______________________ Test_SVDS_ARPACK.test_svd_rng_2 ________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:421: in test_svd_rng_2 _check_svds(A, k, *res1a) A = array([[0.58623666, 0.79920574, 0.56865463, ..., 0.96826324, 0.28618845, 0.41156489], [0.38116379, 0.30...5849], [0.91592469, 0.82908083, 0.13268786, ..., 0.81935226, 0.91491988, 0.72561311]], shape=(100, 100)) idx = 2 k = 1 n = 100 res1a = (array([[-0.10085499], [-0.10200304], [-0.11497707], [-0.09954223], [-0.10170667], ...074, -0.097373 , -0.10709743, -0.09716304, -0.09773145, -0.10639416, -0.0955794 , -0.10112526, -0.10908323]])) res2a = (array([[-0.10085499], [-0.10200304], [-0.11497707], [-0.09954223], [-0.10170667], ...074, -0.097373 , -0.10709743, -0.09716304, -0.09773145, -0.10639416, -0.0955794 , -0.10112526, -0.10908323]])) rng = Generator(PCG64) at 0x7FFB3A386CE0 rng_2 = Generator(PCG64) at 0x7FFB3A386DC0 self = lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 100 / 100 (100%) E Max absolute difference among violations: 0.06945944 E Max relative difference among violations: 1.97629277 E ACTUAL: array([[0.100855], E [0.102003], E [0.114977],... E DESIRED: array([[0.106843], E [0.081894], E [0.074879],... A = array([[0.58623666, 0.79920574, 0.56865463, ..., 0.96826324, 0.28618845, 0.41156489], [0.38116379, 0.30...5849], [0.91592469, 0.82908083, 0.13268786, ..., 0.81935226, 0.91491988, 0.72561311]], shape=(100, 100)) A_rebuilt = array([[0.53172244, 0.51110592, 0.50021961, ..., 0.48700825, 0.51526618, 0.55581465], [0.53777513, 0.51...9149], [0.57753584, 0.555143 , 0.54331872, ..., 0.52896906, 0.55966171, 0.60370385]], shape=(100, 100)) atol = 1e-10 check_svd = True check_usvh_A = False k = 1 m = 100 n = 100 rtol = 1e-07 s = array([50.52131171]) s2 = array([44.93575437]) u = array([[-0.10085499], [-0.10200304], [-0.11497707], [-0.09954223], [-0.10170667], [...867566], [-0.09145803], [-0.1010571 ], [-0.09780949], [-0.11259088], [-0.10954469]]) u2 = array([[-0.10684337], [-0.08189442], [-0.07487851], [-0.13637249], [-0.14056418], [...216605], [-0.0859136 ], [-0.08914942], [-0.10607318], [-0.12537257], [-0.12199291]]) uh_u = array([[1.]]) vh = array([[-0.10435493, -0.10030877, -0.09817224, -0.10168888, -0.10845822, -0.08622759, -0.10183768, -0.09333673...6074, -0.097373 , -0.10709743, -0.09716304, -0.09773145, -0.10639416, -0.0955794 , -0.10112526, -0.10908323]]) vh2 = array([[-0.13180154, -0.04236841, -0.0978847 , -0.09876181, -0.10856797, -0.08596741, -0.10246739, -0.09542081...8896, -0.09396044, -0.10804037, -0.09729853, -0.09570317, -0.1057523 , -0.09464236, -0.10168687, -0.11178387]]) vh_v = array([[1.]]) which = 'LM' _______________________ Test_SVDS_ARPACK.test_svd_rng_3 ________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:437: in test_svd_rng_3 _check_svds(A, k, *res1a, atol=2e-7) A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) k = 5 n = 100 res1a = (array([[ 0.01925415, -0.13430877, 0.08241579, 0.19650213, -0.11193904], [ 0.02303401, 0.08594913, -0.098240...58 , -0.09234538, -0.10026856, -0.09971341, -0.1013256 , -0.09731859, -0.1040189 , -0.10566041, -0.10557279]])) res2a = (array([[ 4.10433997e-02, -1.34308766e-01, -7.87789356e-02, -1.97285458e-01, 1.07211408e-01], [ 2.7181...865, 0.09177167, 0.10041872, 0.09921558, 0.10090385, 0.09713635, 0.10389771, 0.10562069, 0.10509167]])) rng1 = Generator(PCG64) at 0x7FFB3A3875A0 rng2 = Generator(PCG64) at 0x7FFB3A387680 self = lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:57: in _check_svds assert_allclose(vh_v, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2e-07 E E Mismatched elements: 15 / 25 (60%) E Max absolute difference among violations: 0.98625045 E Max relative difference among violations: 0.00324694 E ACTUAL: array([[ 1.000000e+00, 3.369699e-17, -1.132044e-02, 3.052144e-02, E 9.862505e-01], E [ 3.369699e-17, 1.000000e+00, -1.362489e-17, -7.033486e-17,... E DESIRED: array([[1., 0., 0., 0., 0.], E [0., 1., 0., 0., 0.], E [0., 0., 1., 0., 0.],... A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) A_rebuilt = array([[0.77959129, 0.46566826, 0.42889208, ..., 0.75001294, 0.66184304, 0.62764848], [0.76026903, 0.49...1511], [0.51925033, 0.47993736, 0.37210277, ..., 0.53803122, 0.6264233 , 0.53732914]], shape=(100, 100)) atol = 2e-07 check_svd = True check_usvh_A = False k = 5 m = 100 n = 100 rtol = 1e-07 s = array([ 0.79751146, 5.18815419, 5.39144874, 5.64355507, 50.38002181]) u = array([[ 0.01925415, -0.13430877, 0.08241579, 0.19650213, -0.11193904], [ 0.02303401, 0.08594913, -0.0982403...495, -0.03950014, 0.15719893, -0.08439214], [-0.00185752, -0.07616544, 0.05744538, -0.0362799 , -0.10474559]]) uh_u = array([[ 1.00000000e+00, -4.70201062e-17, 1.98337512e-17, 6.47863758e-17, -2.50834472e-16], [-4.70201...2.08966258e-17], [-2.50834472e-16, 1.88108235e-17, 7.53616693e-16, -2.08966258e-17, 1.00000000e+00]]) vh = array([[-0.08989031, -0.0807254 , -0.08159238, -0.07714532, -0.08343365, -0.12749696, -0.09377288, -0.06762407...458 , -0.09234538, -0.10026856, -0.09971341, -0.1013256 , -0.09731859, -0.1040189 , -0.10566041, -0.10557279]]) vh_v = array([[ 1.00000000e+00, 3.36969940e-17, -1.13204370e-02, 3.05214358e-02, 9.86250452e-01], [ 3.36969...4.13557602e-03], [ 9.86250452e-01, 9.62590650e-17, 1.68219429e-03, -4.13557602e-03, 9.96753058e-01]]) which = 'LM' ________ Test_SVDS_ARPACK.test_svd_return_singular_vectors[shape0-True] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:537: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 10 / 10 (100%) E Max absolute difference among violations: 0.04934199 E Max relative difference among violations: 0.21598718 E ACTUAL: array([[0.64919 , 0.369453], E [0.522301, 0.499148], E [0.410556, 0.369421],... E DESIRED: array([[0.688874, 0.378529], E [0.523338, 0.497621], E [0.383827, 0.373171],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...994, 0.98083534], [0.68554198, 0.65045928, 0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 5 N = 7 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB3A387E60 rsv = True s = array([1.23553345, 3.08390303]) s2 = array([1.22290284, 3.26220386]) self = shape = (5, 7) u = array([[ 0.68887426, 0.3785286 ], [-0.52333794, 0.49762092], [-0.38382671, 0.37317138], [ 0.31898039, 0.5182748 ], [-0.04998232, 0.44857983]]) u2 = array([[ 0.64919046, -0.36945311], [-0.52230146, -0.49914775], [-0.41055566, -0.36942121], [ 0.36832238, -0.5172146 ], [-0.03918678, -0.45866432]]) vh = array([[-0.16910028, -0.20313403, -0.61388183, -0.44832571, 0.5081296 , 0.22319474, 0.54155643], [ 0.38518883, 0.36014582, 0.47569865, 0.36435658, 0.21009746, 0.5671986 , 0.31953341]]) vh2 = array([[-0.20292676, 0.03320542, -0.4945419 , -0.34857418, 0.44117289, 0.2536702 , 0.57676718], [-0.38247733, -0.33140567, -0.44486965, -0.34027164, -0.20628988, -0.5419753 , -0.30642265]]) _______ Test_SVDS_ARPACK.test_svd_return_singular_vectors[shape0-False] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:520: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.17830083 E Max relative difference among violations: 0.05781661 E ACTUAL: array([1.222903, 3.262204]) E DESIRED: array([1.235533, 3.083903]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...994, 0.98083534], [0.68554198, 0.65045928, 0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 5 N = 7 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB3A3C0740 rsv = False s = array([1.23553345, 3.08390303]) s2 = array([1.22290284, 3.26220386]) self = shape = (5, 7) u = array([[ 0.68887426, 0.3785286 ], [-0.52333794, 0.49762092], [-0.38382671, 0.37317138], [ 0.31898039, 0.5182748 ], [-0.04998232, 0.44857983]]) vh = array([[-0.16910028, -0.20313403, -0.61388183, -0.44832571, 0.5081296 , 0.22319474, 0.54155643], [ 0.38518883, 0.36014582, 0.47569865, 0.36435658, 0.21009746, 0.5671986 , 0.31953341]]) _________ Test_SVDS_ARPACK.test_svd_return_singular_vectors[shape0-u] __________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:524: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 10 / 10 (100%) E Max absolute difference among violations: 0.04934199 E Max relative difference among violations: 0.21598718 E ACTUAL: array([[0.64919 , 0.369453], E [0.522301, 0.499148], E [0.410556, 0.369421],... E DESIRED: array([[0.688874, 0.378529], E [0.523338, 0.497621], E [0.383827, 0.373171],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...994, 0.98083534], [0.68554198, 0.65045928, 0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 5 N = 7 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB3A3C0F20 rsv = 'u' s = array([1.23553345, 3.08390303]) s2 = array([1.22290284, 3.26220386]) self = shape = (5, 7) u = array([[ 0.68887426, 0.3785286 ], [-0.52333794, 0.49762092], [-0.38382671, 0.37317138], [ 0.31898039, 0.5182748 ], [-0.04998232, 0.44857983]]) u2 = array([[ 0.64919046, -0.36945311], [-0.52230146, -0.49914775], [-0.41055566, -0.36942121], [ 0.36832238, -0.5172146 ], [-0.03918678, -0.45866432]]) vh = array([[-0.16910028, -0.20313403, -0.61388183, -0.44832571, 0.5081296 , 0.22319474, 0.54155643], [ 0.38518883, 0.36014582, 0.47569865, 0.36435658, 0.21009746, 0.5671986 , 0.31953341]]) vh2 = None _________ Test_SVDS_ARPACK.test_svd_return_singular_vectors[shape0-vh] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:538: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.17830083 E Max relative difference among violations: 0.05781661 E ACTUAL: array([1.222903, 3.262204]) E DESIRED: array([1.235533, 3.083903]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...994, 0.98083534], [0.68554198, 0.65045928, 0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 5 N = 7 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB3A3C1700 rsv = 'vh' s = array([1.23553345, 3.08390303]) s2 = array([1.22290284, 3.26220386]) self = shape = (5, 7) u = array([[ 0.68887426, 0.3785286 ], [-0.52333794, 0.49762092], [-0.38382671, 0.37317138], [ 0.31898039, 0.5182748 ], [-0.04998232, 0.44857983]]) u2 = None vh = array([[-0.16910028, -0.20313403, -0.61388183, -0.44832571, 0.5081296 , 0.22319474, 0.54155643], [ 0.38518883, 0.36014582, 0.47569865, 0.36435658, 0.21009746, 0.5671986 , 0.31953341]]) vh2 = array([[-0.20292676, 0.03320542, -0.4945419 , -0.34857418, 0.44117289, 0.2536702 , 0.57676718], [-0.38247733, -0.33140567, -0.44486965, -0.34027164, -0.20628988, -0.5419753 , -0.30642265]]) ________ Test_SVDS_ARPACK.test_svd_return_singular_vectors[shape1-True] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:537: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 12 / 12 (100%) E Max absolute difference among violations: 0.53206328 E Max relative difference among violations: 4.57152359 E ACTUAL: array([[0.64845 , 0.354156], E [0.514068, 0.454872], E [0.261324, 0.426439],... E DESIRED: array([[0.116386, 0.465918], E [0.492601, 0.36762 ], E [0.712502, 0.500613],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558], [0.60663578, 0.7294965...8554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432, 0.31024188]]) M = 6 N = 6 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB3A3C1EE0 rsv = True s = array([1.05729162, 3.21186444]) s2 = array([1.1957827 , 3.27738834]) self = shape = (6, 6) u = array([[ 0.11638642, -0.46591811], [ 0.4926005 , -0.36762025], [-0.7125021 , -0.50061258], [ 0.28999188, -0.26589221], [-0.20242099, -0.41968395], [ 0.3332719 , -0.38772338]]) u2 = array([[-0.6484497 , -0.35415637], [ 0.51406798, -0.45487166], [-0.26132394, -0.42643877], [-0.36916108, -0.27817444], [ 0.30260314, -0.53210346], [ 0.13823286, -0.35397726]]) vh = array([[-0.04365159, 0.21154233, -0.0742191 , 0.4413241 , -0.06173673, -0.41258906], [-0.4837988 , -0.24829873, -0.32795773, -0.35872099, -0.54870342, -0.38897335]]) vh2 = array([[-0.12920775, 0.17153207, 0.31125522, 0.64788288, -0.25174307, -0.61145359], [-0.46429381, -0.27494528, -0.35371511, -0.40213924, -0.53839203, -0.36351069]]) _______ Test_SVDS_ARPACK.test_svd_return_singular_vectors[shape1-False] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:520: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.13849108 E Max relative difference among violations: 0.13098664 E ACTUAL: array([1.195783, 3.277388]) E DESIRED: array([1.057292, 3.211864]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558], [0.60663578, 0.7294965...8554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432, 0.31024188]]) M = 6 N = 6 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB3A3C26C0 rsv = False s = array([1.05729162, 3.21186444]) s2 = array([1.1957827 , 3.27738834]) self = shape = (6, 6) u = array([[ 0.11638642, -0.46591811], [ 0.4926005 , -0.36762025], [-0.7125021 , -0.50061258], [ 0.28999188, -0.26589221], [-0.20242099, -0.41968395], [ 0.3332719 , -0.38772338]]) vh = array([[-0.04365159, 0.21154233, -0.0742191 , 0.4413241 , -0.06173673, -0.41258906], [-0.4837988 , -0.24829873, -0.32795773, -0.35872099, -0.54870342, -0.38897335]]) _________ Test_SVDS_ARPACK.test_svd_return_singular_vectors[shape1-u] __________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:524: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 12 / 12 (100%) E Max absolute difference among violations: 0.53206328 E Max relative difference among violations: 4.57152359 E ACTUAL: array([[0.64845 , 0.354156], E [0.514068, 0.454872], E [0.261324, 0.426439],... E DESIRED: array([[0.116386, 0.465918], E [0.492601, 0.36762 ], E [0.712502, 0.500613],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558], [0.60663578, 0.7294965...8554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432, 0.31024188]]) M = 6 N = 6 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB3A3C2EA0 rsv = 'u' s = array([1.05729162, 3.21186444]) s2 = array([1.1957827 , 3.27738834]) self = shape = (6, 6) u = array([[ 0.11638642, -0.46591811], [ 0.4926005 , -0.36762025], [-0.7125021 , -0.50061258], [ 0.28999188, -0.26589221], [-0.20242099, -0.41968395], [ 0.3332719 , -0.38772338]]) u2 = array([[-0.6484497 , -0.35415637], [ 0.51406798, -0.45487166], [-0.26132394, -0.42643877], [-0.36916108, -0.27817444], [ 0.30260314, -0.53210346], [ 0.13823286, -0.35397726]]) vh = array([[-0.04365159, 0.21154233, -0.0742191 , 0.4413241 , -0.06173673, -0.41258906], [-0.4837988 , -0.24829873, -0.32795773, -0.35872099, -0.54870342, -0.38897335]]) vh2 = None _________ Test_SVDS_ARPACK.test_svd_return_singular_vectors[shape1-vh] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:538: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.13849108 E Max relative difference among violations: 0.13098664 E ACTUAL: array([1.195783, 3.277388]) E DESIRED: array([1.057292, 3.211864]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558], [0.60663578, 0.7294965...8554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432, 0.31024188]]) M = 6 N = 6 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB3A3C3680 rsv = 'vh' s = array([1.05729162, 3.21186444]) s2 = array([1.1957827 , 3.27738834]) self = shape = (6, 6) u = array([[ 0.11638642, -0.46591811], [ 0.4926005 , -0.36762025], [-0.7125021 , -0.50061258], [ 0.28999188, -0.26589221], [-0.20242099, -0.41968395], [ 0.3332719 , -0.38772338]]) u2 = None vh = array([[-0.04365159, 0.21154233, -0.0742191 , 0.4413241 , -0.06173673, -0.41258906], [-0.4837988 , -0.24829873, -0.32795773, -0.35872099, -0.54870342, -0.38897335]]) vh2 = array([[-0.12920775, 0.17153207, 0.31125522, 0.64788288, -0.25174307, -0.61145359], [-0.46429381, -0.27494528, -0.35371511, -0.40213924, -0.53839203, -0.36351069]]) ________ Test_SVDS_ARPACK.test_svd_return_singular_vectors[shape2-True] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:537: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 14 / 14 (100%) E Max absolute difference among violations: 0.58731158 E Max relative difference among violations: 43.26409092 E ACTUAL: array([[0.474024, 0.258999], E [0.189229, 0.516458], E [0.517918, 0.359528],... E DESIRED: array([[0.010709, 0.322976], E [0.094669, 0.53322 ], E [0.434498, 0.410499],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024], [0.91275558, 0.60663578, 0.72949656, 0.543... 0.99720994, 0.98083534, 0.68554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 7 N = 5 k = 2 respect_u = False respect_vh = True rng = Generator(PCG64) at 0x7FFB3A3C3E60 rsv = True s = array([1.13635931, 3.07456143]) s2 = array([1.0906468 , 3.26945398]) self = shape = (7, 5) u = array([[-0.01070899, -0.32297583], [ 0.09466891, -0.53321965], [ 0.43449844, -0.41049882], [-0.17...-0.19198992], [ 0.79554732, -0.01715354], [-0.37352392, -0.52668482], [-0.02681302, -0.3581939 ]]) u2 = array([[-0.47402367, -0.25899929], [-0.18922852, -0.51645814], [-0.51791839, -0.35952798], [ 0.40...-0.31210323], [ 0.20823574, -0.29040197], [ 0.50128151, -0.50074025], [-0.09963134, -0.32318333]]) vh = array([[ 0.23313061, -0.0296908 , 0.56015762, 0.29923244, 0.63808378], [-0.4911965 , -0.34074441, -0.44339979, -0.3082785 , -0.51610486]]) vh2 = array([[-0.63801451, 0.54584724, 0.21766421, 0.36748752, -0.33550484], [-0.43045687, -0.40211309, -0.48759655, -0.35328614, -0.53893455]]) _______ Test_SVDS_ARPACK.test_svd_return_singular_vectors[shape2-False] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:520: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.19489255 E Max relative difference among violations: 0.06338873 E ACTUAL: array([1.090647, 3.269454]) E DESIRED: array([1.136359, 3.074561]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024], [0.91275558, 0.60663578, 0.72949656, 0.543... 0.99720994, 0.98083534, 0.68554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 7 N = 5 k = 2 respect_u = False respect_vh = True rng = Generator(PCG64) at 0x7FFB3A3AC740 rsv = False s = array([1.13635931, 3.07456143]) s2 = array([1.0906468 , 3.26945398]) self = shape = (7, 5) u = array([[-0.01070899, -0.32297583], [ 0.09466891, -0.53321965], [ 0.43449844, -0.41049882], [-0.17...-0.19198992], [ 0.79554732, -0.01715354], [-0.37352392, -0.52668482], [-0.02681302, -0.3581939 ]]) vh = array([[ 0.23313061, -0.0296908 , 0.56015762, 0.29923244, 0.63808378], [-0.4911965 , -0.34074441, -0.44339979, -0.3082785 , -0.51610486]]) _________ Test_SVDS_ARPACK.test_svd_return_singular_vectors[shape2-u] __________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:537: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 14 / 14 (100%) E Max absolute difference among violations: 0.58731158 E Max relative difference among violations: 43.26409092 E ACTUAL: array([[0.474024, 0.258999], E [0.189229, 0.516458], E [0.517918, 0.359528],... E DESIRED: array([[0.010709, 0.322976], E [0.094669, 0.53322 ], E [0.434498, 0.410499],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024], [0.91275558, 0.60663578, 0.72949656, 0.543... 0.99720994, 0.98083534, 0.68554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 7 N = 5 k = 2 respect_u = False respect_vh = True rng = Generator(PCG64) at 0x7FFB3A3ACF20 rsv = 'u' s = array([1.13635931, 3.07456143]) s2 = array([1.0906468 , 3.26945398]) self = shape = (7, 5) u = array([[-0.01070899, -0.32297583], [ 0.09466891, -0.53321965], [ 0.43449844, -0.41049882], [-0.17...-0.19198992], [ 0.79554732, -0.01715354], [-0.37352392, -0.52668482], [-0.02681302, -0.3581939 ]]) u2 = array([[-0.47402367, -0.25899929], [-0.18922852, -0.51645814], [-0.51791839, -0.35952798], [ 0.40...-0.31210323], [ 0.20823574, -0.29040197], [ 0.50128151, -0.50074025], [-0.09963134, -0.32318333]]) vh = array([[ 0.23313061, -0.0296908 , 0.56015762, 0.29923244, 0.63808378], [-0.4911965 , -0.34074441, -0.44339979, -0.3082785 , -0.51610486]]) vh2 = None _________ Test_SVDS_ARPACK.test_svd_return_singular_vectors[shape2-vh] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:531: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.19489255 E Max relative difference among violations: 0.06338873 E ACTUAL: array([1.090647, 3.269454]) E DESIRED: array([1.136359, 3.074561]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024], [0.91275558, 0.60663578, 0.72949656, 0.543... 0.99720994, 0.98083534, 0.68554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 7 N = 5 k = 2 respect_u = False respect_vh = True rng = Generator(PCG64) at 0x7FFB3A3AD700 rsv = 'vh' s = array([1.13635931, 3.07456143]) s2 = array([1.0906468 , 3.26945398]) self = shape = (7, 5) u = array([[-0.01070899, -0.32297583], [ 0.09466891, -0.53321965], [ 0.43449844, -0.41049882], [-0.17...-0.19198992], [ 0.79554732, -0.01715354], [-0.37352392, -0.52668482], [-0.02681302, -0.3581939 ]]) u2 = None vh = array([[ 0.23313061, -0.0296908 , 0.56015762, 0.29923244, 0.63808378], [-0.4911965 , -0.34074441, -0.44339979, -0.3082785 , -0.51610486]]) vh2 = array([[-0.63801451, 0.54584724, 0.21766421, 0.36748752, -0.33550484], [-0.43045687, -0.40211309, -0.48759655, -0.35328614, -0.53893455]]) _______________________ Test_SVDS_ARPACK.test_svd_linop ________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:616: in test_svd_linop assert_allclose(np.abs(U1), np.abs(U2)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 18 / 18 (100%) E Max absolute difference among violations: 0.22192998 E Max relative difference among violations: 11.5707762 E ACTUAL: array([[0.307512, 0.56656 , 0.023683], E [0.40822 , 0.539608, 0.357879], E [0.046826, 0.204897, 0.602901],... E DESIRED: array([[0.147885, 0.627886, 0.001884], E [0.280307, 0.608425, 0.37033 ], E [0.052859, 0.241241, 0.58879 ],... A = array([[ 0.51947584, -1.26875038, 0.24042003, -0.80395743, 0.0173441 , 0.39439383, 1.27913226], [ 0...60889302], [-0.06615728, 1.1521841 , -0.00729803, 0.69459216, -0.28570368, 0.63856574, 1.11261944]]) L = <6x7 CheckingLinearOperator with dtype=float64> U1 = array([[ 0.30751158, 0.56656011, 0.02368275], [ 0.40821966, 0.53960798, -0.35787897], [ 0.04682597, ...169497 , -0.4263375 ], [-0.42350792, 0.37262393, 0.54596258], [-0.25441556, -0.18208402, -0.16743316]]) U2 = array([[ 0.14788486, 0.62788623, -0.00188395], [ 0.28030724, 0.6084248 , 0.3703303 ], [-0.05285857, ...9501972, 0.49467909], [-0.54496467, 0.27628183, -0.49291434], [-0.18545174, -0.25103108, 0.16883951]]) VH1 = array([[-0.49218383, -0.51795929, 0.47378953, 0.03868992, 0.17017019, -0.40485884, 0.26576541], [ 0...25930287], [ 0.21339515, -0.20737758, -0.22506427, -0.1076311 , -0.69702413, -0.59985656, -0.05956632]]) VH2 = array([[-0.63173609, -0.15969519, 0.03965276, 0.16040423, 0.29003903, -0.61303898, 0.29692704], [ 0...43495406], [-0.24037873, 0.11129838, 0.00302753, 0.15521349, 0.71183657, 0.62823142, 0.06591152]]) k = 3 m = 7 n = 6 nmks = [(6, 7, 3), (9, 5, 4), (10, 8, 5)] reorder = .reorder at 0x7ffb3a1b93a0> s1 = array([2.17069423, 2.91699537, 3.4422817 ]) s2 = array([1.26394734, 1.99926833, 3.39026704]) self = solver = 'arpack' v0 = array([1., 1., 1., 1., 1., 1.]) _______________ Test_SVDS_ARPACK.test_small_sigma[float-shape0] ________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:770: in test_small_sigma u, _, vh = svd(A, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]]) dtype = rng = Generator(PCG64) at 0x7FFB39D6B4C0 self = shape = (20, 20) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319... 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]])] array = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]]) arrays = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319... 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]])] batch_shapes = [()] core_shapes = [(20, 20)] f = i = 0 kwargs = {'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (20, 20) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]]) a1 = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]]) check_finite = True compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 19 lapack_driver = 'gesdd' lwork = 1340 m = 20 max_mn = 20 min_mn = 20 n = 20 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 400 u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _______________ Test_SVDS_ARPACK.test_small_sigma[float-shape1] ________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:770: in test_small_sigma u, _, vh = svd(A, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196...9841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) dtype = rng = Generator(PCG64) at 0x7FFB39D6BCA0 self = shape = (20, 21) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319...841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]])] array = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196...9841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) arrays = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319...841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]])] batch_shapes = [()] core_shapes = [(20, 21)] f = i = 0 kwargs = {'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (20, 21) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196...9841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) a1 = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196...9841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) check_finite = True compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 19 lapack_driver = 'gesdd' lwork = 1372 m = 20 max_mn = 21 min_mn = 20 n = 21 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 420 u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, na... [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _______________ Test_SVDS_ARPACK.test_small_sigma[float-shape2] ________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:770: in test_small_sigma u, _, vh = svd(A, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) dtype = rng = Generator(PCG64) at 0x7FFB39E34580 self = shape = (21, 20) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319... 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]])] array = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) arrays = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319... 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]])] batch_shapes = [()] core_shapes = [(21, 20)] f = i = 0 kwargs = {'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (21, 20) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) a1 = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) check_finite = True compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 19 lapack_driver = 'gesdd' lwork = 1372 m = 21 max_mn = 21 min_mn = 20 n = 20 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 420 u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) __________________ Test_SVDS_ARPACK.test_small_sigma2[float] ___________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:798: in test_small_sigma2 assert_equal(nz.shape[1], dim) E AssertionError: E Items are not equal: E ACTUAL: 1 E DESIRED: 4 dim = 4 dtype = mat = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.20873058, 0.16266047, 0.0432..., 0.39618705, 0.43422147, 0.94440681, 0.11885702, 0.94011348, 0.26331356, 0.06472523, 0.04491724, 0.40666401]]) nz = array([[ 0.09076289], [ 0.04512221], [-0.10196632], [ 0.00563948], [ 0.00927621], [ 0.0045792 ], [-0.41739243], [-0.28016768], [ 0.85106022], [ 0.04665041]]) rng = Generator(PCG64) at 0x7FFB39E34D60 self = size = 10 x = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 ], [0.14709222, 0.2662157...6076074, 0.78560949], [0.9506525 , 0.39618705, 0.43422147, 0.94440681, 0.11885702, 0.94011348]]) y = array([[0.20873058, 0.16266047, 0.04320398, 0.36305945], [0.04074189, 0.04349176, 0.03306512, 0.12853487], ...36], [0.1786513 , 0.07866283, 0.09082089, 0.38187172], [0.26331356, 0.06472523, 0.04491724, 0.40666401]]) _____________ Test_SVDS_ARPACK.test_svds_input_validation_ncv_1[4] _____________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:844: in test_svds_input_validation_ncv_1 _check_svds(A, k, u, s, vh) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...834, 0.52535432], [0.31024188, 0.48583536, 0.88948783, 0.93404352, 0.3577952 , 0.57152983, 0.32186939]]) k = 3 ncv = 4 rng = Generator(PCG64) at 0x7FFB39E35540 s = array([0.84866727, 1.26374494, 3.58996196]) self = u = array([[-0.5393516 , 0.70501095, -0.32062884], [-0.15636622, -0.43150979, -0.45916841], [-0.4368287 , -...7507943, -0.46985529], [-0.06787534, 0.03629498, -0.41322459], [ 0.2897521 , -0.24584536, -0.42278789]]) vh = array([[-0.7704646 , 0.25486913, 0.09147605, 0.30988424, -0.27246964, -0.07016523, 0.39732487], [-0...56296648], [-0.35115866, -0.33015797, -0.47388599, -0.3925275 , -0.20933486, -0.51217415, -0.28791337]]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 18 / 18 (100%) E Max absolute difference among violations: 0.61429801 E Max relative difference among violations: 27.53751683 E ACTUAL: array([[0.539352, 0.705011, 0.320629], E [0.156366, 0.43151 , 0.459168], E [0.436829, 0.338108, 0.340725],... E DESIRED: array([[0.910559, 0.238824, 0.332067], E [0.285141, 0.40777 , 0.367019], E [0.19939 , 0.534394, 0.292152],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...834, 0.52535432], [0.31024188, 0.48583536, 0.88948783, 0.93404352, 0.3577952 , 0.57152983, 0.32186939]]) A_rebuilt = array([[ 0.67423989, 0.29998237, 0.06832223, -0.04828832, 0.74052462, 0.89683354, 0.65111106], [ 0...43004271], [ 0.37233839, 0.55101567, 0.89353866, 0.7969068 , 0.12001017, 0.66416139, 0.35979046]]) atol = 1e-10 check_svd = True check_usvh_A = False k = 3 m = 7 n = 6 rtol = 1e-07 s = array([0.84866727, 1.26374494, 3.58996196]) s2 = array([1.0824377 , 1.25023851, 3.40979422]) u = array([[-0.5393516 , 0.70501095, -0.32062884], [-0.15636622, -0.43150979, -0.45916841], [-0.4368287 , -...7507943, -0.46985529], [-0.06787534, 0.03629498, -0.41322459], [ 0.2897521 , -0.24584536, -0.42278789]]) u2 = array([[ 0.9105591 , 0.23882364, 0.33206741], [-0.28514113, 0.40777015, 0.36701853], [-0.19938964, ...6771018, 0.56189394], [-0.11724198, -0.15433195, 0.44206923], [-0.18861899, 0.14647286, 0.39815305]]) uh_u = array([[ 1.00000000e+00, -1.63458740e-16, 8.37026675e-17], [-1.63458740e-16, 1.00000000e+00, -1.68079821e-16], [ 8.37026675e-17, -1.68079821e-16, 1.00000000e+00]]) vh = array([[-0.7704646 , 0.25486913, 0.09147605, 0.30988424, -0.27246964, -0.07016523, 0.39732487], [-0...56296648], [-0.35115866, -0.33015797, -0.47388599, -0.3925275 , -0.20933486, -0.51217415, -0.28791337]]) vh2 = array([[ 0.08035353, -0.14747984, -0.63081738, -0.53447473, 0.55132998, 0.26312353, 0.36417605], [ 0...4070601 ], [ 0.34272818, 0.34802335, 0.4768622 , 0.39549948, 0.226016 , 0.53926327, 0.33072245]]) vh_v = array([[ 1.00000000e+00, -1.28629327e-17, -5.72797837e-17], [-1.28629327e-17, 1.00000000e+00, -2.60329756e-16], [-5.72797837e-17, -2.60329756e-16, 1.00000000e+00]]) which = 'LM' ____________ Test_SVDS_ARPACK.test_svds_input_validation_ncv_1[5_0] ____________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:844: in test_svds_input_validation_ncv_1 _check_svds(A, k, u, s, vh) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...834, 0.52535432], [0.31024188, 0.48583536, 0.88948783, 0.93404352, 0.3577952 , 0.57152983, 0.32186939]]) k = 3 ncv = 5 rng = Generator(PCG64) at 0x7FFB39E35D20 s = array([0.84866727, 1.26374494, 3.58996196]) self = u = array([[-0.5393516 , 0.70501095, 0.32062884], [-0.15636622, -0.43150979, 0.45916841], [-0.4368287 , -...7507943, 0.46985529], [-0.06787534, 0.03629498, 0.41322459], [ 0.2897521 , -0.24584536, 0.42278789]]) vh = array([[-0.7704646 , 0.25486913, 0.09147605, 0.30988424, -0.27246964, -0.07016523, 0.39732487], [-0...56296648], [ 0.35115866, 0.33015797, 0.47388599, 0.3925275 , 0.20933486, 0.51217415, 0.28791337]]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 18 / 18 (100%) E Max absolute difference among violations: 0.61429801 E Max relative difference among violations: 27.53751683 E ACTUAL: array([[0.539352, 0.705011, 0.320629], E [0.156366, 0.43151 , 0.459168], E [0.436829, 0.338108, 0.340725],... E DESIRED: array([[0.910559, 0.238824, 0.332067], E [0.285141, 0.40777 , 0.367019], E [0.19939 , 0.534394, 0.292152],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...834, 0.52535432], [0.31024188, 0.48583536, 0.88948783, 0.93404352, 0.3577952 , 0.57152983, 0.32186939]]) A_rebuilt = array([[ 0.67423989, 0.29998237, 0.06832223, -0.04828832, 0.74052462, 0.89683354, 0.65111106], [ 0...43004271], [ 0.37233839, 0.55101567, 0.89353866, 0.7969068 , 0.12001017, 0.66416139, 0.35979046]]) atol = 1e-10 check_svd = True check_usvh_A = False k = 3 m = 7 n = 6 rtol = 1e-07 s = array([0.84866727, 1.26374494, 3.58996196]) s2 = array([1.0824377 , 1.25023851, 3.40979422]) u = array([[-0.5393516 , 0.70501095, 0.32062884], [-0.15636622, -0.43150979, 0.45916841], [-0.4368287 , -...7507943, 0.46985529], [-0.06787534, 0.03629498, 0.41322459], [ 0.2897521 , -0.24584536, 0.42278789]]) u2 = array([[ 0.9105591 , 0.23882364, 0.33206741], [-0.28514113, 0.40777015, 0.36701853], [-0.19938964, ...6771018, 0.56189394], [-0.11724198, -0.15433195, 0.44206923], [-0.18861899, 0.14647286, 0.39815305]]) uh_u = array([[ 1.00000000e+00, -2.21407205e-16, -1.20085662e-18], [-2.21407205e-16, 1.00000000e+00, 7.61439556e-17], [-1.20085662e-18, 7.61439556e-17, 1.00000000e+00]]) vh = array([[-0.7704646 , 0.25486913, 0.09147605, 0.30988424, -0.27246964, -0.07016523, 0.39732487], [-0...56296648], [ 0.35115866, 0.33015797, 0.47388599, 0.3925275 , 0.20933486, 0.51217415, 0.28791337]]) vh2 = array([[ 0.08035353, -0.14747984, -0.63081738, -0.53447473, 0.55132998, 0.26312353, 0.36417605], [ 0...4070601 ], [ 0.34272818, 0.34802335, 0.4768622 , 0.39549948, 0.226016 , 0.53926327, 0.33072245]]) vh_v = array([[1.00000000e+00, 1.17387144e-17, 4.50260387e-17], [1.17387144e-17, 1.00000000e+00, 2.24436977e-16], [4.50260387e-17, 2.24436977e-16, 1.00000000e+00]]) which = 'LM' ______________ Test_SVDS_LOBPCG.test_svds_parameter_k_which[LM-3] ______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:304: in test_svds_parameter_k_which _check_svds(A, k, *res, which=which, atol=1e-9, rtol=2e-13) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) k = 3 res = (array([[ 0.53137496, -0.02426458, -0.31783075], [ 0.06308732, 0.593292 , -0.2603729 ], [-0.29852945, ...54 , -0.21588656, -0.29722489, -0.31843038, -0.31819307, -0.28881893, -0.46509902, -0.29898348, -0.31066731]])) rng = Generator(PCG64) at 0x7FFB39E367A0 self = which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=2e-13, atol=1e-09 E E Mismatched elements: 30 / 30 (100%) E Max absolute difference among violations: 0.39456733 E Max relative difference among violations: 783.03279692 E ACTUAL: array([[0.531375, 0.024265, 0.317831], E [0.063087, 0.593292, 0.260373], E [0.298529, 0.274278, 0.323269],... E DESIRED: array([[1.418228e-01, 1.566015e-01, 3.514857e-01], E [3.561677e-01, 4.000042e-01, 3.183227e-01], E [6.442399e-01, 6.688448e-01, 7.597775e-02],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) A_rebuilt = array([[ 0.74737372, 0.38299487, 0.29278206, 0.27265922, 0.68903058, 0.94608907, 0.38643623, 0.71353767...2225, -0.04600463, 0.92119575, 0.78526736, 1.07770596, 0.27435433, 1.06951112, 0.85196693, 0.87499717]]) atol = 1e-09 check_svd = True check_usvh_A = False k = 3 m = 10 n = 10 rtol = 2e-13 s = array([1.26999904, 1.59849819, 5.71090105]) s2 = array([1.19300089, 1.9556069 , 5.36807778]) u = array([[ 0.53137496, -0.02426458, -0.31783075], [ 0.06308732, 0.593292 , -0.2603729 ], [-0.29852945, ...826545 , -0.38210697], [ 0.12697327, 0.09277105, -0.34919585], [ 0.15837359, -0.53003248, -0.42841613]]) u2 = array([[-1.41822767e-01, 1.56601465e-01, -3.51485673e-01], [ 3.56167720e-01, -4.00004201e-01, -3.18322667e-01]... [ 2.00904359e-01, -1.18325476e-04, -3.74929852e-01], [-1.60341735e-01, 4.81003541e-01, -4.60513977e-01]]) uh_u = array([[ 1.00000000e+00, 2.50599465e-16, 6.94930536e-17], [ 2.50599465e-16, 1.00000000e+00, -1.21342686e-17], [ 6.94930536e-17, -1.21342686e-17, 1.00000000e+00]]) vh = array([[ 0.18671618, -0.10199068, -0.10934924, -0.41421103, 0.16640367, 0.53308201, -0.17728763, -0.19159265...554 , -0.21588656, -0.29722489, -0.31843038, -0.31819307, -0.28881893, -0.46509902, -0.29898348, -0.31066731]]) vh2 = array([[ 0.17257935, 0.11034655, 0.24475142, -0.31825789, -0.13828301, -0.17477547, -0.11768796, -0.30968362...6756, -0.21822576, -0.27757021, -0.3243266 , -0.33152761, -0.27209669, -0.45826775, -0.28176626, -0.31471247]]) vh_v = array([[ 1.00000000e+00, -2.29844488e-17, -9.06711483e-18], [-2.29844488e-17, 1.00000000e+00, -3.81464584e-17], [-9.06711483e-18, -3.81464584e-17, 1.00000000e+00]]) which = 'LM' ______________ Test_SVDS_LOBPCG.test_svds_parameter_k_which[LM-5] ______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:304: in test_svds_parameter_k_which _check_svds(A, k, *res, which=which, atol=1e-9, rtol=2e-13) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) k = 5 res = (array([[-0.42206634, 0.45007818, -0.29263392, -0.31127576, -0.31783075], [ 0.02247626, 0.1175498 , 0.334774...54 , -0.21588656, -0.29722489, -0.31843038, -0.31819307, -0.28881893, -0.46509902, -0.29898348, -0.31066731]])) rng = Generator(PCG64) at 0x7FFB39E36CE0 self = which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:57: in _check_svds assert_allclose(vh_v, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=2e-13, atol=1e-09 E E Mismatched elements: 15 / 25 (60%) E Max absolute difference among violations: 0.8771367 E Max relative difference among violations: 0.19429101 E ACTUAL: array([[ 1.000000e+00, -2.029513e-02, -1.298606e-01, 8.771367e-01, E -4.175791e-17], E [-2.029513e-02, 9.995575e-01, -2.534177e-03, 1.180893e-02,... E DESIRED: array([[1., 0., 0., 0., 0.], E [0., 1., 0., 0., 0.], E [0., 0., 1., 0., 0.],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) A_rebuilt = array([[ 0.61062263, 0.24570465, 0.15095207, 0.1181339 , 0.88977818, 0.84836693, 0.57004724, 0.63820257...9295, 0.61121625, 0.98029253, 0.61665943, 0.70024243, 0.76052281, 1.24656208, 0.73335574, 0.65198147]]) atol = 1e-09 check_svd = True check_usvh_A = False k = 5 m = 10 n = 10 rtol = 2e-13 s = array([0.13118532, 0.9684468 , 1.08233036, 1.94960603, 5.71090105]) u = array([[-0.42206634, 0.45007818, -0.29263392, -0.31127576, -0.31783075], [ 0.02247626, 0.1175498 , 0.3347741...426, -0.32237751, -0.02192233, -0.34919585], [-0.5621547 , -0.08056913, -0.0319537 , 0.26593842, -0.42841613]]) uh_u = array([[ 1.00000000e+00, 3.14803457e-16, 2.09057050e-16, 2.96015456e-16, 2.78028617e-17], [ 3.14803...1.68640096e-17], [ 2.78028617e-17, -1.27932477e-16, -2.34670461e-17, 1.68640096e-17, 1.00000000e+00]]) vh = array([[-0.53753233, -0.02072755, 0.20646577, 0.59734539, -0.37633965, -0.14837859, 0.23590819, 0.25842462...554 , -0.21588656, -0.29722489, -0.31843038, -0.31819307, -0.28881893, -0.46509902, -0.29898348, -0.31066731]]) vh_v = array([[ 1.00000000e+00, -2.02951314e-02, -1.29860610e-01, 8.77136701e-01, -4.17579148e-17], [-2.02951...3.07936282e-17], [-4.17579148e-17, -4.31380937e-18, 3.60631414e-17, 3.07936282e-17, 1.00000000e+00]]) which = 'LM' ______________ Test_SVDS_LOBPCG.test_svds_parameter_k_which[SM-3] ______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:304: in test_svds_parameter_k_which _check_svds(A, k, *res, which=which, atol=1e-9, rtol=2e-13) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) k = 3 res = (array([[-0.00389096, 0.0109044 , 0.53787233], [ 0.43228985, -0.13837962, -0.39600172], [-0.23941782, ...644, -0.16734276, -0.52006152, -0.50489069, 0.09506734, 0.36226842, 0.22095202, 0.06513696, -0.00748277]])) rng = Generator(PCG64) at 0x7FFB39E374C0 self = which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=2e-13, atol=1e-09 E E Mismatched elements: 30 / 30 (100%) E Max absolute difference among violations: 0.67246531 E Max relative difference among violations: 48.5507415 E ACTUAL: array([[0.003891, 0.010904, 0.537872], E [0.43229 , 0.13838 , 0.396002], E [0.239418, 0.149559, 0.151241],... E DESIRED: array([[0.152488, 0.24414 , 0.030354], E [0.008724, 0.493199, 0.289267], E [0.181941, 0.174128, 0.126271],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) A_rebuilt = array([[-1.03312362e-02, 7.92881916e-02, -2.67711810e-02, -8.36232845e-02, -8.27122722e-02, 1.49890497e-02, ... 1.12981298e-01, -2.30280856e-02, -3.39569388e-02, -4.67577429e-03, -5.20441067e-02, -2.23199545e-02]]) atol = 1e-09 check_svd = True check_usvh_A = False k = 3 m = 10 n = 10 rtol = 2e-13 s = array([0.10442037, 0.22436325, 0.29918727]) s2 = array([0.00347171, 0.10994708, 0.22852246]) u = array([[-0.00389096, 0.0109044 , 0.53787233], [ 0.43228985, -0.13837962, -0.39600172], [-0.23941782, -...1433744, 0.46767195], [-0.25604536, -0.13622988, 0.08320741], [-0.23630281, -0.38480107, -0.38905094]]) u2 = array([[-0.1524881 , 0.24413973, -0.03035358], [ 0.00872419, -0.49319944, -0.28926727], [ 0.18194082, ...8582444, 0.29947073], [-0.20208574, 0.08879142, -0.59542016], [ 0.46803153, 0.1469246 , -0.139594 ]]) uh_u = array([[ 1.00000000e+00, 1.70432438e-17, 2.42209029e-16], [ 1.70432438e-17, 1.00000000e+00, -5.10618291e-17], [ 2.42209029e-16, -5.10618291e-17, 1.00000000e+00]]) vh = array([[ 0.02728559, -0.0108255 , 0.16356033, 0.09470632, -0.06630094, 0.58669385, 0.26188217, -0.54284172...2644, -0.16734276, -0.52006152, -0.50489069, 0.09506734, 0.36226842, 0.22095202, 0.06513696, -0.00748277]]) vh2 = array([[-0.87795024, 0.27578593, 0.15473879, 0.03179645, 0.17709528, 0.03117201, 0.12677202, 0.25970814...8459, -0.00778189, -0.08990198, -0.77048121, -0.19411261, -0.17769573, -0.53476961, 0.70666665, 0.38046054]]) vh_v = array([[ 1.00000000e+00, 1.23240554e-17, -2.28515916e-16], [ 1.23240554e-17, 1.00000000e+00, -1.73908378e-16], [-2.28515916e-16, -1.73908378e-16, 1.00000000e+00]]) which = 'SM' ______________ Test_SVDS_LOBPCG.test_svds_parameter_k_which[SM-5] ______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:304: in test_svds_parameter_k_which _check_svds(A, k, *res, which=which, atol=1e-9, rtol=2e-13) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) k = 5 res = (array([[-0.00389096, 0.18839222, -0.51640627, -0.00518107, -0.1831311 ], [ 0.43228985, -0.0832805 , 0.366344...115, 0.25493533, 0.13247459, -0.00172014, -0.29838005, 0.069918 , -0.5574076 , -0.01564802, 0.43611338]])) rng = Generator(PCG64) at 0x7FFB39E37CA0 self = which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:57: in _check_svds assert_allclose(vh_v, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=2e-13, atol=1e-09 E E Mismatched elements: 16 / 25 (64%) E Max absolute difference among violations: 0.47794492 E Max relative difference among violations: 0.24815637 E ACTUAL: array([[ 1.000000e+00, -4.430474e-13, 1.763757e-12, 1.577711e-12, E -1.721645e-12], E [-4.430474e-13, 1.248156e+00, -4.756224e-01, -4.325064e-01,... E DESIRED: array([[1., 0., 0., 0., 0.], E [0., 1., 0., 0., 0.], E [0., 0., 1., 0., 0.],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) A_rebuilt = array([[ 9.55929560e-03, 9.68855087e-03, -7.47954339e-02, -9.34155976e-02, -8.83373121e-02, 4.85160233e-02, ... 9.67347199e-02, -4.76590286e-02, -7.67526708e-02, -6.21696152e-02, -9.91733027e-03, 4.31867186e-02]]) atol = 1e-09 check_svd = True check_usvh_A = False k = 5 m = 10 n = 10 rtol = 2e-13 s = array([0.10442037, 0.10605632, 0.32833114, 0.42096853, 0.6325619 ]) u = array([[-0.00389096, 0.18839222, -0.51640627, -0.00518107, -0.1831311 ], [ 0.43228985, -0.0832805 , 0.3663449...201, -0.15883933, 0.67890757, 0.11333023], [-0.23630281, 0.21751946, 0.55485398, -0.01471815, 0.10475088]]) uh_u = array([[ 1.00000000e+00, 5.09006814e-17, -6.31806231e-17, 2.38862051e-17, 2.43228363e-17], [ 5.09006...2.08386757e-16], [ 2.43228363e-17, 1.67317977e-16, -4.13974021e-17, -2.08386757e-16, 1.00000000e+00]]) vh = array([[ 0.02728559, -0.0108255 , 0.16356033, 0.09470632, -0.06630094, 0.58669385, 0.26188217, -0.54284172...8115, 0.25493533, 0.13247459, -0.00172014, -0.29838005, 0.069918 , -0.5574076 , -0.01564802, 0.43611338]]) vh_v = array([[ 1.00000000e+00, -4.43047448e-13, 1.76375690e-12, 1.57771055e-12, -1.72164523e-12], [-4.43047...5.22522114e-02], [-1.72164523e-12, 4.77944916e-01, 8.90569173e-02, 5.22522114e-02, 9.66178899e-01]]) which = 'SM' ___________________ Test_SVDS_LOBPCG.test_svds_parameter_tol ___________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:341: in test_svds_parameter_tol assert error < accuracy E assert np.float64(0.5058797936639409) < 2e-12 A = _ = array([[-1.16814697e-01, 4.10985262e-01, -1.30231839e-01, ..., -9.61414459e-02, -8.84343221e-02, -8.31654985e...6146363e-02, 4.49071731e-03, ..., -2.12860770e-03, -2.52212822e-02, -3.20390895e-02]], shape=(100, 100)) accuracies = {'arpack': [2.5e-15, 1e-10, 1e-10], 'lobpcg': [2e-12, 0.04, 2], 'propack': [1e-12, 1e-06, 0.0001]} accuracy = 2e-12 err = .err at 0x7ffb39dc4ae0> error = np.float64(0.5058797936639409) k = 3 n = 100 rng = Generator(PCG64) at 0x7FFB39E2C580 s = array([2.50832690e-01, 1.68703472e-01, 1.06611620e-01, 1.05988382e-01, 9.70794775e-02, 9.66288940e-02, 9.033001...2.60252521e-03, 1.68887784e-03, 1.37826802e-03, 1.23256703e-03, 8.51854490e-04, 4.25833531e-04, 7.43826407e-31]) self = tol = 0.0001 tols = [0.0001, 0.01, 1.0] _________________________ Test_SVDS_LOBPCG.test_svd_v0 _________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:362: in test_svd_v0 _check_svds(A, k, *res1a) A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) idx = 2 k = 1 n = 100 res1a = (array([[0.10985756], [0.10620657], [0.108685 ], [0.09953867], [0.10622065], [0.09... 0.09521576, 0.09244331, 0.10042804, 0.09984006, 0.10149374, 0.09740796, 0.10424221, 0.10583108, 0.10573306]])) res2a = (array([[0.10985756], [0.10620657], [0.108685 ], [0.09953867], [0.10622065], [0.09... 0.09521576, 0.09244331, 0.10042804, 0.09984006, 0.10149374, 0.09740796, 0.10424221, 0.10583108, 0.10573306]])) rng = Generator(PCG64) at 0x7FFB39E2CD60 self = v0a = array([0.09422648, 0.15966649, 0.12710552, 0.13820803, 0.09446335, 0.1007917 , 0.10437159, 0.04411627, 0.103515...42, 0.03028264, 0.15081926, 0.02273174, 0.11481698, 0.15771828, 0.10070903, 0.11362856, 0.1273228 , 0.04002785]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 100 / 100 (100%) E Max absolute difference among violations: 0.06619726 E Max relative difference among violations: 2.43965461 E ACTUAL: array([[0.109858], E [0.106207], E [0.108685],... E DESIRED: array([[0.119969], E [0.090086], E [0.075719],... A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) A_rebuilt = array([[0.55456755, 0.5179022 , 0.54065291, ..., 0.57386071, 0.58260754, 0.58206793], [0.53613714, 0.50...6431], [0.52600049, 0.49122385, 0.51280261, ..., 0.54429981, 0.55259607, 0.55208425]], shape=(100, 100)) atol = 1e-10 check_svd = True check_usvh_A = False k = 1 m = 100 n = 100 rtol = 1e-07 s = array([50.110981]) s2 = array([44.18457103]) u = array([[0.10985756], [0.10620657], [0.108685 ], [0.09953867], [0.10622065], [0.099...[0.09571693], [0.10171938], [0.09808839], [0.09958263], [0.0950033 ], [0.10419854]]) u2 = array([[-0.11996892], [-0.09008622], [-0.07571893], [-0.13775214], [-0.0614965 ], [...889387], [-0.10245398], [-0.06055117], [-0.11922384], [-0.10754093], [-0.11815058]]) uh_u = array([[1.]]) vh = array([[0.1007376 , 0.09407731, 0.09820999, 0.09227948, 0.10034118, 0.10276925, 0.10554759, 0.09118638, 0.0883..., 0.09521576, 0.09244331, 0.10042804, 0.09984006, 0.10149374, 0.09740796, 0.10424221, 0.10583108, 0.10573306]]) vh2 = array([[-0.12945794, -0.02731772, -0.0978665 , -0.09042068, -0.10420046, -0.10171941, -0.10795285, -0.08972567...9331, -0.09291809, -0.10083593, -0.09843892, -0.10422477, -0.09553719, -0.10313795, -0.10558313, -0.10735755]]) vh_v = array([[1.]]) which = 'LM' ________________________ Test_SVDS_LOBPCG.test_svd_rng _________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:394: in test_svd_rng _check_svds(A, k, *res1a) A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) idx = 2 k = 1 n = 100 res1a = (array([[0.10985756], [0.10620657], [0.108685 ], [0.09953867], [0.10622065], [0.09... 0.09521576, 0.09244331, 0.10042804, 0.09984006, 0.10149374, 0.09740796, 0.10424221, 0.10583108, 0.10573306]])) res2a = (array([[0.10985756], [0.10620657], [0.108685 ], [0.09953867], [0.10622065], [0.09... 0.09521576, 0.09244331, 0.10042804, 0.09984006, 0.10149374, 0.09740796, 0.10424221, 0.10583108, 0.10573306]])) rng = Generator(PCG64) at 0x7FFB39E2D540 self = lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 100 / 100 (100%) E Max absolute difference among violations: 0.06619726 E Max relative difference among violations: 2.43965461 E ACTUAL: array([[0.109858], E [0.106207], E [0.108685],... E DESIRED: array([[0.119969], E [0.090086], E [0.075719],... A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) A_rebuilt = array([[0.55456755, 0.5179022 , 0.54065291, ..., 0.57386071, 0.58260754, 0.58206793], [0.53613714, 0.50...6431], [0.52600049, 0.49122385, 0.51280261, ..., 0.54429981, 0.55259607, 0.55208425]], shape=(100, 100)) atol = 1e-10 check_svd = True check_usvh_A = False k = 1 m = 100 n = 100 rtol = 1e-07 s = array([50.110981]) s2 = array([44.18457103]) u = array([[0.10985756], [0.10620657], [0.108685 ], [0.09953867], [0.10622065], [0.099...[0.09571693], [0.10171938], [0.09808839], [0.09958263], [0.0950033 ], [0.10419854]]) u2 = array([[-0.11996892], [-0.09008622], [-0.07571893], [-0.13775214], [-0.0614965 ], [...889387], [-0.10245398], [-0.06055117], [-0.11922384], [-0.10754093], [-0.11815058]]) uh_u = array([[1.]]) vh = array([[0.1007376 , 0.09407731, 0.09820999, 0.09227948, 0.10034118, 0.10276925, 0.10554759, 0.09118638, 0.0883..., 0.09521576, 0.09244331, 0.10042804, 0.09984006, 0.10149374, 0.09740796, 0.10424221, 0.10583108, 0.10573306]]) vh2 = array([[-0.12945794, -0.02731772, -0.0978665 , -0.09042068, -0.10420046, -0.10171941, -0.10795285, -0.08972567...9331, -0.09291809, -0.10083593, -0.09843892, -0.10422477, -0.09553719, -0.10313795, -0.10558313, -0.10735755]]) vh_v = array([[1.]]) which = 'LM' _______________________ Test_SVDS_LOBPCG.test_svd_rng_2 ________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:421: in test_svd_rng_2 _check_svds(A, k, *res1a) A = array([[0.58623666, 0.79920574, 0.56865463, ..., 0.96826324, 0.28618845, 0.41156489], [0.38116379, 0.30...5849], [0.91592469, 0.82908083, 0.13268786, ..., 0.81935226, 0.91491988, 0.72561311]], shape=(100, 100)) idx = 2 k = 1 n = 100 res1a = (array([[0.10085499], [0.10200304], [0.11497707], [0.09954223], [0.10170667], [0.10... 0.09566074, 0.097373 , 0.10709743, 0.09716304, 0.09773145, 0.10639416, 0.0955794 , 0.10112526, 0.10908323]])) res2a = (array([[0.10085499], [0.10200304], [0.11497707], [0.09954223], [0.10170667], [0.10... 0.09566074, 0.097373 , 0.10709743, 0.09716304, 0.09773145, 0.10639416, 0.0955794 , 0.10112526, 0.10908323]])) rng = Generator(PCG64) at 0x7FFB39E2DD20 rng_2 = Generator(PCG64) at 0x7FFB39E2DE00 self = lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 100 / 100 (100%) E Max absolute difference among violations: 0.06945944 E Max relative difference among violations: 1.97629277 E ACTUAL: array([[0.100855], E [0.102003], E [0.114977],... E DESIRED: array([[0.106843], E [0.081894], E [0.074879],... A = array([[0.58623666, 0.79920574, 0.56865463, ..., 0.96826324, 0.28618845, 0.41156489], [0.38116379, 0.30...5849], [0.91592469, 0.82908083, 0.13268786, ..., 0.81935226, 0.91491988, 0.72561311]], shape=(100, 100)) A_rebuilt = array([[0.53172244, 0.51110592, 0.50021961, ..., 0.48700825, 0.51526618, 0.55581465], [0.53777513, 0.51...9149], [0.57753584, 0.555143 , 0.54331872, ..., 0.52896906, 0.55966171, 0.60370385]], shape=(100, 100)) atol = 1e-10 check_svd = True check_usvh_A = False k = 1 m = 100 n = 100 rtol = 1e-07 s = array([50.52131171]) s2 = array([44.93575437]) u = array([[0.10085499], [0.10200304], [0.11497707], [0.09954223], [0.10170667], [0.108...[0.09867566], [0.09145803], [0.1010571 ], [0.09780949], [0.11259088], [0.10954469]]) u2 = array([[-0.10684337], [-0.08189442], [-0.07487851], [-0.13637249], [-0.14056418], [...216605], [-0.0859136 ], [-0.08914942], [-0.10607318], [-0.12537257], [-0.12199291]]) uh_u = array([[1.]]) vh = array([[0.10435493, 0.10030877, 0.09817224, 0.10168888, 0.10845822, 0.08622759, 0.10183768, 0.09333673, 0.0970..., 0.09566074, 0.097373 , 0.10709743, 0.09716304, 0.09773145, 0.10639416, 0.0955794 , 0.10112526, 0.10908323]]) vh2 = array([[-0.13180154, -0.04236841, -0.0978847 , -0.09876181, -0.10856797, -0.08596741, -0.10246739, -0.09542081...8896, -0.09396044, -0.10804037, -0.09729853, -0.09570317, -0.1057523 , -0.09464236, -0.10168687, -0.11178387]]) vh_v = array([[1.]]) which = 'LM' _______________________ Test_SVDS_LOBPCG.test_svd_rng_3 ________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:435: in test_svd_rng_3 res1a = svds(A, k, solver=self.solver, rng=rng1, maxiter=1000) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) k = 5 n = 100 rng1 = Generator(PCG64) at 0x7FFB39E2E5E0 rng2 = Generator(PCG64) at 0x7FFB39E2E6C0 self = lib/python3.12/site-packages/scipy/_lib/_util.py:352: in wrapper return fun(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^ NEW_NAME = 'rng' args = (array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.2...], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)), 5) as_new_kwarg = True as_old_kwarg = False as_pos_arg = False cmn_msg = 'To silence this warning and ensure consistent behavior in SciPy None, control the RNG using argument `rng`. Arguments...ndom` or `RandomState` instances will result in an error. See the documentation of `default_rng` for more information.' emit_warning = False end_version = None fun = global_seed_set = True kwargs = {'maxiter': 1000, 'rng': Generator(PCG64) at 0x7FFB39E2E5E0, 'solver': 'lobpcg'} old_name = 'random_state' position_num = 9 lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/_svds.py:477: in svds _, eigvec = lobpcg(XH_X, X, tol=tol ** 2, maxiter=maxiter, A = <100x100 MatrixLinearOperator with dtype=float64> X = array([[ 1.16826484e-01, -1.28293540e-01, -1.19867898e-02, 5.87831129e-02, 9.92848204e-02], [-6.10872...1.74966569e-01], [-1.35383372e-01, 1.13726736e-02, 1.10167169e-01, 6.25261085e-02, -9.22128273e-02]]) XH_X = <100x100 _CustomLinearOperator with dtype=float64> XH_dot = > XH_mat = > X_dot = > X_matmat = > args = (<100x100 MatrixLinearOperator with dtype=float64>, 5, None, 0.0, 'LM', None, ...) k = 5 largest = True m = 100 matmat_XH_X = .matmat_XH_X at 0x7ffb39dc5ee0> matvec_XH_X = .matvec_XH_X at 0x7ffb39dc5bc0> maxiter = 1000 n = 100 ncv = None options = None return_singular_vectors = True rng = Generator(PCG64) at 0x7FFB39E2E5E0 solver = 'lobpcg' tol = 0.0 transpose = False v0 = None which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py:782: in lobpcg warnings.warn( E UserWarning: Failed at iteration 400 with accuracies [1.96220436e+05 6.44839118e+01 1.41689004e+04 9.50516143e-01 E 4.19823496e-01] E not reaching the requested tolerance 1.4901161193847656e-06. A = . at 0x7ffb39dc5e40> B = None M = None X = array([[ 1.16826484e-01, -1.28293540e-01, -1.19867898e-02, 5.87831129e-02, 9.92848204e-02], [-6.10872...1.74966569e-01], [-1.35383372e-01, 1.13726736e-02, 1.10167169e-01, 6.25261085e-02, -9.22128273e-02]]) Y = None _ = None _lambda = array([9878.85940929, 2511.11797683, 1785.29515069, 31.65904316, 29.02691204]) activeBlockVectorAP = array([[-4.99591151e-03, 1.36618970e-04, 4.22394872e-02, -8.66403887e-05, -2.07502851e-05], [-3.00547...1.89364052e-04], [-1.51741488e-01, 2.61078049e-04, 8.12691072e-02, -3.14995423e-04, 1.46931318e-04]]) activeBlockVectorAR = array([[ 8.84393261e-02, -3.38647583e-01, 2.12519488e-01, -9.94555822e-02, 1.83932013e-01], [ 5.42233...1.33117054e-01], [ 3.00071074e+00, -6.69840913e-01, -2.71159120e-01, 7.06860137e-02, -1.48594540e-02]]) activeBlockVectorBP = array([[ 1.27450869e-02, -2.37926600e-02, -1.11893575e-01, 1.03003065e-01, -1.34932760e-02], [-2.32293...8.10649448e-02], [ 1.16138304e-01, -2.37479376e-02, -3.60468675e-02, 1.38997071e-02, 5.01958201e-02]]) activeBlockVectorBR = None activeBlockVectorP = array([[-6.53629573e-04, 9.71173765e-06, 2.99227605e-03, -1.99519843e-06, -1.35673313e-04], [ 1.40946...1.89164389e-04], [-5.81448607e-03, 1.05029901e-05, 3.26114644e-03, 1.45401001e-05, -4.00316417e-05]]) activeBlockVectorR = None activeMask = array([ True, True, True, True, True]) app = array([[-4.99591151e-03, 1.36618970e-04, 4.22394872e-02, -8.66403887e-05, -2.07502851e-05], [-3.00547...1.89364052e-04], [-1.51741488e-01, 2.61078049e-04, 8.12691072e-02, -3.14995423e-04, 1.46931318e-04]]) aux = (None, None, None) bestIterationNumber = 4 bestblockVectorX = array([[-0.1007375 , 0.15431332, 0.00166686, 0.08976569, 0.00107829], [-0.09407744, -0.02969094, 0.0579145...933, 0.11076498, 0.00157862, -0.02952355], [-0.10573318, 0.05138584, 0.10007255, 0.03317133, 0.01477689]]) blockVectorAP = array([[-4.99591151e-03, 1.36618970e-04, 4.22394872e-02, -8.66403887e-05, -2.07502851e-05], [-3.00547...1.89364052e-04], [-1.51741488e-01, 2.61078049e-04, 8.12691072e-02, -3.14995423e-04, 1.46931318e-04]]) blockVectorAX = array([[-1.79244390e+00, -2.52953261e+02, 3.50523775e+00, -5.18406753e+00, 5.30753512e-01], [-1.09535...3.14423496e+00], [-5.98101152e+01, -2.65491848e+02, 5.46965138e+00, -1.75643647e+00, -2.28690075e+00]]) blockVectorBP = None blockVectorBX = array([[ 2.41471789e-01, 1.00152613e-01, -1.90691759e-01, -1.64241243e-01, 1.83612118e-02], [-9.90217...1.07481043e-01], [ 2.28592833e+00, 1.05184240e-01, -1.86850624e-01, -5.48505959e-02, -7.98953265e-02]]) blockVectorP = array([[-6.53629573e-04, 9.71173765e-06, 2.99227605e-03, -1.99519843e-06, -1.35673313e-04], [ 1.40946...1.89164389e-04], [-5.81448607e-03, 1.05029901e-05, 3.26114644e-03, 1.45401001e-05, -4.00316417e-05]]) blockVectorR = array([[ 2.38718944e+03, -1.53831752e+00, -3.39584895e+02, 1.53913301e-02, 1.79797265e-03], [-9.89106...1.89264479e-02], [ 2.25515492e+04, -1.43910334e+00, -3.30527858e+02, -2.06302666e-02, 3.33812764e-02]]) blockVectorX = array([[-2.41827703e-01, -1.00120721e-01, 1.92175581e-01, -1.64232975e-01, 1.82229353e-02], [ 9.90147...1.07669342e-01], [-2.28886336e+00, -1.05153460e-01, 1.88202779e-01, -5.48281323e-02, -7.99355448e-02]]) blockVectorY = None currentBlockSize = np.int64(5) eigBlockVector = array([[-9.98737267e-01, -7.10939777e-07, -2.10782580e-04, -8.87039333e-07, 1.27932979e-06], [ 1.74608...8.48268226e-04], [ 5.07472088e-05, 2.53551472e-06, 8.28373083e-04, -6.03794747e-05, 4.82854392e-04]]) eigBlockVectorP = array([[ 2.53987044e-06, 1.40564811e+00, 3.17442361e-02, 2.26697279e-02, -7.81167422e-02], [-5.65482...6.08493634e-02], [-1.48759448e-07, -1.96263532e-02, 6.04924705e-03, -1.07316540e-02, -4.67446280e-02]]) eigBlockVectorR = array([[-5.02117985e-02, -2.40998392e-06, -5.69654935e-04, 3.05937219e-05, -2.88351111e-05], [ 1.62422...8.48268226e-04], [ 5.07472088e-05, 2.53551472e-06, 8.28373083e-04, -6.03794747e-05, 4.82854392e-04]]) eigBlockVectorX = array([[-9.98737267e-01, -7.10939777e-07, -2.10782580e-04, -8.87039333e-07, 1.27932979e-06], [ 1.74608...2.93032844e-06], [ 3.75114404e-09, 6.65163723e-10, 2.91310426e-07, 2.68995646e-06, 9.99999460e-01]]) explicitGramFlag = False forcedRestart = False gramA = array([[ 9.85392652e+03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.95409153e+02, ... 1.40860144e-02, -2.60156461e-02, -1.82708298e-01, 1.61066120e-01, -8.03957568e-02, 1.06188134e-01]]) gramB = array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 1., ...0., 0., 1., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]) gramDtype = dtype('float64') gramPAP = array([[ 2.49587129e+01, -7.66239531e-01, 6.43703801e-02, -2.68696342e-02, 2.28154999e-01], [-7.66239...2.28411031e+00], [ 2.28154999e-01, -1.72893853e-01, 5.71587038e+00, -2.28411031e+00, 2.02471337e+01]]) gramPBP = array([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]]) gramRAP = array([[ 2.49178387e+01, 1.23540355e-01, 1.25362415e-02, -5.76095901e-03, 4.13608214e-02], [-1.56872...1.09751827e+00], [-3.04910686e-02, -1.75642951e-01, -2.87790542e-01, 1.34999268e-01, -1.13000193e+00]]) gramRAR = array([[ 2.49074039e+01, -6.79453469e-01, 3.25451769e-02, -1.69708833e-03, -2.60156461e-02], [-6.79453...8.03957568e-02], [-2.60156461e-02, -1.82708298e-01, 1.61066120e-01, -8.03957568e-02, 1.06188134e-01]]) gramRBP = array([[ 9.99435890e-01, 3.23057739e-02, 7.90110869e-04, 2.23530861e-04, -9.14132307e-03], [-3.22347...8.37514998e-02], [-2.36348066e-04, 1.05258810e-04, 3.92124728e-01, -3.37896756e-01, 1.61718849e-04]]) gramRBR = array([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]]) gramXAP = array([[ 4.95696344e+02, -5.75052352e-03, 2.47896107e-01, -1.15011494e-01, 8.25752660e-01], [-2.55969...6.36693872e-04], [-6.80840809e-04, -4.06795154e-03, -1.22212141e-02, 2.74008970e-02, 2.58993152e-03]]) gramXAR = array([[ 4.95409153e+02, -1.59785013e+01, 6.57578164e-01, -3.37154374e-02, -5.01008803e-01], [ 5.79623...1.95388491e-03], [-8.39148907e-04, -4.06245660e-03, -9.18897240e-03, 2.45264103e-02, 1.40860144e-02]]) gramXAX = array([[9853.92651912, 0. , 0. , 0. , 0. ], [ 0. , 251... , 0. ], [ 0. , 0. , 0. , 0. , 29.02688085]]) gramXBP = array([[ 1.98792495e+01, 5.52924420e-01, 1.59294304e-02, 4.66716130e-03, -1.82475049e-01], [ 2.23583...1.24481121e-04], [-1.11787352e-02, -9.31761823e-03, -5.27030968e-04, 1.43354940e-03, 1.70237181e-04]]) gramXBR = array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]]) gramXBX = array([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]]) ii = array([ True, True, True, True, True]) invR = array([[ 1.98792617e+01, 5.23836706e-01, 3.04399270e+01, -3.46050991e+01, 3.98583579e+02], [ 0.00000...1.39097352e+04], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 8.72857167e+03]]) iterationNumber = 400 largest = True maxiter = 1000 myeps = np.float64(1.4901161193847656e-08) n = 100 pp = array([[-6.53629573e-04, 9.71173765e-06, 2.99227605e-03, -1.99519843e-06, -1.35673313e-04], [ 1.40946...1.89164389e-04], [-5.81448607e-03, 1.05029901e-05, 3.26114644e-03, 1.45401001e-05, -4.00316417e-05]]) residualNorm = np.float64(42091.038039378625) residualNorms = array([1.96220436e+05, 6.44839118e+01, 1.41689004e+04, 9.50516143e-01, 4.19823496e-01]) residualTolerance = np.float64(1.4901161193847656e-06) restart = True restartControl = 20 retLambdaHistory = False retResidualNormsHistory = False sizeX = 5 sizeY = 0 smallestResidualNorm = np.float64(1.2296602825389635) tol = 0.0 verbosityLevel = 0 ________ Test_SVDS_LOBPCG.test_svd_return_singular_vectors[shape0-True] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:512: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 10 / 10 (100%) E Max absolute difference among violations: 0.04934199 E Max relative difference among violations: 0.21598718 E ACTUAL: array([[0.64919 , 0.369453], E [0.522301, 0.499148], E [0.410556, 0.369421],... E DESIRED: array([[0.688874, 0.378529], E [0.523338, 0.497621], E [0.383827, 0.373171],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...994, 0.98083534], [0.68554198, 0.65045928, 0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 5 N = 7 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB39E2F220 rsv = True s = array([1.23553345, 3.08390303]) s2 = array([1.22290284, 3.26220386]) self = shape = (5, 7) u = array([[ 0.68887426, 0.3785286 ], [-0.52333794, 0.49762092], [-0.38382671, 0.37317138], [ 0.31898039, 0.5182748 ], [-0.04998232, 0.44857983]]) u2 = array([[-0.64919046, -0.36945311], [ 0.52230146, -0.49914775], [ 0.41055566, -0.36942121], [-0.36832238, -0.5172146 ], [ 0.03918678, -0.45866432]]) vh = array([[-0.16910028, -0.20313403, -0.61388183, -0.44832571, 0.5081296 , 0.22319474, 0.54155643], [ 0.38518883, 0.36014582, 0.47569865, 0.36435658, 0.21009746, 0.5671986 , 0.31953341]]) vh2 = array([[ 0.20292676, -0.03320542, 0.4945419 , 0.34857418, -0.44117289, -0.2536702 , -0.57676718], [-0.38247733, -0.33140567, -0.44486965, -0.34027164, -0.20628988, -0.5419753 , -0.30642265]]) _______ Test_SVDS_LOBPCG.test_svd_return_singular_vectors[shape0-False] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:495: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.17830083 E Max relative difference among violations: 0.05781661 E ACTUAL: array([1.222903, 3.262204]) E DESIRED: array([1.235533, 3.083903]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...994, 0.98083534], [0.68554198, 0.65045928, 0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 5 N = 7 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB39E2F760 rsv = False s = array([1.23553345, 3.08390303]) s2 = array([1.22290284, 3.26220386]) self = shape = (5, 7) u = array([[ 0.68887426, 0.3785286 ], [-0.52333794, 0.49762092], [-0.38382671, 0.37317138], [ 0.31898039, 0.5182748 ], [-0.04998232, 0.44857983]]) vh = array([[-0.16910028, -0.20313403, -0.61388183, -0.44832571, 0.5081296 , 0.22319474, 0.54155643], [ 0.38518883, 0.36014582, 0.47569865, 0.36435658, 0.21009746, 0.5671986 , 0.31953341]]) _________ Test_SVDS_LOBPCG.test_svd_return_singular_vectors[shape0-u] __________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:499: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 10 / 10 (100%) E Max absolute difference among violations: 0.04934199 E Max relative difference among violations: 0.21598718 E ACTUAL: array([[0.64919 , 0.369453], E [0.522301, 0.499148], E [0.410556, 0.369421],... E DESIRED: array([[0.688874, 0.378529], E [0.523338, 0.497621], E [0.383827, 0.373171],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...994, 0.98083534], [0.68554198, 0.65045928, 0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 5 N = 7 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB39DB8040 rsv = 'u' s = array([1.23553345, 3.08390303]) s2 = array([1.22290284, 3.26220386]) self = shape = (5, 7) u = array([[ 0.68887426, 0.3785286 ], [-0.52333794, 0.49762092], [-0.38382671, 0.37317138], [ 0.31898039, 0.5182748 ], [-0.04998232, 0.44857983]]) u2 = array([[-0.64919046, -0.36945311], [ 0.52230146, -0.49914775], [ 0.41055566, -0.36942121], [-0.36832238, -0.5172146 ], [ 0.03918678, -0.45866432]]) vh = array([[-0.16910028, -0.20313403, -0.61388183, -0.44832571, 0.5081296 , 0.22319474, 0.54155643], [ 0.38518883, 0.36014582, 0.47569865, 0.36435658, 0.21009746, 0.5671986 , 0.31953341]]) vh2 = None _________ Test_SVDS_LOBPCG.test_svd_return_singular_vectors[shape0-vh] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:513: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.17830083 E Max relative difference among violations: 0.05781661 E ACTUAL: array([1.222903, 3.262204]) E DESIRED: array([1.235533, 3.083903]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...994, 0.98083534], [0.68554198, 0.65045928, 0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 5 N = 7 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB39DB8820 rsv = 'vh' s = array([1.23553345, 3.08390303]) s2 = array([1.22290284, 3.26220386]) self = shape = (5, 7) u = array([[ 0.68887426, 0.3785286 ], [-0.52333794, 0.49762092], [-0.38382671, 0.37317138], [ 0.31898039, 0.5182748 ], [-0.04998232, 0.44857983]]) u2 = None vh = array([[-0.16910028, -0.20313403, -0.61388183, -0.44832571, 0.5081296 , 0.22319474, 0.54155643], [ 0.38518883, 0.36014582, 0.47569865, 0.36435658, 0.21009746, 0.5671986 , 0.31953341]]) vh2 = array([[ 0.20292676, -0.03320542, 0.4945419 , 0.34857418, -0.44117289, -0.2536702 , -0.57676718], [-0.38247733, -0.33140567, -0.44486965, -0.34027164, -0.20628988, -0.5419753 , -0.30642265]]) ________ Test_SVDS_LOBPCG.test_svd_return_singular_vectors[shape1-True] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:512: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 12 / 12 (100%) E Max absolute difference among violations: 0.53206328 E Max relative difference among violations: 4.57152359 E ACTUAL: array([[0.64845 , 0.354156], E [0.514068, 0.454872], E [0.261324, 0.426439],... E DESIRED: array([[0.116386, 0.465918], E [0.492601, 0.36762 ], E [0.712502, 0.500613],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558], [0.60663578, 0.7294965...8554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432, 0.31024188]]) M = 6 N = 6 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB39DB9000 rsv = True s = array([1.05729162, 3.21186444]) s2 = array([1.1957827 , 3.27738834]) self = shape = (6, 6) u = array([[ 0.11638642, -0.46591811], [ 0.4926005 , -0.36762025], [-0.7125021 , -0.50061258], [ 0.28999188, -0.26589221], [-0.20242099, -0.41968395], [ 0.3332719 , -0.38772338]]) u2 = array([[ 0.6484497 , -0.35415637], [-0.51406798, -0.45487166], [ 0.26132394, -0.42643877], [ 0.36916108, -0.27817444], [-0.30260314, -0.53210346], [-0.13823286, -0.35397726]]) vh = array([[-0.04365159, 0.21154233, -0.0742191 , 0.4413241 , -0.06173673, -0.41258906], [-0.4837988 , -0.24829873, -0.32795773, -0.35872099, -0.54870342, -0.38897335]]) vh2 = array([[ 0.12920775, -0.17153207, -0.31125522, -0.64788288, 0.25174307, 0.61145359], [-0.46429381, -0.27494528, -0.35371511, -0.40213924, -0.53839203, -0.36351069]]) _______ Test_SVDS_LOBPCG.test_svd_return_singular_vectors[shape1-False] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:495: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.13849108 E Max relative difference among violations: 0.13098664 E ACTUAL: array([1.195783, 3.277388]) E DESIRED: array([1.057292, 3.211864]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558], [0.60663578, 0.7294965...8554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432, 0.31024188]]) M = 6 N = 6 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB39DB97E0 rsv = False s = array([1.05729162, 3.21186444]) s2 = array([1.1957827 , 3.27738834]) self = shape = (6, 6) u = array([[ 0.11638642, -0.46591811], [ 0.4926005 , -0.36762025], [-0.7125021 , -0.50061258], [ 0.28999188, -0.26589221], [-0.20242099, -0.41968395], [ 0.3332719 , -0.38772338]]) vh = array([[-0.04365159, 0.21154233, -0.0742191 , 0.4413241 , -0.06173673, -0.41258906], [-0.4837988 , -0.24829873, -0.32795773, -0.35872099, -0.54870342, -0.38897335]]) _________ Test_SVDS_LOBPCG.test_svd_return_singular_vectors[shape1-u] __________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:499: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 12 / 12 (100%) E Max absolute difference among violations: 0.53206328 E Max relative difference among violations: 4.57152359 E ACTUAL: array([[0.64845 , 0.354156], E [0.514068, 0.454872], E [0.261324, 0.426439],... E DESIRED: array([[0.116386, 0.465918], E [0.492601, 0.36762 ], E [0.712502, 0.500613],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558], [0.60663578, 0.7294965...8554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432, 0.31024188]]) M = 6 N = 6 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB39DB9FC0 rsv = 'u' s = array([1.05729162, 3.21186444]) s2 = array([1.1957827 , 3.27738834]) self = shape = (6, 6) u = array([[ 0.11638642, -0.46591811], [ 0.4926005 , -0.36762025], [-0.7125021 , -0.50061258], [ 0.28999188, -0.26589221], [-0.20242099, -0.41968395], [ 0.3332719 , -0.38772338]]) u2 = array([[ 0.6484497 , -0.35415637], [-0.51406798, -0.45487166], [ 0.26132394, -0.42643877], [ 0.36916108, -0.27817444], [-0.30260314, -0.53210346], [-0.13823286, -0.35397726]]) vh = array([[-0.04365159, 0.21154233, -0.0742191 , 0.4413241 , -0.06173673, -0.41258906], [-0.4837988 , -0.24829873, -0.32795773, -0.35872099, -0.54870342, -0.38897335]]) vh2 = None _________ Test_SVDS_LOBPCG.test_svd_return_singular_vectors[shape1-vh] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:513: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.13849108 E Max relative difference among violations: 0.13098664 E ACTUAL: array([1.195783, 3.277388]) E DESIRED: array([1.057292, 3.211864]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558], [0.60663578, 0.7294965...8554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432, 0.31024188]]) M = 6 N = 6 k = 2 respect_u = True respect_vh = False rng = Generator(PCG64) at 0x7FFB39DBA7A0 rsv = 'vh' s = array([1.05729162, 3.21186444]) s2 = array([1.1957827 , 3.27738834]) self = shape = (6, 6) u = array([[ 0.11638642, -0.46591811], [ 0.4926005 , -0.36762025], [-0.7125021 , -0.50061258], [ 0.28999188, -0.26589221], [-0.20242099, -0.41968395], [ 0.3332719 , -0.38772338]]) u2 = None vh = array([[-0.04365159, 0.21154233, -0.0742191 , 0.4413241 , -0.06173673, -0.41258906], [-0.4837988 , -0.24829873, -0.32795773, -0.35872099, -0.54870342, -0.38897335]]) vh2 = array([[ 0.12920775, -0.17153207, -0.31125522, -0.64788288, 0.25174307, 0.61145359], [-0.46429381, -0.27494528, -0.35371511, -0.40213924, -0.53839203, -0.36351069]]) ________ Test_SVDS_LOBPCG.test_svd_return_singular_vectors[shape2-True] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:512: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 14 / 14 (100%) E Max absolute difference among violations: 0.58731158 E Max relative difference among violations: 43.26409092 E ACTUAL: array([[0.474024, 0.258999], E [0.189229, 0.516458], E [0.517918, 0.359528],... E DESIRED: array([[0.010709, 0.322976], E [0.094669, 0.53322 ], E [0.434498, 0.410499],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024], [0.91275558, 0.60663578, 0.72949656, 0.543... 0.99720994, 0.98083534, 0.68554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 7 N = 5 k = 2 respect_u = False respect_vh = True rng = Generator(PCG64) at 0x7FFB39DBAF80 rsv = True s = array([1.13635931, 3.07456143]) s2 = array([1.0906468 , 3.26945398]) self = shape = (7, 5) u = array([[-0.01070899, -0.32297583], [ 0.09466891, -0.53321965], [ 0.43449844, -0.41049882], [-0.17...-0.19198992], [ 0.79554732, -0.01715354], [-0.37352392, -0.52668482], [-0.02681302, -0.3581939 ]]) u2 = array([[ 0.47402367, -0.25899929], [ 0.18922852, -0.51645814], [ 0.51791839, -0.35952798], [-0.40...-0.31210323], [-0.20823574, -0.29040197], [-0.50128151, -0.50074025], [ 0.09963134, -0.32318333]]) vh = array([[ 0.23313061, -0.0296908 , 0.56015762, 0.29923244, 0.63808378], [-0.4911965 , -0.34074441, -0.44339979, -0.3082785 , -0.51610486]]) vh2 = array([[ 0.63801451, -0.54584724, -0.21766421, -0.36748752, 0.33550484], [-0.43045687, -0.40211309, -0.48759655, -0.35328614, -0.53893455]]) _______ Test_SVDS_LOBPCG.test_svd_return_singular_vectors[shape2-False] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:495: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.19489255 E Max relative difference among violations: 0.06338873 E ACTUAL: array([1.090647, 3.269454]) E DESIRED: array([1.136359, 3.074561]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024], [0.91275558, 0.60663578, 0.72949656, 0.543... 0.99720994, 0.98083534, 0.68554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 7 N = 5 k = 2 respect_u = False respect_vh = True rng = Generator(PCG64) at 0x7FFB39DBB760 rsv = False s = array([1.13635931, 3.07456143]) s2 = array([1.0906468 , 3.26945398]) self = shape = (7, 5) u = array([[-0.01070899, -0.32297583], [ 0.09466891, -0.53321965], [ 0.43449844, -0.41049882], [-0.17...-0.19198992], [ 0.79554732, -0.01715354], [-0.37352392, -0.52668482], [-0.02681302, -0.3581939 ]]) vh = array([[ 0.23313061, -0.0296908 , 0.56015762, 0.29923244, 0.63808378], [-0.4911965 , -0.34074441, -0.44339979, -0.3082785 , -0.51610486]]) _________ Test_SVDS_LOBPCG.test_svd_return_singular_vectors[shape2-u] __________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:512: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 14 / 14 (100%) E Max absolute difference among violations: 0.58731158 E Max relative difference among violations: 43.26409092 E ACTUAL: array([[0.474024, 0.258999], E [0.189229, 0.516458], E [0.517918, 0.359528],... E DESIRED: array([[0.010709, 0.322976], E [0.094669, 0.53322 ], E [0.434498, 0.410499],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024], [0.91275558, 0.60663578, 0.72949656, 0.543... 0.99720994, 0.98083534, 0.68554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 7 N = 5 k = 2 respect_u = False respect_vh = True rng = Generator(PCG64) at 0x7FFB396DC040 rsv = 'u' s = array([1.13635931, 3.07456143]) s2 = array([1.0906468 , 3.26945398]) self = shape = (7, 5) u = array([[-0.01070899, -0.32297583], [ 0.09466891, -0.53321965], [ 0.43449844, -0.41049882], [-0.17...-0.19198992], [ 0.79554732, -0.01715354], [-0.37352392, -0.52668482], [-0.02681302, -0.3581939 ]]) u2 = array([[ 0.47402367, -0.25899929], [ 0.18922852, -0.51645814], [ 0.51791839, -0.35952798], [-0.40...-0.31210323], [-0.20823574, -0.29040197], [-0.50128151, -0.50074025], [ 0.09963134, -0.32318333]]) vh = array([[ 0.23313061, -0.0296908 , 0.56015762, 0.29923244, 0.63808378], [-0.4911965 , -0.34074441, -0.44339979, -0.3082785 , -0.51610486]]) vh2 = None _________ Test_SVDS_LOBPCG.test_svd_return_singular_vectors[shape2-vh] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:506: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.19489255 E Max relative difference among violations: 0.06338873 E ACTUAL: array([1.090647, 3.269454]) E DESIRED: array([1.136359, 3.074561]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024], [0.91275558, 0.60663578, 0.72949656, 0.543... 0.99720994, 0.98083534, 0.68554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 7 N = 5 k = 2 respect_u = False respect_vh = True rng = Generator(PCG64) at 0x7FFB396DC820 rsv = 'vh' s = array([1.13635931, 3.07456143]) s2 = array([1.0906468 , 3.26945398]) self = shape = (7, 5) u = array([[-0.01070899, -0.32297583], [ 0.09466891, -0.53321965], [ 0.43449844, -0.41049882], [-0.17...-0.19198992], [ 0.79554732, -0.01715354], [-0.37352392, -0.52668482], [-0.02681302, -0.3581939 ]]) u2 = None vh = array([[ 0.23313061, -0.0296908 , 0.56015762, 0.29923244, 0.63808378], [-0.4911965 , -0.34074441, -0.44339979, -0.3082785 , -0.51610486]]) vh2 = array([[ 0.63801451, -0.54584724, -0.21766421, -0.36748752, 0.33550484], [-0.43045687, -0.40211309, -0.48759655, -0.35328614, -0.53893455]]) _______________________ Test_SVDS_LOBPCG.test_svd_linop ________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:616: in test_svd_linop assert_allclose(np.abs(U1), np.abs(U2)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 36 / 36 (100%) E Max absolute difference among violations: 0.20874142 E Max relative difference among violations: 9.53112548 E ACTUAL: array([[0.629024, 0.084373, 0.196575, 0.243945], E [0.039389, 0.287376, 0.531042, 0.320367], E [0.485212, 0.060185, 0.201823, 0.351642],... E DESIRED: array([[0.59412 , 0.199132, 0.195904, 0.235836], E [0.089719, 0.379709, 0.531794, 0.325749], E [0.473224, 0.133684, 0.201188, 0.349051],... A = array([[ 0.51947584, -1.26875038, 0.24042003, -0.80395743, 0.0173441 ], [ 0.39439383, 1.27913226, 0.6597363...41 , -0.00729803, 0.69459216, -0.28570368], [ 0.63856574, 1.11261944, 0.31480994, 1.76593788, 0.93362384]]) L = <9x5 CheckingLinearOperator with dtype=float64> U1 = array([[ 0.62902399, -0.08437264, 0.19657502, -0.2439448 ], [ 0.03938899, -0.28737564, 0.53104249, 0.3203668... [-0.35546364, -0.09106982, -0.26336457, 0.2236074 ], [ 0.26109191, 0.34163455, -0.13515346, 0.47641654]]) U2 = array([[ 0.59412041, -0.19913215, 0.19590398, -0.23583624], [-0.08971852, -0.37970897, 0.53179354, 0.3257489... [-0.34406016, -0.00864768, -0.25971388, 0.20954623], [ 0.31473999, 0.28010274, -0.14400147, 0.4902634 ]]) VH1 = array([[ 0.81194723, -0.4760018 , 0.28137609, 0.11372536, 0.14851942], [-0.28584573, -0.44076879, -0.3982669...88 , 0.32070221, -0.50716985, 0.75891623], [ 0.20810083, 0.72255691, 0.22153587, 0.48636748, 0.38597162]]) VH2 = array([[ 0.6151286 , -0.56770778, 0.46029752, 0.27379692, 0.11174131], [-0.61365269, -0.37673249, -0.0867647...207, 0.34582797, -0.5170195 , 0.73967387], [ 0.27434234, 0.67683909, 0.06403997, 0.48467784, 0.47708637]]) dt = eps = 0.003 k = 4 kwargs = {'v0': array([1., 1., 1., 1., 1., 1.])} m = 5 n = 9 nmks = [(6, 7, 3), (9, 5, 4), (10, 8, 5)] reorder = .reorder at 0x7ffb39669800> rng = RandomState(MT19937) at 0x7FFB39607740 s1 = array([1.59693189, 2.02249862, 2.52560135, 4.67197394]) s2 = array([1.56922001, 1.88054088, 2.52477024, 4.58884043]) self = solver = 'lobpcg' v0 = array([1., 1., 1., 1., 1.]) _______________ Test_SVDS_LOBPCG.test_small_sigma[float-shape0] ________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:770: in test_small_sigma u, _, vh = svd(A, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]]) dtype = rng = Generator(PCG64) at 0x7FFB3968D7E0 self = shape = (20, 20) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319... 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]])] array = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]]) arrays = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319... 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]])] batch_shapes = [()] core_shapes = [(20, 20)] f = i = 0 kwargs = {'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (20, 20) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]]) a1 = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]]) check_finite = True compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 19 lapack_driver = 'gesdd' lwork = 1340 m = 20 max_mn = 20 min_mn = 20 n = 20 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 400 u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _______________ Test_SVDS_LOBPCG.test_small_sigma[float-shape1] ________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:770: in test_small_sigma u, _, vh = svd(A, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196...9841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) dtype = rng = Generator(PCG64) at 0x7FFB3968DFC0 self = shape = (20, 21) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319...841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]])] array = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196...9841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) arrays = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319...841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]])] batch_shapes = [()] core_shapes = [(20, 21)] f = i = 0 kwargs = {'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (20, 21) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196...9841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) a1 = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196...9841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) check_finite = True compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 19 lapack_driver = 'gesdd' lwork = 1372 m = 20 max_mn = 21 min_mn = 20 n = 21 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 420 u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, na... [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _______________ Test_SVDS_LOBPCG.test_small_sigma[float-shape2] ________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:770: in test_small_sigma u, _, vh = svd(A, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) dtype = rng = Generator(PCG64) at 0x7FFB3968E7A0 self = shape = (21, 20) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319... 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]])] array = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) arrays = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319... 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]])] batch_shapes = [()] core_shapes = [(21, 20)] f = i = 0 kwargs = {'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (21, 20) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) a1 = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) check_finite = True compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 19 lapack_driver = 'gesdd' lwork = 1372 m = 21 max_mn = 21 min_mn = 20 n = 20 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 420 u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) __________________ Test_SVDS_LOBPCG.test_small_sigma2[float] ___________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:798: in test_small_sigma2 assert_equal(nz.shape[1], dim) E AssertionError: E Items are not equal: E ACTUAL: 1 E DESIRED: 4 dim = 4 dtype = mat = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.20873058, 0.16266047, 0.0432..., 0.39618705, 0.43422147, 0.94440681, 0.11885702, 0.94011348, 0.26331356, 0.06472523, 0.04491724, 0.40666401]]) nz = array([[ 0.09076289], [ 0.04512221], [-0.10196632], [ 0.00563948], [ 0.00927621], [ 0.0045792 ], [-0.41739243], [-0.28016768], [ 0.85106022], [ 0.04665041]]) rng = Generator(PCG64) at 0x7FFB3968EF80 self = size = 10 x = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 ], [0.14709222, 0.2662157...6076074, 0.78560949], [0.9506525 , 0.39618705, 0.43422147, 0.94440681, 0.11885702, 0.94011348]]) y = array([[0.20873058, 0.16266047, 0.04320398, 0.36305945], [0.04074189, 0.04349176, 0.03306512, 0.12853487], ...36], [0.1786513 , 0.07866283, 0.09082089, 0.38187172], [0.26331356, 0.06472523, 0.04491724, 0.40666401]]) _____________ Test_SVDS_PROPACK.test_svds_parameter_k_which[LM-3] ______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:304: in test_svds_parameter_k_which _check_svds(A, k, *res, which=which, atol=1e-9, rtol=2e-13) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) k = 3 res = (array([[ 0.53137496, -0.02426458, 0.31783075], [ 0.06308732, 0.593292 , 0.2603729 ], [-0.29852945, ...54 , 0.21588656, 0.29722489, 0.31843038, 0.31819307, 0.28881893, 0.46509902, 0.29898348, 0.31066731]])) rng = Generator(PCG64) at 0x7FFB3968F840 self = which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=2e-13, atol=1e-09 E E Mismatched elements: 30 / 30 (100%) E Max absolute difference among violations: 0.39456733 E Max relative difference among violations: 783.03279691 E ACTUAL: array([[0.531375, 0.024265, 0.317831], E [0.063087, 0.593292, 0.260373], E [0.298529, 0.274278, 0.323269],... E DESIRED: array([[1.418228e-01, 1.566015e-01, 3.514857e-01], E [3.561677e-01, 4.000042e-01, 3.183227e-01], E [6.442399e-01, 6.688448e-01, 7.597775e-02],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) A_rebuilt = array([[ 0.74737372, 0.38299487, 0.29278206, 0.27265922, 0.68903058, 0.94608907, 0.38643623, 0.71353767...2225, -0.04600463, 0.92119575, 0.78526736, 1.07770596, 0.27435433, 1.06951112, 0.85196693, 0.87499717]]) atol = 1e-09 check_svd = True check_usvh_A = False k = 3 m = 10 n = 10 rtol = 2e-13 s = array([1.26999904, 1.59849819, 5.71090105]) s2 = array([1.19300089, 1.9556069 , 5.36807778]) u = array([[ 0.53137496, -0.02426458, 0.31783075], [ 0.06308732, 0.593292 , 0.2603729 ], [-0.29852945, ...826545 , 0.38210697], [ 0.12697327, 0.09277105, 0.34919585], [ 0.15837359, -0.53003248, 0.42841613]]) u2 = array([[-1.41822767e-01, 1.56601465e-01, -3.51485673e-01], [ 3.56167720e-01, -4.00004201e-01, -3.18322667e-01]... [ 2.00904359e-01, -1.18325476e-04, -3.74929852e-01], [-1.60341735e-01, 4.81003541e-01, -4.60513977e-01]]) uh_u = array([[ 1.00000000e+00, -1.65167986e-15, -2.52355509e-12], [-1.65167986e-15, 1.00000000e+00, -2.58974802e-12], [-2.52355509e-12, -2.58974802e-12, 1.00000000e+00]]) vh = array([[ 0.18671618, -0.10199068, -0.10934924, -0.41421103, 0.16640367, 0.53308201, -0.17728763, -0.19159265...554 , 0.21588656, 0.29722489, 0.31843038, 0.31819307, 0.28881893, 0.46509902, 0.29898348, 0.31066731]]) vh2 = array([[ 0.17257935, 0.11034655, 0.24475142, -0.31825789, -0.13828301, -0.17477547, -0.11768796, -0.30968362...6756, -0.21822576, -0.27757021, -0.3243266 , -0.33152761, -0.27209669, -0.45826775, -0.28176626, -0.31471247]]) vh_v = array([[ 1.00000000e+00, -1.54924705e-15, -1.22407553e-11], [-1.54924705e-15, 1.00000000e+00, -9.65381320e-12], [-1.22407553e-11, -9.65381320e-12, 1.00000000e+00]]) which = 'LM' _____________ Test_SVDS_PROPACK.test_svds_parameter_k_which[LM-5] ______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:304: in test_svds_parameter_k_which _check_svds(A, k, *res, which=which, atol=1e-9, rtol=2e-13) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) k = 5 res = (array([[-0.32771492, 0.4158033 , 0.53137496, -0.02426458, 0.31783075], [-0.39239685, -0.02251468, 0.063087...54 , 0.21588656, 0.29722489, 0.31843038, 0.31819307, 0.28881893, 0.46509902, 0.29898348, 0.31066731]])) rng = Generator(PCG64) at 0x7FFB3A130040 self = which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=2e-13, atol=1e-09 E E Mismatched elements: 50 / 50 (100%) E Max absolute difference among violations: 0.51101453 E Max relative difference among violations: 783.03279691 E ACTUAL: array([[0.327715, 0.415803, 0.531375, 0.024265, 0.317831], E [0.392397, 0.022515, 0.063087, 0.593292, 0.260373], E [0.32123 , 0.660111, 0.298529, 0.274278, 0.323269],... E DESIRED: array([[7.313199e-01, 4.278069e-01, 1.418228e-01, 1.566015e-01, E 3.514857e-01], E [3.009030e-01, 2.000761e-01, 3.561677e-01, 4.000042e-01,... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) A_rebuilt = array([[ 0.62664866, 0.26143156, 0.11583711, 0.10946253, 0.90237439, 0.86426285, 0.54138144, 0.62698622...6753, -0.05990525, 0.81456418, 0.85739979, 1.00404725, 0.21265842, 1.03219384, 0.92104378, 0.79572735]]) atol = 1e-09 check_svd = True check_usvh_A = False k = 5 m = 10 n = 10 rtol = 2e-13 s = array([0.90017941, 0.97420967, 1.26999904, 1.59849819, 5.71090105]) s2 = array([0.83946177, 1.0962593 , 1.19300089, 1.9556069 , 5.36807778]) u = array([[-0.32771492, 0.4158033 , 0.53137496, -0.02426458, 0.31783075], [-0.39239685, -0.02251468, 0.0630873...84 , 0.12697327, 0.09277105, 0.34919585], [-0.26457914, -0.13503641, 0.15837359, -0.53003248, 0.42841613]]) u2 = array([[-7.31319893e-01, 4.27806863e-01, -1.41822767e-01, 1.56601465e-01, -3.51485673e-01], [-3.00902...3.74929852e-01], [ 1.42179419e-01, -1.28420142e-01, -1.60341735e-01, 4.81003541e-01, -4.60513977e-01]]) uh_u = array([[ 1.00000000e+00, -7.84057553e-14, -2.07400337e-13, -5.42999289e-13, -4.97508028e-13], [-7.84057...2.58974802e-12], [-4.97508028e-13, -3.00488671e-12, -2.52355509e-12, -2.58974802e-12, 1.00000000e+00]]) vh = array([[-0.42927645, -0.02385317, 0.21368543, 0.47797589, -0.42344063, 0.30012128, 0.03406212, 0.19590089...554 , 0.21588656, 0.29722489, 0.31843038, 0.31819307, 0.28881893, 0.46509902, 0.29898348, 0.31066731]]) vh2 = array([[-0.04948922, 0.00557608, -0.03004501, 0.37431719, -0.38265033, 0.11835671, -0.26176785, -0.03223415...6756, -0.21822576, -0.27757021, -0.3243266 , -0.33152761, -0.27209669, -0.45826775, -0.28176626, -0.31471247]]) vh_v = array([[ 1.00000000e+00, -6.88396153e-14, -1.37397610e-13, -2.82840026e-13, -2.26057472e-11], [-6.88396...9.65381320e-12], [-2.26057472e-11, -2.10118641e-11, -1.22407553e-11, -9.65381320e-12, 1.00000000e+00]]) which = 'LM' _____________ Test_SVDS_PROPACK.test_svds_parameter_k_which[SM-3] ______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:304: in test_svds_parameter_k_which _check_svds(A, k, *res, which=which, atol=1e-9, rtol=2e-13) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) k = 3 res = (array([[ 0.00389096, -0.0109044 , -0.53787233], [-0.43228985, 0.13837962, 0.39600172], [ 0.23941782, ...644, 0.16734276, 0.52006152, 0.50489069, -0.09506734, -0.36226842, -0.22095202, -0.06513696, 0.00748277]])) rng = Generator(PCG64) at 0x7FFB3A130820 self = which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=2e-13, atol=1e-09 E E Mismatched elements: 30 / 30 (100%) E Max absolute difference among violations: 0.67246531 E Max relative difference among violations: 48.5507415 E ACTUAL: array([[0.003891, 0.010904, 0.537872], E [0.43229 , 0.13838 , 0.396002], E [0.239418, 0.149559, 0.151241],... E DESIRED: array([[0.152488, 0.24414 , 0.030354], E [0.008724, 0.493199, 0.289267], E [0.181941, 0.174128, 0.126271],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) A_rebuilt = array([[-1.03312362e-02, 7.92881916e-02, -2.67711810e-02, -8.36232845e-02, -8.27122722e-02, 1.49890497e-02, ... 1.12981298e-01, -2.30280856e-02, -3.39569388e-02, -4.67577430e-03, -5.20441067e-02, -2.23199545e-02]]) atol = 1e-09 check_svd = True check_usvh_A = False k = 3 m = 10 n = 10 rtol = 2e-13 s = array([0.10442037, 0.22436325, 0.29918727]) s2 = array([0.00347171, 0.10994708, 0.22852246]) u = array([[ 0.00389096, -0.0109044 , -0.53787233], [-0.43228985, 0.13837962, 0.39600172], [ 0.23941782, ...1433744, -0.46767195], [ 0.25604536, 0.13622988, -0.08320741], [ 0.23630281, 0.38480107, 0.38905094]]) u2 = array([[-0.1524881 , 0.24413973, -0.03035358], [ 0.00872419, -0.49319944, -0.28926727], [ 0.18194082, ...8582444, 0.29947073], [-0.20208574, 0.08879142, -0.59542016], [ 0.46803153, 0.1469246 , -0.139594 ]]) uh_u = array([[1.00000000e+00, 1.84279075e-16, 9.70939035e-15], [1.84279075e-16, 1.00000000e+00, 2.48313974e-16], [9.70939035e-15, 2.48313974e-16, 1.00000000e+00]]) vh = array([[-0.02728559, 0.0108255 , -0.16356033, -0.09470632, 0.06630094, -0.58669385, -0.26188217, 0.54284172...2644, 0.16734276, 0.52006152, 0.50489069, -0.09506734, -0.36226842, -0.22095202, -0.06513696, 0.00748277]]) vh2 = array([[-0.87795024, 0.27578593, 0.15473879, 0.03179645, 0.17709528, 0.03117201, 0.12677202, 0.25970814...8459, -0.00778189, -0.08990198, -0.77048121, -0.19411261, -0.17769573, -0.53476961, 0.70666665, 0.38046054]]) vh_v = array([[ 1.00000000e+00, 2.38112129e-15, -2.06889970e-15], [ 2.38112129e-15, 1.00000000e+00, 6.61842788e-15], [-2.06889970e-15, 6.61842788e-15, 1.00000000e+00]]) which = 'SM' _____________ Test_SVDS_PROPACK.test_svds_parameter_k_which[SM-5] ______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:304: in test_svds_parameter_k_which _check_svds(A, k, *res, which=which, atol=1e-9, rtol=2e-13) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) k = 5 res = (array([[ 3.89096311e-03, -1.09043967e-02, -5.37872334e-01, -8.18228123e-02, -1.99023561e-01], [-4.3228...644, 0.24792664, 0.158349 , 0.02157123, -0.31044134, 0.07854033, -0.5764482 , -0.0358212 , 0.4370729 ]])) rng = Generator(PCG64) at 0x7FFB3A131000 self = which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=2e-13, atol=1e-09 E E Mismatched elements: 50 / 50 (100%) E Max absolute difference among violations: 0.67246531 E Max relative difference among violations: 48.5507415 E ACTUAL: array([[3.890963e-03, 1.090440e-02, 5.378723e-01, 8.182281e-02, E 1.990236e-01], E [4.322898e-01, 1.383796e-01, 3.960017e-01, 2.147758e-01,... E DESIRED: array([[0.152488, 0.24414 , 0.030354, 0.076437, 0.156051], E [0.008724, 0.493199, 0.289267, 0.285613, 0.269567], E [0.181941, 0.174128, 0.126271, 0.068864, 0.111476],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578, 0.72949656, 0.5436..., 0.96792619, 0.0147063 , 0.86364009, 0.98119504, 0.95721018, 0.14876401, 0.97262881, 0.88993556, 0.82237383]]) A_rebuilt = array([[ 1.03130269e-02, 8.35515680e-03, -7.48635907e-02, -9.29348912e-02, -8.91041466e-02, 4.84927308e-02, ... 1.23795247e-01, -4.68370699e-02, -6.38944066e-02, -5.95650298e-02, -3.11082200e-02, 2.66464745e-02]]) atol = 1e-09 check_svd = True check_usvh_A = False k = 5 m = 10 n = 10 rtol = 2e-13 s = array([0.10442037, 0.22436325, 0.29918727, 0.40964831, 0.62348593]) s2 = array([0.00347171, 0.10994708, 0.22852246, 0.32798641, 0.69311455]) u = array([[ 3.89096311e-03, -1.09043967e-02, -5.37872334e-01, -8.18228123e-02, -1.99023561e-01], [-4.32289...1.56517871e-01], [ 2.36302812e-01, 3.84801066e-01, 3.89050938e-01, 1.84421613e-01, 1.81447516e-01]]) u2 = array([[-0.1524881 , 0.24413973, -0.03035358, -0.07643708, 0.15605067], [ 0.00872419, -0.49319944, -0.2892672...142, -0.59542016, 0.11335265, 0.34365758], [ 0.46803153, 0.1469246 , -0.139594 , -0.0658897 , -0.47924731]]) uh_u = array([[ 1.00000000e+00, 1.84279075e-16, 9.70939035e-15, -1.86082214e-14, 1.60999722e-15], [ 1.84279...5.53793785e-15], [ 1.60999722e-15, 2.29261572e-15, -6.84535389e-15, 5.53793785e-15, 1.00000000e+00]]) vh = array([[-0.02728559, 0.0108255 , -0.16356033, -0.09470632, 0.06630094, -0.58669385, -0.26188217, 0.54284172...1644, 0.24792664, 0.158349 , 0.02157123, -0.31044134, 0.07854033, -0.5764482 , -0.0358212 , 0.4370729 ]]) vh2 = array([[-0.87795024, 0.27578593, 0.15473879, 0.03179645, 0.17709528, 0.03117201, 0.12677202, 0.25970814...8316, 0.02395992, 0.20859245, -0.19875865, 0.22680134, 0.02184172, 0.695157 , -0.05260612, -0.57402664]]) vh_v = array([[ 1.00000000e+00, 2.38112129e-15, -2.06889970e-15, -1.22682459e-16, -2.62043275e-16], [ 2.38112...7.76163352e-15], [-2.62043275e-16, 4.83639738e-15, -8.00333027e-15, 7.76163352e-15, 1.00000000e+00]]) which = 'SM' __________________ Test_SVDS_PROPACK.test_svds_parameter_tol ___________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:341: in test_svds_parameter_tol assert error < accuracy E assert np.float64(0.5058797936640321) < 1e-12 A = _ = array([[-1.16814697e-01, 4.10985262e-01, -1.30231839e-01, ..., -9.61414459e-02, -8.84343221e-02, -8.31654985e...6146363e-02, 4.49071731e-03, ..., -2.12860770e-03, -2.52212822e-02, -3.20390895e-02]], shape=(100, 100)) accuracies = {'arpack': [2.5e-15, 1e-10, 1e-10], 'lobpcg': [2e-12, 0.04, 2], 'propack': [1e-12, 1e-06, 0.0001]} accuracy = 1e-12 err = .err at 0x7ffb3a0f2c00> error = np.float64(0.5058797936640321) k = 3 n = 100 rng = Generator(PCG64) at 0x7FFB3A1317E0 s = array([2.50832690e-01, 1.68703472e-01, 1.06611620e-01, 1.05988382e-01, 9.70794775e-02, 9.66288940e-02, 9.033001...2.60252521e-03, 1.68887784e-03, 1.37826802e-03, 1.23256703e-03, 8.51854490e-04, 4.25833531e-04, 7.43826407e-31]) self = tol = 0.0001 tols = [0.0001, 0.01, 1.0] ________________________ Test_SVDS_PROPACK.test_svd_v0 _________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:362: in test_svd_v0 _check_svds(A, k, *res1a) A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) idx = 2 k = 1 n = 100 res1a = (array([[0.08409213], [0.14249387], [0.11343493], [0.12334334], [0.08430353], [0.08... 0.09511241, 0.09230402, 0.09614864, 0.10153544, 0.10193004, 0.09731575, 0.10740891, 0.10833824, 0.10618432]])) res2a = (array([[0.08409213], [0.14249387], [0.11343493], [0.12334334], [0.08430353], [0.08... 0.09511241, 0.09230402, 0.09614864, 0.10153544, 0.10193004, 0.09731575, 0.10740891, 0.10833824, 0.10618432]])) rng = Generator(PCG64) at 0x7FFB3A131FC0 self = v0a = array([0.56800691, 0.96248607, 0.76620516, 0.83313226, 0.56943483, 0.60758278, 0.6291627 , 0.26593743, 0.624004...13, 0.18254685, 0.90915402, 0.1370293 , 0.69212858, 0.95074203, 0.6070844 , 0.68496465, 0.76751498, 0.24129202]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.20353842 E Max relative difference among violations: 0.20353842 E ACTUAL: array([[0.796462]]) E DESIRED: array([[1.]]) A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) A_rebuilt = array([[0.42247471, 0.41272621, 0.42048734, ..., 0.45261463, 0.45653075, 0.44745426], [0.71588218, 0.69...1913], [0.17946927, 0.17532806, 0.17862502, ..., 0.19227285, 0.19393643, 0.1900807 ]], shape=(100, 100)) atol = 1e-10 check_svd = True check_usvh_A = False k = 1 m = 100 n = 100 rtol = 1e-07 s = array([50.110981]) u = array([[0.08409213], [0.14249387], [0.11343493], [0.12334334], [0.08430353], [0.089...[0.10246806], [0.1407552 ], [0.08987746], [0.10140746], [0.11362885], [0.03572274]]) uh_u = array([[0.79646158]]) vh = array([[0.10025648, 0.09794309, 0.09978486, 0.09516163, 0.10068286, 0.10504426, 0.10307935, 0.08966925, 0.0867..., 0.09511241, 0.09230402, 0.09614864, 0.10153544, 0.10193004, 0.09731575, 0.10740891, 0.10833824, 0.10618432]]) which = 'LM' ________________________ Test_SVDS_PROPACK.test_svd_rng ________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:394: in test_svd_rng _check_svds(A, k, *res1a) A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) idx = 2 k = 1 n = 100 res1a = (array([[0.08900314], [0.0376975 ], [0.00572526], [0.00230942], [0.11363888], [0.12... 0.09328554, 0.08862108, 0.10045993, 0.09753612, 0.09449507, 0.09513276, 0.1042269 , 0.10404468, 0.10480492]])) res2a = (array([[0.08900314], [0.0376975 ], [0.00572526], [0.00230942], [0.11363888], [0.12... 0.09328554, 0.08862108, 0.10045993, 0.09753612, 0.09449507, 0.09513276, 0.1042269 , 0.10404468, 0.10480492]])) rng = Generator(PCG64) at 0x7FFB3A1327A0 self = lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.23367175 E Max relative difference among violations: 0.23367175 E ACTUAL: array([[0.766328]]) E DESIRED: array([[1.]]) A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) A_rebuilt = array([[0.43134672, 0.45185705, 0.43259248, ..., 0.46485558, 0.46404291, 0.4674336 ], [0.18269797, 0.19...7821], [0.55690676, 0.58338741, 0.55851514, ..., 0.60016966, 0.59912043, 0.60349812]], shape=(100, 100)) atol = 1e-10 check_svd = True check_usvh_A = False k = 1 m = 100 n = 100 rtol = 1e-07 s = array([50.110981]) u = array([[0.08900314], [0.0376975 ], [0.00572526], [0.00230942], [0.11363888], [0.127...[0.13710313], [0.13375171], [0.02078691], [0.13590617], [0.12435138], [0.11491093]]) uh_u = array([[0.76632825]]) vh = array([[0.09671376, 0.10131245, 0.09699307, 0.09100399, 0.10512975, 0.10177482, 0.10762222, 0.08964501, 0.0922..., 0.09328554, 0.08862108, 0.10045993, 0.09753612, 0.09449507, 0.09513276, 0.1042269 , 0.10404468, 0.10480492]]) which = 'LM' _______________________ Test_SVDS_PROPACK.test_svd_rng_2 _______________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:421: in test_svd_rng_2 _check_svds(A, k, *res1a) A = array([[0.58623666, 0.79920574, 0.56865463, ..., 0.96826324, 0.28618845, 0.41156489], [0.38116379, 0.30...5849], [0.91592469, 0.82908083, 0.13268786, ..., 0.81935226, 0.91491988, 0.72561311]], shape=(100, 100)) idx = 2 k = 1 n = 100 res1a = (array([[0.11797453], [0.08961174], [0.00316113], [0.00717772], [0.1129797 ], [0.02... 0.09396032, 0.0941339 , 0.10909678, 0.09774304, 0.09676385, 0.10806507, 0.09378928, 0.10243433, 0.10530098]])) res2a = (array([[0.11797453], [0.08961174], [0.00316113], [0.00717772], [0.1129797 ], [0.02... 0.09396032, 0.0941339 , 0.10909678, 0.09774304, 0.09676385, 0.10806507, 0.09378928, 0.10243433, 0.10530098]])) rng = Generator(PCG64) at 0x7FFB3A132F80 rng_2 = Generator(PCG64) at 0x7FFB3A133060 self = lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-10 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.24574885 E Max relative difference among violations: 0.24574885 E ACTUAL: array([[0.754251]]) E DESIRED: array([[1.]]) A = array([[0.58623666, 0.79920574, 0.56865463, ..., 0.96826324, 0.28618845, 0.41156489], [0.38116379, 0.30...5849], [0.91592469, 0.82908083, 0.13268786, ..., 0.81935226, 0.91491988, 0.72561311]], shape=(100, 100)) A_rebuilt = array([[0.62375501, 0.58965133, 0.57274657, ..., 0.55900551, 0.61053196, 0.62761784], [0.47379522, 0.44...3623], [0.32688242, 0.30901018, 0.30015115, ..., 0.29295007, 0.3199528 , 0.32890675]], shape=(100, 100)) atol = 1e-10 check_svd = True check_usvh_A = False k = 1 m = 100 n = 100 rtol = 1e-07 s = array([50.52131171]) u = array([[0.11797453], [0.08961174], [0.00316113], [0.00717772], [0.1129797 ], [0.029...[0.13652079], [0.05588016], [0.06123828], [0.03075875], [0.04175537], [0.06182523]]) uh_u = array([[0.75425115]]) vh = array([[0.10465288, 0.098931 , 0.09609474, 0.10205227, 0.10879149, 0.08817279, 0.09963374, 0.09500688, 0.0933..., 0.09396032, 0.0941339 , 0.10909678, 0.09774304, 0.09676385, 0.10806507, 0.09378928, 0.10243433, 0.10530098]]) which = 'LM' _______________________ Test_SVDS_PROPACK.test_svd_rng_3 _______________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:437: in test_svd_rng_3 _check_svds(A, k, *res1a, atol=2e-7) A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) k = 5 n = 100 res1a = (array([[-1.34308766e-01, 2.59116503e-02, 8.15160719e-02, 1.97285458e-01, 1.09857561e-01], [ 8.5949...9.98400604e-02, 1.01493743e-01, 9.74079610e-02, 1.04242215e-01, 1.05831083e-01, 1.05733062e-01]])) res2a = (array([[-1.34308766e-01, -2.59116503e-02, -8.15160719e-02, 1.97285458e-01, 1.09857561e-01], [ 8.5949...9.98400604e-02, 1.01493743e-01, 9.74079610e-02, 1.04242215e-01, 1.05831083e-01, 1.05733062e-01]])) rng1 = Generator(PCG64) at 0x7FFB3A133840 rng2 = Generator(PCG64) at 0x7FFB3A133920 self = lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:62: in _check_svds assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=2e-07 E E Mismatched elements: 500 / 500 (100%) E Max absolute difference among violations: 0.61758129 E Max relative difference among violations: 519.44276209 E ACTUAL: array([[1.343088e-01, 2.591165e-02, 8.151607e-02, 1.972855e-01, E 1.098576e-01], E [8.594913e-02, 2.528940e-02, 9.940085e-02, 2.638141e-01,... E DESIRED: array([[9.600765e-02, 1.736902e-04, 1.170652e-02, 3.630387e-03, E 1.199689e-01], E [1.651462e-04, 8.337607e-02, 4.426861e-03, 1.054009e-01,... A = array([[0.63696169, 0.26978671, 0.04097352, ..., 0.97262881, 0.88993556, 0.82237383], [0.47998792, 0.23...0413], [0.67703467, 0.06811606, 0.11610553, ..., 0.18551999, 0.9356096 , 0.02193656]], shape=(100, 100)) A_rebuilt = array([[0.77219366, 0.46671069, 0.42759839, ..., 0.73334648, 0.6396455 , 0.62535124], [0.75304872, 0.49...8837], [0.51620453, 0.48036655, 0.37157012, ..., 0.53116919, 0.61728398, 0.5363833 ]], shape=(100, 100)) atol = 2e-07 check_svd = True check_usvh_A = False k = 5 m = 100 n = 100 rtol = 1e-07 s = array([ 5.18815419, 5.26332617, 5.39110392, 5.64119089, 50.110981 ]) s2 = array([ 4.94862638, 5.04768945, 5.4294642 , 14.19692235, 44.18457103]) u = array([[-1.34308766e-01, 2.59116503e-02, 8.15160719e-02, 1.97285458e-01, 1.09857561e-01], [ 8.59491...9.50033033e-02], [-7.61654406e-02, 1.06712059e-02, 5.75884746e-02, -3.61060903e-02, 1.04198542e-01]]) u2 = array([[-9.60076513e-02, 1.73690159e-04, -1.17065164e-02, -3.63038659e-03, -1.19968921e-01], [-1.65146...1.07540929e-01], [-9.24344856e-02, -2.90529027e-01, -1.20518046e-01, -8.44972103e-03, -1.18150584e-01]]) uh_u = array([[ 1.00000000e+00, 2.63797821e-15, 3.70190329e-15, -1.03957014e-15, 2.83643650e-11], [ 2.63797...9.89958405e-12], [ 2.83643650e-11, 1.46781599e-11, -1.45292493e-12, -9.89958405e-12, 1.00000000e+00]]) vh = array([[-5.89329473e-02, 8.18224353e-02, 2.09572635e-01, 7.10755047e-02, -2.26558561e-01, 1.17517567e-01, ... 9.98400604e-02, 1.01493743e-01, 9.74079610e-02, 1.04242215e-01, 1.05831083e-01, 1.05733062e-01]]) vh2 = array([[ 1.17969302e-03, -9.65179226e-03, -5.82047546e-02, 1.24524212e-01, 1.72606632e-02, -5.99962972e-02, ...-9.84389240e-02, -1.04224765e-01, -9.55371871e-02, -1.03137950e-01, -1.05583134e-01, -1.07357551e-01]]) vh_v = array([[ 1.00000000e+00, 2.14661946e-15, 4.81111919e-15, 2.67579036e-17, -4.63760956e-12], [ 2.14661...4.34399327e-12], [-4.63760956e-12, 1.35383197e-11, -1.71860176e-12, -4.34399327e-12, 1.00000000e+00]]) which = 'LM' ______________________ Test_SVDS_PROPACK.test_svd_maxiter ______________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:471: in test_svd_maxiter _check_svds(A, k, ud, sd, vhd, atol=1e-8) A = array([[0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 2., 0., 0., ...0., 0., 0., 0., 6., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 7., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 8.]]) k = 1 maxiter = None message = 'k=1 singular triplets did not converge within' s = array([8.]) sd = array([8.]) self = u = array([[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [1.]]) ud = array([[ 1.40002607e-01], [ 4.05563241e-02], [ 3.11112566e-04], [-1.03099992e-03], [ 3.48037218e-02], [ 2.27977519e-01], [ 1.84367803e-01], [ 3.70352255e-02], [ 1.00000000e+00]]) vh = array([[0., 0., 0., 0., 0., 0., 0., 0., 1.]]) vhd = array([[0. , 0.06887764, 0.01442631, 0.004571 , 0.14699884, 0.20897247, 0.22102439, 0.22515564, 1. ]]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=1e-08 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.10979485 E Max relative difference among violations: 0.10979485 E ACTUAL: array([[1.109795]]) E DESIRED: array([[1.]]) A = array([[0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 2., 0., 0., ...0., 0., 0., 0., 6., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 7., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 8.]]) A_rebuilt = array([[ 0.00000000e+00, 7.71443892e-02, 1.61577628e-02, 5.11961117e-03, 1.64641772e-01, 2.34053522e-01, ... 3.65679702e-02, 1.17599076e+00, 1.67177974e+00, 1.76819514e+00, 1.80124511e+00, 8.00000000e+00]]) atol = 1e-08 check_svd = True check_usvh_A = False k = 1 m = 9 n = 9 rtol = 1e-07 s = array([8.]) u = array([[ 1.40002607e-01], [ 4.05563241e-02], [ 3.11112566e-04], [-1.03099992e-03], [ 3.48037218e-02], [ 2.27977519e-01], [ 1.84367803e-01], [ 3.70352255e-02], [ 1.00000000e+00]]) uh_u = array([[1.10979485]]) vh = array([[0. , 0.06887764, 0.01442631, 0.004571 , 0.14699884, 0.20897247, 0.22102439, 0.22515564, 1. ]]) which = 'LM' ----------------------------- Captured stdout call ----------------------------- ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 5 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 5 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 5 had an illegal value _______ Test_SVDS_PROPACK.test_svd_return_singular_vectors[shape0-True] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:537: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 10 / 10 (100%) E Max absolute difference among violations: 0.04934199 E Max relative difference among violations: 0.21598718 E ACTUAL: array([[0.64919 , 0.369453], E [0.522301, 0.499148], E [0.410556, 0.369421],... E DESIRED: array([[0.688874, 0.378529], E [0.523338, 0.497621], E [0.383827, 0.373171],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...994, 0.98083534], [0.68554198, 0.65045928, 0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 5 N = 7 k = 2 respect_u = True respect_vh = True rng = Generator(PCG64) at 0x7FFB3A0E0900 rsv = True s = array([1.23553345, 3.08390303]) s2 = array([1.22290284, 3.26220386]) self = shape = (5, 7) u = array([[ 0.68887426, 0.3785286 ], [-0.52333794, 0.49762092], [-0.38382671, 0.37317138], [ 0.31898039, 0.5182748 ], [-0.04998232, 0.44857983]]) u2 = array([[ 0.64919046, 0.36945311], [-0.52230146, 0.49914775], [-0.41055566, 0.36942121], [ 0.36832238, 0.5172146 ], [-0.03918678, 0.45866432]]) vh = array([[-0.16910028, -0.20313403, -0.61388183, -0.44832571, 0.5081296 , 0.22319474, 0.54155643], [ 0.38518883, 0.36014582, 0.47569865, 0.36435658, 0.21009746, 0.5671986 , 0.31953341]]) vh2 = array([[-0.20292676, 0.03320542, -0.4945419 , -0.34857418, 0.44117289, 0.2536702 , 0.57676718], [ 0.38247733, 0.33140567, 0.44486965, 0.34027164, 0.20628988, 0.5419753 , 0.30642265]]) _______ Test_SVDS_PROPACK.test_svd_return_singular_vectors[shape0-False] _______ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:520: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.17830083 E Max relative difference among violations: 0.05781661 E ACTUAL: array([1.222903, 3.262204]) E DESIRED: array([1.235533, 3.083903]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...994, 0.98083534], [0.68554198, 0.65045928, 0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 5 N = 7 k = 2 respect_u = True respect_vh = True rng = Generator(PCG64) at 0x7FFB3A0E10E0 rsv = False s = array([1.23553345, 3.08390303]) s2 = array([1.22290284, 3.26220386]) self = shape = (5, 7) u = array([[ 0.68887426, 0.3785286 ], [-0.52333794, 0.49762092], [-0.38382671, 0.37317138], [ 0.31898039, 0.5182748 ], [-0.04998232, 0.44857983]]) vh = array([[-0.16910028, -0.20313403, -0.61388183, -0.44832571, 0.5081296 , 0.22319474, 0.54155643], [ 0.38518883, 0.36014582, 0.47569865, 0.36435658, 0.21009746, 0.5671986 , 0.31953341]]) _________ Test_SVDS_PROPACK.test_svd_return_singular_vectors[shape0-u] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:524: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 10 / 10 (100%) E Max absolute difference among violations: 0.04934199 E Max relative difference among violations: 0.21598718 E ACTUAL: array([[0.64919 , 0.369453], E [0.522301, 0.499148], E [0.410556, 0.369421],... E DESIRED: array([[0.688874, 0.378529], E [0.523338, 0.497621], E [0.383827, 0.373171],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...994, 0.98083534], [0.68554198, 0.65045928, 0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 5 N = 7 k = 2 respect_u = True respect_vh = True rng = Generator(PCG64) at 0x7FFB3A0E18C0 rsv = 'u' s = array([1.23553345, 3.08390303]) s2 = array([1.22290284, 3.26220386]) self = shape = (5, 7) u = array([[ 0.68887426, 0.3785286 ], [-0.52333794, 0.49762092], [-0.38382671, 0.37317138], [ 0.31898039, 0.5182748 ], [-0.04998232, 0.44857983]]) u2 = array([[ 0.64919046, 0.36945311], [-0.52230146, 0.49914775], [-0.41055566, 0.36942121], [ 0.36832238, 0.5172146 ], [-0.03918678, 0.45866432]]) vh = array([[-0.16910028, -0.20313403, -0.61388183, -0.44832571, 0.5081296 , 0.22319474, 0.54155643], [ 0.38518883, 0.36014582, 0.47569865, 0.36435658, 0.21009746, 0.5671986 , 0.31953341]]) vh2 = None ________ Test_SVDS_PROPACK.test_svd_return_singular_vectors[shape0-vh] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:531: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.17830083 E Max relative difference among violations: 0.05781661 E ACTUAL: array([1.222903, 3.262204]) E DESIRED: array([1.235533, 3.083903]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558, 0.60663578], [0.7294965...994, 0.98083534], [0.68554198, 0.65045928, 0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 5 N = 7 k = 2 respect_u = True respect_vh = True rng = Generator(PCG64) at 0x7FFB3A0E20A0 rsv = 'vh' s = array([1.23553345, 3.08390303]) s2 = array([1.22290284, 3.26220386]) self = shape = (5, 7) u = array([[ 0.68887426, 0.3785286 ], [-0.52333794, 0.49762092], [-0.38382671, 0.37317138], [ 0.31898039, 0.5182748 ], [-0.04998232, 0.44857983]]) u2 = None vh = array([[-0.16910028, -0.20313403, -0.61388183, -0.44832571, 0.5081296 , 0.22319474, 0.54155643], [ 0.38518883, 0.36014582, 0.47569865, 0.36435658, 0.21009746, 0.5671986 , 0.31953341]]) vh2 = array([[-0.20292676, 0.03320542, -0.4945419 , -0.34857418, 0.44117289, 0.2536702 , 0.57676718], [ 0.38247733, 0.33140567, 0.44486965, 0.34027164, 0.20628988, 0.5419753 , 0.30642265]]) _______ Test_SVDS_PROPACK.test_svd_return_singular_vectors[shape1-True] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:537: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 12 / 12 (100%) E Max absolute difference among violations: 0.53206328 E Max relative difference among violations: 4.57152359 E ACTUAL: array([[0.64845 , 0.354156], E [0.514068, 0.454872], E [0.261324, 0.426439],... E DESIRED: array([[0.116386, 0.465918], E [0.492601, 0.36762 ], E [0.712502, 0.500613],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558], [0.60663578, 0.7294965...8554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432, 0.31024188]]) M = 6 N = 6 k = 2 respect_u = True respect_vh = True rng = Generator(PCG64) at 0x7FFB3A0E2880 rsv = True s = array([1.05729162, 3.21186444]) s2 = array([1.1957827 , 3.27738834]) self = shape = (6, 6) u = array([[ 0.11638642, -0.46591811], [ 0.4926005 , -0.36762025], [-0.7125021 , -0.50061258], [ 0.28999188, -0.26589221], [-0.20242099, -0.41968395], [ 0.3332719 , -0.38772338]]) u2 = array([[-0.6484497 , 0.35415637], [ 0.51406798, 0.45487166], [-0.26132394, 0.42643877], [-0.36916108, 0.27817444], [ 0.30260314, 0.53210346], [ 0.13823286, 0.35397726]]) vh = array([[-0.04365159, 0.21154233, -0.0742191 , 0.4413241 , -0.06173673, -0.41258906], [-0.4837988 , -0.24829873, -0.32795773, -0.35872099, -0.54870342, -0.38897335]]) vh2 = array([[-0.12920775, 0.17153207, 0.31125522, 0.64788288, -0.25174307, -0.61145359], [ 0.46429381, 0.27494528, 0.35371511, 0.40213924, 0.53839203, 0.36351069]]) _______ Test_SVDS_PROPACK.test_svd_return_singular_vectors[shape1-False] _______ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:520: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.13849108 E Max relative difference among violations: 0.13098664 E ACTUAL: array([1.195783, 3.277388]) E DESIRED: array([1.057292, 3.211864]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558], [0.60663578, 0.7294965...8554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432, 0.31024188]]) M = 6 N = 6 k = 2 respect_u = True respect_vh = True rng = Generator(PCG64) at 0x7FFB3A0E3060 rsv = False s = array([1.05729162, 3.21186444]) s2 = array([1.1957827 , 3.27738834]) self = shape = (6, 6) u = array([[ 0.11638642, -0.46591811], [ 0.4926005 , -0.36762025], [-0.7125021 , -0.50061258], [ 0.28999188, -0.26589221], [-0.20242099, -0.41968395], [ 0.3332719 , -0.38772338]]) vh = array([[-0.04365159, 0.21154233, -0.0742191 , 0.4413241 , -0.06173673, -0.41258906], [-0.4837988 , -0.24829873, -0.32795773, -0.35872099, -0.54870342, -0.38897335]]) _________ Test_SVDS_PROPACK.test_svd_return_singular_vectors[shape1-u] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:524: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 12 / 12 (100%) E Max absolute difference among violations: 0.53206328 E Max relative difference among violations: 4.57152359 E ACTUAL: array([[0.64845 , 0.354156], E [0.514068, 0.454872], E [0.261324, 0.426439],... E DESIRED: array([[0.116386, 0.465918], E [0.492601, 0.36762 ], E [0.712502, 0.500613],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558], [0.60663578, 0.7294965...8554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432, 0.31024188]]) M = 6 N = 6 k = 2 respect_u = True respect_vh = True rng = Generator(PCG64) at 0x7FFB3A0E3840 rsv = 'u' s = array([1.05729162, 3.21186444]) s2 = array([1.1957827 , 3.27738834]) self = shape = (6, 6) u = array([[ 0.11638642, -0.46591811], [ 0.4926005 , -0.36762025], [-0.7125021 , -0.50061258], [ 0.28999188, -0.26589221], [-0.20242099, -0.41968395], [ 0.3332719 , -0.38772338]]) u2 = array([[-0.6484497 , 0.35415637], [ 0.51406798, 0.45487166], [-0.26132394, 0.42643877], [-0.36916108, 0.27817444], [ 0.30260314, 0.53210346], [ 0.13823286, 0.35397726]]) vh = array([[-0.04365159, 0.21154233, -0.0742191 , 0.4413241 , -0.06173673, -0.41258906], [-0.4837988 , -0.24829873, -0.32795773, -0.35872099, -0.54870342, -0.38897335]]) vh2 = None ________ Test_SVDS_PROPACK.test_svd_return_singular_vectors[shape1-vh] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:531: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.13849108 E Max relative difference among violations: 0.13098664 E ACTUAL: array([1.195783, 3.277388]) E DESIRED: array([1.057292, 3.211864]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024, 0.91275558], [0.60663578, 0.7294965...8554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432, 0.31024188]]) M = 6 N = 6 k = 2 respect_u = True respect_vh = True rng = Generator(PCG64) at 0x7FFB3A074120 rsv = 'vh' s = array([1.05729162, 3.21186444]) s2 = array([1.1957827 , 3.27738834]) self = shape = (6, 6) u = array([[ 0.11638642, -0.46591811], [ 0.4926005 , -0.36762025], [-0.7125021 , -0.50061258], [ 0.28999188, -0.26589221], [-0.20242099, -0.41968395], [ 0.3332719 , -0.38772338]]) u2 = None vh = array([[-0.04365159, 0.21154233, -0.0742191 , 0.4413241 , -0.06173673, -0.41258906], [-0.4837988 , -0.24829873, -0.32795773, -0.35872099, -0.54870342, -0.38897335]]) vh2 = array([[-0.12920775, 0.17153207, 0.31125522, 0.64788288, -0.25174307, -0.61145359], [ 0.46429381, 0.27494528, 0.35371511, 0.40213924, 0.53839203, 0.36351069]]) _______ Test_SVDS_PROPACK.test_svd_return_singular_vectors[shape2-True] ________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:537: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 14 / 14 (100%) E Max absolute difference among violations: 0.58731158 E Max relative difference among violations: 43.26409092 E ACTUAL: array([[0.474024, 0.258999], E [0.189229, 0.516458], E [0.517918, 0.359528],... E DESIRED: array([[0.010709, 0.322976], E [0.094669, 0.53322 ], E [0.434498, 0.410499],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024], [0.91275558, 0.60663578, 0.72949656, 0.543... 0.99720994, 0.98083534, 0.68554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 7 N = 5 k = 2 respect_u = True respect_vh = True rng = Generator(PCG64) at 0x7FFB3A074900 rsv = True s = array([1.13635931, 3.07456143]) s2 = array([1.0906468 , 3.26945398]) self = shape = (7, 5) u = array([[-0.01070899, -0.32297583], [ 0.09466891, -0.53321965], [ 0.43449844, -0.41049882], [-0.17...-0.19198992], [ 0.79554732, -0.01715354], [-0.37352392, -0.52668482], [-0.02681302, -0.3581939 ]]) u2 = array([[ 0.47402367, 0.25899929], [ 0.18922852, 0.51645814], [ 0.51791839, 0.35952798], [-0.40... 0.31210323], [-0.20823574, 0.29040197], [-0.50128151, 0.50074025], [ 0.09963134, 0.32318333]]) vh = array([[ 0.23313061, -0.0296908 , 0.56015762, 0.29923244, 0.63808378], [-0.4911965 , -0.34074441, -0.44339979, -0.3082785 , -0.51610486]]) vh2 = array([[ 0.63801451, -0.54584724, -0.21766421, -0.36748752, 0.33550484], [ 0.43045687, 0.40211309, 0.48759655, 0.35328614, 0.53893455]]) _______ Test_SVDS_PROPACK.test_svd_return_singular_vectors[shape2-False] _______ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:520: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.19489255 E Max relative difference among violations: 0.06338873 E ACTUAL: array([1.090647, 3.269454]) E DESIRED: array([1.136359, 3.074561]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024], [0.91275558, 0.60663578, 0.72949656, 0.543... 0.99720994, 0.98083534, 0.68554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 7 N = 5 k = 2 respect_u = True respect_vh = True rng = Generator(PCG64) at 0x7FFB3A0750E0 rsv = False s = array([1.13635931, 3.07456143]) s2 = array([1.0906468 , 3.26945398]) self = shape = (7, 5) u = array([[-0.01070899, -0.32297583], [ 0.09466891, -0.53321965], [ 0.43449844, -0.41049882], [-0.17...-0.19198992], [ 0.79554732, -0.01715354], [-0.37352392, -0.52668482], [-0.02681302, -0.3581939 ]]) vh = array([[ 0.23313061, -0.0296908 , 0.56015762, 0.29923244, 0.63808378], [-0.4911965 , -0.34074441, -0.44339979, -0.3082785 , -0.51610486]]) _________ Test_SVDS_PROPACK.test_svd_return_singular_vectors[shape2-u] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:524: in test_svd_return_singular_vectors assert_allclose(np.abs(u2), np.abs(u)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 14 / 14 (100%) E Max absolute difference among violations: 0.58731158 E Max relative difference among violations: 43.26409092 E ACTUAL: array([[0.474024, 0.258999], E [0.189229, 0.516458], E [0.517918, 0.359528],... E DESIRED: array([[0.010709, 0.322976], E [0.094669, 0.53322 ], E [0.434498, 0.410499],... A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024], [0.91275558, 0.60663578, 0.72949656, 0.543... 0.99720994, 0.98083534, 0.68554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 7 N = 5 k = 2 respect_u = True respect_vh = True rng = Generator(PCG64) at 0x7FFB3A0758C0 rsv = 'u' s = array([1.13635931, 3.07456143]) s2 = array([1.0906468 , 3.26945398]) self = shape = (7, 5) u = array([[-0.01070899, -0.32297583], [ 0.09466891, -0.53321965], [ 0.43449844, -0.41049882], [-0.17...-0.19198992], [ 0.79554732, -0.01715354], [-0.37352392, -0.52668482], [-0.02681302, -0.3581939 ]]) u2 = array([[ 0.47402367, 0.25899929], [ 0.18922852, 0.51645814], [ 0.51791839, 0.35952798], [-0.40... 0.31210323], [-0.20823574, 0.29040197], [-0.50128151, 0.50074025], [ 0.09963134, 0.32318333]]) vh = array([[ 0.23313061, -0.0296908 , 0.56015762, 0.29923244, 0.63808378], [-0.4911965 , -0.34074441, -0.44339979, -0.3082785 , -0.51610486]]) vh2 = None ________ Test_SVDS_PROPACK.test_svd_return_singular_vectors[shape2-vh] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:531: in test_svd_return_singular_vectors assert_allclose(s2, s) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2 / 2 (100%) E Max absolute difference among violations: 0.19489255 E Max relative difference among violations: 0.06338873 E ACTUAL: array([1.090647, 3.269454]) E DESIRED: array([1.136359, 3.074561]) A = array([[0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024], [0.91275558, 0.60663578, 0.72949656, 0.543... 0.99720994, 0.98083534, 0.68554198, 0.65045928], [0.68844673, 0.38892142, 0.13509651, 0.72148834, 0.52535432]]) M = 7 N = 5 k = 2 respect_u = True respect_vh = True rng = Generator(PCG64) at 0x7FFB3A0760A0 rsv = 'vh' s = array([1.13635931, 3.07456143]) s2 = array([1.0906468 , 3.26945398]) self = shape = (7, 5) u = array([[-0.01070899, -0.32297583], [ 0.09466891, -0.53321965], [ 0.43449844, -0.41049882], [-0.17...-0.19198992], [ 0.79554732, -0.01715354], [-0.37352392, -0.52668482], [-0.02681302, -0.3581939 ]]) u2 = None vh = array([[ 0.23313061, -0.0296908 , 0.56015762, 0.29923244, 0.63808378], [-0.4911965 , -0.34074441, -0.44339979, -0.3082785 , -0.51610486]]) vh2 = array([[ 0.63801451, -0.54584724, -0.21766421, -0.36748752, 0.33550484], [ 0.43045687, 0.40211309, 0.48759655, 0.35328614, 0.53893455]]) __________ Test_SVDS_PROPACK.test_svd_simple[asarray-False-True-1-A0] __________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:584: in test_svd_simple _check_svds(A, k, u, s, vh, atol=atol) A = array([[1., 2., 3.], [3., 4., 3.], [1., 0., 2.], [0., 0., 1.]]) A2 = array([[1., 2., 3.], [3., 4., 3.], [1., 0., 2.], [0., 0., 1.]]) atol = 3e-09 k = 1 lo_type = real = True s = array([7.04858148]) self = transpose = False u = array([[0.74122697], [0.31394854], [0.04768055], [0.01923307]]) vh = array([[0.45543034, 0.60874934, 0.649621 ]]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=3e-09 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.34937554 E Max relative difference among violations: 0.34937554 E ACTUAL: array([[0.650624]]) E DESIRED: array([[1.]]) A = array([[1., 2., 3.], [3., 4., 3.], [1., 0., 2.], [0., 0., 1.]]) A_rebuilt = array([[2.3794408 , 3.18047102, 3.39400905], [1.00781809, 1.34709645, 1.43754101], [0.15306113, 0.20458861, 0.21832477], [0.06174081, 0.08252563, 0.08806643]]) atol = 3e-09 check_svd = True check_usvh_A = False k = 1 m = 3 n = 4 rtol = 1e-07 s = array([7.04858148]) u = array([[0.74122697], [0.31394854], [0.04768055], [0.01923307]]) uh_u = array([[0.65062446]]) vh = array([[0.45543034, 0.60874934, 0.649621 ]]) which = 'LM' __________ Test_SVDS_PROPACK.test_svd_simple[asarray-False-True-1-A1] __________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:584: in test_svd_simple _check_svds(A, k, u, s, vh, atol=atol) A = array([[1., 2., 3., 8.], [3., 4., 3., 5.], [1., 0., 2., 3.], [0., 0., 1., 0.]]) A2 = array([[1., 2., 3., 8.], [3., 4., 3., 5.], [1., 0., 2., 3.], [0., 0., 1., 0.]]) atol = 3e-09 k = 1 lo_type = real = True s = array([11.89322673]) self = transpose = False u = array([[0.85305376], [0.36131305], [0.05487397], [0.02213471]]) vh = array([[0.19348129, 0.30610939, 0.36668545, 0.85436804]]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=3e-09 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.13825106 E Max relative difference among violations: 0.13825106 E ACTUAL: array([[0.861749]]) E DESIRED: array([[1.]]) A = array([[1., 2., 3., 8.], [3., 4., 3., 5.], [1., 0., 2., 3.], [0., 0., 1., 0.]]) A_rebuilt = array([[1.96297643, 3.10565174, 3.72022993, 8.66804376], [0.83142357, 1.31540655, 1.57571268, 3.67137159], [0.12627143, 0.19977575, 0.23930942, 0.55758503], [0.05093455, 0.08058425, 0.09653109, 0.22491505]]) atol = 3e-09 check_svd = True check_usvh_A = False k = 1 m = 4 n = 4 rtol = 1e-07 s = array([11.89322673]) u = array([[0.85305376], [0.36131305], [0.05487397], [0.02213471]]) uh_u = array([[0.86174894]]) vh = array([[0.19348129, 0.30610939, 0.36668545, 0.85436804]]) which = 'LM' __________ Test_SVDS_PROPACK.test_svd_simple[asarray-True-True-1-A1] ___________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:584: in test_svd_simple _check_svds(A, k, u, s, vh, atol=atol) A = array([[1., 3., 1., 0.], [2., 4., 0., 0.], [3., 3., 2., 1.], [8., 5., 3., 0.]]) A2 = array([[1., 3., 1., 0.], [2., 4., 0., 0.], [3., 3., 2., 1.], [8., 5., 3., 0.]]) atol = 3e-09 k = 1 lo_type = real = True s = array([11.89322673]) self = transpose = True u = array([[0.36156306], [0.15314094], [0.02325809], [0.0093817 ]]) vh = array([[0.36127668, 0.80639179, 0.19392513, 0.01033947]]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=3e-09 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.84519105 E Max relative difference among violations: 0.84519105 E ACTUAL: array([[0.154809]]) E DESIRED: array([[1.]]) A = array([[1., 3., 1., 0.], [2., 4., 0., 0.], [3., 3., 2., 1.], [8., 5., 3., 0.]]) A_rebuilt = array([[1.55354443e+00, 3.46760679e+00, 8.33907441e-01, 4.44612858e-02], [6.58007626e-01, 1.46871352e+00, 3.532...3059052e-01, 5.36423574e-02, 2.86003946e-03], [4.03107702e-02, 8.99761200e-02, 2.16379078e-02, 1.15366425e-03]]) atol = 3e-09 check_svd = True check_usvh_A = False k = 1 m = 4 n = 4 rtol = 1e-07 s = array([11.89322673]) u = array([[0.36156306], [0.15314094], [0.02325809], [0.0093817 ]]) uh_u = array([[0.15480895]]) vh = array([[0.36127668, 0.80639179, 0.19392513, 0.01033947]]) which = 'LM' _________ Test_SVDS_PROPACK.test_svd_simple[csc_array-False-True-1-A0] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:584: in test_svd_simple _check_svds(A, k, u, s, vh, atol=atol) A = array([[1., 2., 3.], [3., 4., 3.], [1., 0., 2.], [0., 0., 1.]]) A2 = atol = 3e-09 k = 1 lo_type = real = True s = array([7.04858148]) self = transpose = False u = array([[0.74122697], [0.31394854], [0.04768055], [0.01923307]]) vh = array([[0.45543034, 0.60874934, 0.649621 ]]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=3e-09 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.34937554 E Max relative difference among violations: 0.34937554 E ACTUAL: array([[0.650624]]) E DESIRED: array([[1.]]) A = array([[1., 2., 3.], [3., 4., 3.], [1., 0., 2.], [0., 0., 1.]]) A_rebuilt = array([[2.3794408 , 3.18047102, 3.39400905], [1.00781809, 1.34709645, 1.43754101], [0.15306113, 0.20458861, 0.21832477], [0.06174081, 0.08252563, 0.08806643]]) atol = 3e-09 check_svd = True check_usvh_A = False k = 1 m = 3 n = 4 rtol = 1e-07 s = array([7.04858148]) u = array([[0.74122697], [0.31394854], [0.04768055], [0.01923307]]) uh_u = array([[0.65062446]]) vh = array([[0.45543034, 0.60874934, 0.649621 ]]) which = 'LM' _________ Test_SVDS_PROPACK.test_svd_simple[csc_array-False-True-1-A1] _________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:584: in test_svd_simple _check_svds(A, k, u, s, vh, atol=atol) A = array([[1., 2., 3., 8.], [3., 4., 3., 5.], [1., 0., 2., 3.], [0., 0., 1., 0.]]) A2 = atol = 3e-09 k = 1 lo_type = real = True s = array([11.89322673]) self = transpose = False u = array([[0.85305376], [0.36131305], [0.05487397], [0.02213471]]) vh = array([[0.19348129, 0.30610939, 0.36668545, 0.85436804]]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=3e-09 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.13825106 E Max relative difference among violations: 0.13825106 E ACTUAL: array([[0.861749]]) E DESIRED: array([[1.]]) A = array([[1., 2., 3., 8.], [3., 4., 3., 5.], [1., 0., 2., 3.], [0., 0., 1., 0.]]) A_rebuilt = array([[1.96297643, 3.10565174, 3.72022993, 8.66804376], [0.83142357, 1.31540655, 1.57571268, 3.67137159], [0.12627143, 0.19977575, 0.23930942, 0.55758503], [0.05093455, 0.08058425, 0.09653109, 0.22491505]]) atol = 3e-09 check_svd = True check_usvh_A = False k = 1 m = 4 n = 4 rtol = 1e-07 s = array([11.89322673]) u = array([[0.85305376], [0.36131305], [0.05487397], [0.02213471]]) uh_u = array([[0.86174894]]) vh = array([[0.19348129, 0.30610939, 0.36668545, 0.85436804]]) which = 'LM' _________ Test_SVDS_PROPACK.test_svd_simple[csc_array-True-True-1-A1] __________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:584: in test_svd_simple _check_svds(A, k, u, s, vh, atol=atol) A = array([[1., 3., 1., 0.], [2., 4., 0., 0.], [3., 3., 2., 1.], [8., 5., 3., 0.]]) A2 = atol = 3e-09 k = 1 lo_type = real = True s = array([11.89322673]) self = transpose = True u = array([[0.36156306], [0.15314094], [0.02325809], [0.0093817 ]]) vh = array([[0.36127668, 0.80639179, 0.19392513, 0.01033947]]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=3e-09 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.84519105 E Max relative difference among violations: 0.84519105 E ACTUAL: array([[0.154809]]) E DESIRED: array([[1.]]) A = array([[1., 3., 1., 0.], [2., 4., 0., 0.], [3., 3., 2., 1.], [8., 5., 3., 0.]]) A_rebuilt = array([[1.55354443e+00, 3.46760679e+00, 8.33907441e-01, 4.44612858e-02], [6.58007626e-01, 1.46871352e+00, 3.532...3059052e-01, 5.36423574e-02, 2.86003946e-03], [4.03107702e-02, 8.99761200e-02, 2.16379078e-02, 1.15366425e-03]]) atol = 3e-09 check_svd = True check_usvh_A = False k = 1 m = 4 n = 4 rtol = 1e-07 s = array([11.89322673]) u = array([[0.36156306], [0.15314094], [0.02325809], [0.0093817 ]]) uh_u = array([[0.15480895]]) vh = array([[0.36127668, 0.80639179, 0.19392513, 0.01033947]]) which = 'LM' _____ Test_SVDS_PROPACK.test_svd_simple[aslinearoperator-False-True-1-A0] ______ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:584: in test_svd_simple _check_svds(A, k, u, s, vh, atol=atol) A = array([[1., 2., 3.], [3., 4., 3.], [1., 0., 2.], [0., 0., 1.]]) A2 = <4x3 MatrixLinearOperator with dtype=float64> atol = 3e-09 k = 1 lo_type = real = True s = array([7.04858148]) self = transpose = False u = array([[0.74122697], [0.31394854], [0.04768055], [0.01923307]]) vh = array([[0.45543034, 0.60874934, 0.649621 ]]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=3e-09 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.34937554 E Max relative difference among violations: 0.34937554 E ACTUAL: array([[0.650624]]) E DESIRED: array([[1.]]) A = array([[1., 2., 3.], [3., 4., 3.], [1., 0., 2.], [0., 0., 1.]]) A_rebuilt = array([[2.3794408 , 3.18047102, 3.39400905], [1.00781809, 1.34709645, 1.43754101], [0.15306113, 0.20458861, 0.21832477], [0.06174081, 0.08252563, 0.08806643]]) atol = 3e-09 check_svd = True check_usvh_A = False k = 1 m = 3 n = 4 rtol = 1e-07 s = array([7.04858148]) u = array([[0.74122697], [0.31394854], [0.04768055], [0.01923307]]) uh_u = array([[0.65062446]]) vh = array([[0.45543034, 0.60874934, 0.649621 ]]) which = 'LM' _____ Test_SVDS_PROPACK.test_svd_simple[aslinearoperator-False-True-1-A1] ______ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:584: in test_svd_simple _check_svds(A, k, u, s, vh, atol=atol) A = array([[1., 2., 3., 8.], [3., 4., 3., 5.], [1., 0., 2., 3.], [0., 0., 1., 0.]]) A2 = <4x4 MatrixLinearOperator with dtype=float64> atol = 3e-09 k = 1 lo_type = real = True s = array([11.89322673]) self = transpose = False u = array([[0.85305376], [0.36131305], [0.05487397], [0.02213471]]) vh = array([[0.19348129, 0.30610939, 0.36668545, 0.85436804]]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=3e-09 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.13825106 E Max relative difference among violations: 0.13825106 E ACTUAL: array([[0.861749]]) E DESIRED: array([[1.]]) A = array([[1., 2., 3., 8.], [3., 4., 3., 5.], [1., 0., 2., 3.], [0., 0., 1., 0.]]) A_rebuilt = array([[1.96297643, 3.10565174, 3.72022993, 8.66804376], [0.83142357, 1.31540655, 1.57571268, 3.67137159], [0.12627143, 0.19977575, 0.23930942, 0.55758503], [0.05093455, 0.08058425, 0.09653109, 0.22491505]]) atol = 3e-09 check_svd = True check_usvh_A = False k = 1 m = 4 n = 4 rtol = 1e-07 s = array([11.89322673]) u = array([[0.85305376], [0.36131305], [0.05487397], [0.02213471]]) uh_u = array([[0.86174894]]) vh = array([[0.19348129, 0.30610939, 0.36668545, 0.85436804]]) which = 'LM' ______ Test_SVDS_PROPACK.test_svd_simple[aslinearoperator-True-True-1-A1] ______ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:584: in test_svd_simple _check_svds(A, k, u, s, vh, atol=atol) A = array([[1., 3., 1., 0.], [2., 4., 0., 0.], [3., 3., 2., 1.], [8., 5., 3., 0.]]) A2 = <4x4 MatrixLinearOperator with dtype=float64> atol = 3e-09 k = 1 lo_type = real = True s = array([11.89322673]) self = transpose = True u = array([[0.36156306], [0.15314094], [0.02325809], [0.0093817 ]]) vh = array([[0.36127668, 0.80639179, 0.19392513, 0.01033947]]) lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:52: in _check_svds assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=3e-09 E E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.84519105 E Max relative difference among violations: 0.84519105 E ACTUAL: array([[0.154809]]) E DESIRED: array([[1.]]) A = array([[1., 3., 1., 0.], [2., 4., 0., 0.], [3., 3., 2., 1.], [8., 5., 3., 0.]]) A_rebuilt = array([[1.55354443e+00, 3.46760679e+00, 8.33907441e-01, 4.44612858e-02], [6.58007626e-01, 1.46871352e+00, 3.532...3059052e-01, 5.36423574e-02, 2.86003946e-03], [4.03107702e-02, 8.99761200e-02, 2.16379078e-02, 1.15366425e-03]]) atol = 3e-09 check_svd = True check_usvh_A = False k = 1 m = 4 n = 4 rtol = 1e-07 s = array([11.89322673]) u = array([[0.36156306], [0.15314094], [0.02325809], [0.0093817 ]]) uh_u = array([[0.15480895]]) vh = array([[0.36127668, 0.80639179, 0.19392513, 0.01033947]]) which = 'LM' _______________ Test_SVDS_PROPACK.test_small_sigma[float-shape0] _______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:770: in test_small_sigma u, _, vh = svd(A, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]]) dtype = rng = Generator(PCG64) at 0x7FFB39F0F680 self = shape = (20, 20) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319... 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]])] array = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]]) arrays = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319... 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]])] batch_shapes = [()] core_shapes = [(20, 20)] f = i = 0 kwargs = {'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (20, 20) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]]) a1 = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.4269151 , 0.76997742, 0.60423115, 0.78890505, 0.17075426, 0.00757318, 0.94876372, 0.98516001, 0.65858641]]) check_finite = True compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 19 lapack_driver = 'gesdd' lwork = 1340 m = 20 max_mn = 20 min_mn = 20 n = 20 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 400 u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _______________ Test_SVDS_PROPACK.test_small_sigma[float-shape1] _______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:770: in test_small_sigma u, _, vh = svd(A, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196...9841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) dtype = rng = Generator(PCG64) at 0x7FFB39F0FE60 self = shape = (20, 21) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319...841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]])] array = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196...9841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) arrays = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319...841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]])] batch_shapes = [()] core_shapes = [(20, 21)] f = i = 0 kwargs = {'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (20, 21) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196...9841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) a1 = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196...9841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) check_finite = True compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 19 lapack_driver = 'gesdd' lwork = 1372 m = 20 max_mn = 21 min_mn = 20 n = 21 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 420 u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, na... [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) _______________ Test_SVDS_PROPACK.test_small_sigma[float-shape2] _______________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:770: in test_small_sigma u, _, vh = svd(A, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) dtype = rng = Generator(PCG64) at 0x7FFB39ED4740 self = shape = (21, 20) lib/python3.12/site-packages/scipy/_lib/_util.py:1233: in wrapper return f(*arrays, *other_args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ args = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319... 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]])] array = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) arrays = [array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.319... 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]])] batch_shapes = [()] core_shapes = [(21, 20)] f = i = 0 kwargs = {'full_matrices': False} n_arrays = 1 name = 'a' names = ('a',) ndim = 2 ndims = (2,) other_args = [] shape = (21, 20) lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py:170: in svd raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge a = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) a1 = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.14709222, 0.26621571, 0.3196..., 0.84379841, 0.5671275 , 0.58951237, 0.8831938 , 0.18547908, 0.46450426, 0.98271483, 0.62545946, 0.74106787]]) check_finite = True compute_uv = True full_matrices = False funcs = ('gesdd', 'gesdd_lwork') gesXd = gesXd_lwork = info = 19 lapack_driver = 'gesdd' lwork = 1372 m = 21 max_mn = 21 min_mn = 20 n = 20 overwrite_a = False s = array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]) sz = 420 u = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) v = array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]) __________________ Test_SVDS_PROPACK.test_small_sigma2[float] __________________ lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py:798: in test_small_sigma2 assert_equal(nz.shape[1], dim) E AssertionError: E Items are not equal: E ACTUAL: 1 E DESIRED: 4 dim = 4 dtype = mat = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 , 0.20873058, 0.16266047, 0.0432..., 0.39618705, 0.43422147, 0.94440681, 0.11885702, 0.94011348, 0.26331356, 0.06472523, 0.04491724, 0.40666401]]) nz = array([[ 0.09076289], [ 0.04512221], [-0.10196632], [ 0.00563948], [ 0.00927621], [ 0.0045792 ], [-0.41739243], [-0.28016768], [ 0.85106022], [ 0.04665041]]) rng = Generator(PCG64) at 0x7FFB39ED4F20 self = size = 10 x = array([[0.75358919, 0.99565464, 0.41765909, 0.84314278, 0.20050386, 0.2610654 ], [0.14709222, 0.2662157...6076074, 0.78560949], [0.9506525 , 0.39618705, 0.43422147, 0.94440681, 0.11885702, 0.94011348]]) y = array([[0.20873058, 0.16266047, 0.04320398, 0.36305945], [0.04074189, 0.04349176, 0.03306512, 0.12853487], ...36], [0.1786513 , 0.07866283, 0.09082089, 0.38187172], [0.26331356, 0.06472523, 0.04491724, 0.40666401]]) ___________________________ TestGCROTMK.test_arnoldi ___________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py:93: in test_arnoldi assert_allclose(x0, x1) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2000 / 2000 (100%) E Max absolute difference among violations: 0.77924966 E Max relative difference among violations: 12.32582344 E ACTUAL: array([ 0.080617, 0.524692, 0.647014, ..., 0.667145, 0.373326, E -0.023473], shape=(2000,)) E DESIRED: array([0.076924, 0.531581, 0.604573, ..., 0.677211, 0.378228, 0.120635], E shape=(2000,)) A = b = array([0.68893629, 0.53159136, 0.74260155, ..., 0.74688212, 0.37823519, 0.44885083], shape=(2000,)) flag0 = 1 flag1 = 1 rng = Generator(PCG64) at 0x7FFB39ED6500 self = sup = x0 = array([ 0.08061737, 0.52469199, 0.64701407, ..., 0.66714499, 0.37332618, -0.02347304], shape=(2000,)) x1 = array([0.07692355, 0.5315812 , 0.60457338, ..., 0.67721121, 0.37822796, 0.12063453], shape=(2000,)) __________________________ TestGCROTMK.test_truncate ___________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py:145: in test_truncate assert_equal(info, 0) E AssertionError: E Items are not equal: E ACTUAL: 200 E DESIRED: 0 A = array([[1.19151945e+00, 6.22108771e-01, 4.37727739e-01, 7.85358584e-01, 7.79975808e-01, 2.72592605e-01, 2.7646...e-01, 9.31338635e-01, 3.41618560e-01, 8.11299199e-01, 8.72709802e-01, 6.65988225e-01, 1.58878655e+00]]) b = array([0.89335226, 0.44858402, 0.24438358, 0.81417296, 0.6971494 , 0.40960454, 0.00571508, 0.95401436, 0.605252...96, 0.73426973, 0.56636909, 0.77521013, 0.98654561, 0.78920569, 0.61433598, 0.15828454, 0.47638631, 0.28364917]) info = 200 self = sup = truncate = 'oldest' x = array([-3.80655086e-01, 2.20154557e-01, 9.24579163e-01, -4.18333871e-01, -9.10289745e-01, 3.16947527e-01, -1...1, -3.11171380e-01, 6.59408599e-01, 7.78315731e-01, -4.13846052e-01, -3.49475492e-02, -4.49594987e-01]) _____________________ test_convergence[poisson1d-gcrotmk] ______________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:265: in test_convergence assert info == 0 E assert 11 == 0 A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = info = 11 rtol = 1e-08 x = array([ 77.60806035, 154.27013837, 232.59258753, 310.04223863, 389.36368091, 467.52785165, 547.97305805,...53805, 1431.12082042, 1286.10031437, 1108.12543689, 921.35184288, 706.51529926, 490.60534806, 232.41885347]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) ____________________ test_precond_dummy[poisson1d-gcrotmk] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:300: in test_precond_dummy assert info == 0 E assert 11 == 0 A = M = 40 N = 40 b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = diagOfA = array([2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.]) identity = .identity at 0x7ffb39ece840> info = 11 precond = <40x40 _CustomLinearOperator with dtype=int8> rtol = 1e-08 x = array([ 77.60806035, 154.27013837, 232.59258753, 310.04223863, 389.36368091, 467.52785165, 547.97305805,...53805, 1431.12082042, 1286.10031437, 1108.12543689, 921.35184288, 706.51529926, 490.60534806, 232.41885347]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) ______________________ test_convergence[poisson1d-lgmres] ______________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:261: in test_convergence x, info = case.solver(A, b, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = rtol = 1e-08 x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <40x40 MatrixLinearOperator with dtype=float64> B = array([], shape=(0, 33), dtype=float64) M = <40x40 IdentityOperator with dtype=float64> Q = array([[ 9.75723664e-01, -1.89176584e-01, 8.78684468e-02, ..., -6.34956524e-05, 8.48234847e-04, 2.69339677e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, -3.17529606e-10, 1.00000000e+00]], shape=(34, 34)) R = array([[ 3.20383697e+00, 1.11761440e+00, 2.26794049e-01, ..., -3.94496200e-01, 9.36505573e-06, -4.10090557e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 1.4331782861877306e-06 ax = array([-6.43590916e+306, 8.03854825e+306, -8.08330853e+306, 3.10339146e+306, 4.17174226e+306, -1.00045563e+3...08607523e+306, -2.69097816e+306, 9.53567991e+305, 7.80173405e+305, -3.79913811e+306, 1.92567824e+306]) axpy = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) b_norm = 143.31782861877306 callback = None dot = dx = array([-4.03874214e+306, -1.64157512e+306, -7.28295635e+306, -4.84102905e+306, -5.50249321e+306, -1.03356996e+3...54241008e+306, -5.94745783e+306, -4.66152743e+306, -4.32916501e+306, -4.77697600e+306, -1.42564888e+306]) inner_m = 30 inner_res_0 = 3.2107296460941125e+307 k_outer = 60 matvec = > maxiter = 1000 nrm2 = nx = 7.639251470738288e+307 outer_k = 3 outer_v = [(array([ 0.02249817, 0.12052956, 0.13282556, 0.16096993, 0.09748838, -0.1157109 , -0.21903398, -0.33085757...0673, -0.03212151, -0.09127344, 0.10584905, -0.03522568, 0.01248248, 0.01021269, -0.04973181, 0.02520768]))] prepend_outer_v = False pres = np.float64(2.6933967688433435e-13) psolve = > ptol = 4.463715243e-314 ptol_max_factor = 1.0 q = array([-1.96837541e+306, 1.00463466e+307, -5.78538879e+306, -1.63792632e+307, -1.98761722e+306, 5.47681157e+3...88407365e+305, -2.12781942e+306, 6.24869218e+305, -8.48203114e+305, -1.26034830e+306, -5.02380156e+294]) qc = np.float64(-5.0238015636868074e+294) r_norm = 3.2107296460941125e+307 r_outer = array([-6.43590899e+306, 8.03854798e+306, -8.08330832e+306, 3.10339208e+306, 4.17174125e+306, -1.00045552e+3...08607492e+306, -2.69097744e+306, 9.53568096e+305, 7.80172588e+305, -3.79913752e+306, 1.92567790e+306]) rtol = 1e-08 scal = store_outer_Av = True v = array([ 0.04547309, 0.16295718, 0.25732592, 0.01080449, 0.28087092, -0.25135193, 0.0801958 , 0.01702615, ...898112, 0.12433265, 0.05445064, -0.08706023, 0.10951545, 0.30749853, 0.012321 , 0.22142599, -0.21172552]) v0 = array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483, ...96173 , 0.07642631, 0.21716583, -0.2518454 , 0.08381202, -0.02969942, -0.02429892, 0.1183263 , -0.05997633]) vs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., 0.11036795, -0.16143173, -0.23168009, 0.12106369, -0.08571827, -0.13205615, 0.01463886, 0.19094812]), ...] w = array([ 0.03007449, 0.0412104 , 0.08369312, 0.10283152, 0.05124978, 0.1147377 , 0.04785413, 0.08566445, ...499563, 0.14603758, 0.09949432, 0.09395127, 0.12455982, 0.07254789, 0.008493 , 0.03777599, -0.00093215]) x = array([-4.03874187e+306, -1.64157476e+306, -7.28295561e+306, -4.84102815e+306, -5.50249277e+306, -1.03356986e+3...54240925e+306, -5.94745674e+306, -4.66152679e+306, -4.32916494e+306, -4.77697567e+306, -1.42564889e+306]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) y = array([-inf, inf, -inf, inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, inf, -inf, -inf, -inf, -inf, -inf]) yc = np.float64(-7.079499397156333e+307) zs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., 0.11036795, -0.16143173, -0.23168009, 0.12106369, -0.08571827, -0.13205615, 0.01463886, 0.19094812]), ...] _____________________ test_precond_dummy[poisson1d-lgmres] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:299: in test_precond_dummy x, info = case.solver(A, b, M=precond, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = M = 40 N = 40 b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = diagOfA = array([2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.]) identity = .identity at 0x7ffb39ecf100> precond = <40x40 _CustomLinearOperator with dtype=int8> rtol = 1e-08 x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <40x40 MatrixLinearOperator with dtype=float64> B = array([], shape=(0, 33), dtype=float64) M = <40x40 _CustomLinearOperator with dtype=int8> Q = array([[ 9.75723664e-01, -1.89176584e-01, 8.78684468e-02, ..., -6.34956524e-05, 8.48234847e-04, 2.69339677e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, -3.17529606e-10, 1.00000000e+00]], shape=(34, 34)) R = array([[ 3.20383697e+00, 1.11761440e+00, 2.26794049e-01, ..., -3.94496200e-01, 9.36505573e-06, -4.10090557e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 1.4331782861877306e-06 ax = array([-6.43590916e+306, 8.03854825e+306, -8.08330853e+306, 3.10339146e+306, 4.17174226e+306, -1.00045563e+3...08607523e+306, -2.69097816e+306, 9.53567991e+305, 7.80173405e+305, -3.79913811e+306, 1.92567824e+306]) axpy = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) b_norm = 143.31782861877306 callback = None dot = dx = array([-4.03874214e+306, -1.64157512e+306, -7.28295635e+306, -4.84102905e+306, -5.50249321e+306, -1.03356996e+3...54241008e+306, -5.94745783e+306, -4.66152743e+306, -4.32916501e+306, -4.77697600e+306, -1.42564888e+306]) inner_m = 30 inner_res_0 = 3.2107296460941125e+307 k_outer = 60 matvec = > maxiter = 1000 nrm2 = nx = 7.639251470738288e+307 outer_k = 3 outer_v = [(array([ 0.02249817, 0.12052956, 0.13282556, 0.16096993, 0.09748838, -0.1157109 , -0.21903398, -0.33085757...0673, -0.03212151, -0.09127344, 0.10584905, -0.03522568, 0.01248248, 0.01021269, -0.04973181, 0.02520768]))] prepend_outer_v = False pres = np.float64(2.6933967688433435e-13) psolve = > ptol = 4.463715243e-314 ptol_max_factor = 1.0 q = array([-1.96837541e+306, 1.00463466e+307, -5.78538879e+306, -1.63792632e+307, -1.98761722e+306, 5.47681157e+3...88407365e+305, -2.12781942e+306, 6.24869218e+305, -8.48203114e+305, -1.26034830e+306, -5.02380156e+294]) qc = np.float64(-5.0238015636868074e+294) r_norm = 3.2107296460941125e+307 r_outer = array([-6.43590899e+306, 8.03854798e+306, -8.08330832e+306, 3.10339208e+306, 4.17174125e+306, -1.00045552e+3...08607492e+306, -2.69097744e+306, 9.53568096e+305, 7.80172588e+305, -3.79913752e+306, 1.92567790e+306]) rtol = 1e-08 scal = store_outer_Av = True v = array([ 0.04547309, 0.16295718, 0.25732592, 0.01080449, 0.28087092, -0.25135193, 0.0801958 , 0.01702615, ...898112, 0.12433265, 0.05445064, -0.08706023, 0.10951545, 0.30749853, 0.012321 , 0.22142599, -0.21172552]) v0 = array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483, ...96173 , 0.07642631, 0.21716583, -0.2518454 , 0.08381202, -0.02969942, -0.02429892, 0.1183263 , -0.05997633]) vs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., 0.11036795, -0.16143173, -0.23168009, 0.12106369, -0.08571827, -0.13205615, 0.01463886, 0.19094812]), ...] w = array([ 0.03007449, 0.0412104 , 0.08369312, 0.10283152, 0.05124978, 0.1147377 , 0.04785413, 0.08566445, ...499563, 0.14603758, 0.09949432, 0.09395127, 0.12455982, 0.07254789, 0.008493 , 0.03777599, -0.00093215]) x = array([-4.03874187e+306, -1.64157476e+306, -7.28295561e+306, -4.84102815e+306, -5.50249277e+306, -1.03356986e+3...54240925e+306, -5.94745674e+306, -4.66152679e+306, -4.32916494e+306, -4.77697567e+306, -1.42564889e+306]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) y = array([-inf, inf, -inf, inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, inf, -inf, -inf, -inf, -inf, -inf]) yc = np.float64(-7.079499397156333e+307) zs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., 0.11036795, -0.16143173, -0.23168009, 0.12106369, -0.08571827, -0.13205615, 0.01463886, 0.19094812]), ...] ____________________ test_convergence[poisson1d-F-gcrotmk] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:265: in test_convergence assert info == 0 E assert 5 == 0 A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = info = 5 rtol = 0.01 x = array([ 16.39046822, 32.41900001, 49.48767072, 66.7221296 , 84.70274083, 103.18806915, 122.47158114, 142.32...637.07516448, 639.99024005, 620.06563506, 568.21422582, 496.17377355, 394.28744937, 285.76951412, 135.64604941]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) ___________________ test_precond_dummy[poisson1d-F-gcrotmk] ____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:300: in test_precond_dummy assert info == 0 E assert 11 == 0 A = M = 40 N = 40 b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = diagOfA = array([2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.], dtype=float32) identity = .identity at 0x7ffb392a4680> info = 11 precond = <40x40 _CustomLinearOperator with dtype=int8> rtol = 1e-08 x = array([ 77.60806035, 154.27013837, 232.59258753, 310.04223863, 389.36368091, 467.52785165, 547.97305805,...53805, 1431.12082042, 1286.10031437, 1108.12543689, 921.35184288, 706.51529926, 490.60534806, 232.41885347]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) _____________________ test_convergence[poisson1d-F-lgmres] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:261: in test_convergence x, info = case.solver(A, b, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = rtol = 0.01 x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <40x40 MatrixLinearOperator with dtype=float32> B = array([], shape=(0, 33), dtype=float64) M = <40x40 IdentityOperator with dtype=float32> Q = array([[ 9.75723664e-01, -1.89176584e-01, 8.78684468e-02, ..., -6.34956524e-05, 8.48234847e-04, 2.69339677e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, -3.17529606e-10, 1.00000000e+00]], shape=(34, 34)) R = array([[ 3.20383697e+00, 1.11761440e+00, 2.26794049e-01, ..., -3.94496200e-01, 9.36505573e-06, -4.10090557e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 1.4331782861877307 ax = array([-6.43590916e+306, 8.03854825e+306, -8.08330853e+306, 3.10339146e+306, 4.17174226e+306, -1.00045563e+3...08607523e+306, -2.69097816e+306, 9.53567991e+305, 7.80173405e+305, -3.79913811e+306, 1.92567824e+306]) axpy = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) b_norm = 143.31782861877306 callback = None dot = dx = array([-4.03874214e+306, -1.64157512e+306, -7.28295635e+306, -4.84102905e+306, -5.50249321e+306, -1.03356996e+3...54241008e+306, -5.94745783e+306, -4.66152743e+306, -4.32916501e+306, -4.77697600e+306, -1.42564888e+306]) inner_m = 30 inner_res_0 = 3.2107296460941125e+307 k_outer = 60 matvec = > maxiter = 1000 nrm2 = nx = 7.639251470738288e+307 outer_k = 3 outer_v = [(array([ 0.02249817, 0.12052956, 0.13282556, 0.16096993, 0.09748838, -0.1157109 , -0.21903398, -0.33085757...0673, -0.03212151, -0.09127344, 0.10584905, -0.03522568, 0.01248248, 0.01021269, -0.04973181, 0.02520768]))] prepend_outer_v = False pres = np.float64(2.6933967688433435e-13) psolve = > ptol = 4.463715242830263e-308 ptol_max_factor = 1.0 q = array([-1.96837541e+306, 1.00463466e+307, -5.78538879e+306, -1.63792632e+307, -1.98761722e+306, 5.47681157e+3...88407365e+305, -2.12781942e+306, 6.24869218e+305, -8.48203114e+305, -1.26034830e+306, -5.02380156e+294]) qc = np.float64(-5.0238015636868074e+294) r_norm = 3.2107296460941125e+307 r_outer = array([-6.43590899e+306, 8.03854798e+306, -8.08330832e+306, 3.10339208e+306, 4.17174125e+306, -1.00045552e+3...08607492e+306, -2.69097744e+306, 9.53568096e+305, 7.80172588e+305, -3.79913752e+306, 1.92567790e+306]) rtol = 0.01 scal = store_outer_Av = True v = array([ 0.04547309, 0.16295718, 0.25732592, 0.01080449, 0.28087092, -0.25135193, 0.0801958 , 0.01702615, ...898112, 0.12433265, 0.05445064, -0.08706023, 0.10951545, 0.30749853, 0.012321 , 0.22142599, -0.21172552]) v0 = array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483, ...96173 , 0.07642631, 0.21716583, -0.2518454 , 0.08381202, -0.02969942, -0.02429892, 0.1183263 , -0.05997633]) vs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., 0.11036795, -0.16143173, -0.23168009, 0.12106369, -0.08571827, -0.13205615, 0.01463886, 0.19094812]), ...] w = array([ 0.03007449, 0.0412104 , 0.08369312, 0.10283152, 0.05124978, 0.1147377 , 0.04785413, 0.08566445, ...499563, 0.14603758, 0.09949432, 0.09395127, 0.12455982, 0.07254789, 0.008493 , 0.03777599, -0.00093215]) x = array([-4.03874187e+306, -1.64157476e+306, -7.28295561e+306, -4.84102815e+306, -5.50249277e+306, -1.03356986e+3...54240925e+306, -5.94745674e+306, -4.66152679e+306, -4.32916494e+306, -4.77697567e+306, -1.42564889e+306]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) y = array([-inf, inf, -inf, inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, inf, -inf, -inf, -inf, -inf, -inf]) yc = np.float64(-7.079499397156333e+307) zs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., 0.11036795, -0.16143173, -0.23168009, 0.12106369, -0.08571827, -0.13205615, 0.01463886, 0.19094812]), ...] ____________________ test_precond_dummy[poisson1d-F-lgmres] ____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:299: in test_precond_dummy x, info = case.solver(A, b, M=precond, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = M = 40 N = 40 b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = diagOfA = array([2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.], dtype=float32) identity = .identity at 0x7ffb392a4f40> precond = <40x40 _CustomLinearOperator with dtype=int8> rtol = 1e-08 x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <40x40 MatrixLinearOperator with dtype=float32> B = array([], shape=(0, 33), dtype=float64) M = <40x40 _CustomLinearOperator with dtype=int8> Q = array([[ 9.75723664e-01, -1.89176584e-01, 8.78684468e-02, ..., -6.34956524e-05, 8.48234847e-04, 2.69339677e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, -3.17529606e-10, 1.00000000e+00]], shape=(34, 34)) R = array([[ 3.20383697e+00, 1.11761440e+00, 2.26794049e-01, ..., -3.94496200e-01, 9.36505573e-06, -4.10090557e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 1.4331782861877306e-06 ax = array([-6.43590916e+306, 8.03854825e+306, -8.08330853e+306, 3.10339146e+306, 4.17174226e+306, -1.00045563e+3...08607523e+306, -2.69097816e+306, 9.53567991e+305, 7.80173405e+305, -3.79913811e+306, 1.92567824e+306]) axpy = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) b_norm = 143.31782861877306 callback = None dot = dx = array([-4.03874214e+306, -1.64157512e+306, -7.28295635e+306, -4.84102905e+306, -5.50249321e+306, -1.03356996e+3...54241008e+306, -5.94745783e+306, -4.66152743e+306, -4.32916501e+306, -4.77697600e+306, -1.42564888e+306]) inner_m = 30 inner_res_0 = 3.2107296460941125e+307 k_outer = 60 matvec = > maxiter = 1000 nrm2 = nx = 7.639251470738288e+307 outer_k = 3 outer_v = [(array([ 0.02249817, 0.12052956, 0.13282556, 0.16096993, 0.09748838, -0.1157109 , -0.21903398, -0.33085757...0673, -0.03212151, -0.09127344, 0.10584905, -0.03522568, 0.01248248, 0.01021269, -0.04973181, 0.02520768]))] prepend_outer_v = False pres = np.float64(2.6933967688433435e-13) psolve = > ptol = 4.463715243e-314 ptol_max_factor = 1.0 q = array([-1.96837541e+306, 1.00463466e+307, -5.78538879e+306, -1.63792632e+307, -1.98761722e+306, 5.47681157e+3...88407365e+305, -2.12781942e+306, 6.24869218e+305, -8.48203114e+305, -1.26034830e+306, -5.02380156e+294]) qc = np.float64(-5.0238015636868074e+294) r_norm = 3.2107296460941125e+307 r_outer = array([-6.43590899e+306, 8.03854798e+306, -8.08330832e+306, 3.10339208e+306, 4.17174125e+306, -1.00045552e+3...08607492e+306, -2.69097744e+306, 9.53568096e+305, 7.80172588e+305, -3.79913752e+306, 1.92567790e+306]) rtol = 1e-08 scal = store_outer_Av = True v = array([ 0.04547309, 0.16295718, 0.25732592, 0.01080449, 0.28087092, -0.25135193, 0.0801958 , 0.01702615, ...898112, 0.12433265, 0.05445064, -0.08706023, 0.10951545, 0.30749853, 0.012321 , 0.22142599, -0.21172552]) v0 = array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483, ...96173 , 0.07642631, 0.21716583, -0.2518454 , 0.08381202, -0.02969942, -0.02429892, 0.1183263 , -0.05997633]) vs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., 0.11036795, -0.16143173, -0.23168009, 0.12106369, -0.08571827, -0.13205615, 0.01463886, 0.19094812]), ...] w = array([ 0.03007449, 0.0412104 , 0.08369312, 0.10283152, 0.05124978, 0.1147377 , 0.04785413, 0.08566445, ...499563, 0.14603758, 0.09949432, 0.09395127, 0.12455982, 0.07254789, 0.008493 , 0.03777599, -0.00093215]) x = array([-4.03874187e+306, -1.64157476e+306, -7.28295561e+306, -4.84102815e+306, -5.50249277e+306, -1.03356986e+3...54240925e+306, -5.94745674e+306, -4.66152679e+306, -4.32916494e+306, -4.77697567e+306, -1.42564889e+306]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) y = array([-inf, inf, -inf, inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, inf, -inf, -inf, -inf, -inf, -inf]) yc = np.float64(-7.079499397156333e+307) zs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., 0.11036795, -0.16143173, -0.23168009, 0.12106369, -0.08571827, -0.13205615, 0.01463886, 0.19094812]), ...] ___________________ test_convergence[neg-poisson1d-gcrotmk] ____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:265: in test_convergence assert info == 0 E assert 11 == 0 A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = info = 11 rtol = 1e-08 x = array([ -77.60806035, -154.27013837, -232.59258753, -310.04223863, -389.36368091, -467.52785165, -547.97...-1431.12082042, -1286.10031437, -1108.12543689, -921.35184288, -706.51529926, -490.60534806, -232.41885347]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) __________________ test_precond_dummy[neg-poisson1d-gcrotmk] ___________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:300: in test_precond_dummy assert info == 0 E assert 11 == 0 A = M = 40 N = 40 b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = diagOfA = array([-2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2.]) identity = .identity at 0x7ffb392a60c0> info = 11 precond = <40x40 _CustomLinearOperator with dtype=int8> rtol = 1e-08 x = array([ -77.60806035, -154.27013837, -232.59258753, -310.04223863, -389.36368091, -467.52785165, -547.97...-1431.12082042, -1286.10031437, -1108.12543689, -921.35184288, -706.51529926, -490.60534806, -232.41885347]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) ____________________ test_convergence[neg-poisson1d-lgmres] ____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:261: in test_convergence x, info = case.solver(A, b, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = rtol = 1e-08 x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <40x40 MatrixLinearOperator with dtype=float64> B = array([], shape=(0, 33), dtype=float64) M = <40x40 IdentityOperator with dtype=float64> Q = array([[ 9.75723664e-01, 1.89176584e-01, 8.78684468e-02, ..., -6.34956524e-05, 8.48234847e-04, 2.69339677e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, -3.17529606e-10, 1.00000000e+00]], shape=(34, 34)) R = array([[-3.20383697e+00, 1.11761440e+00, -2.26794049e-01, ..., -3.94496200e-01, 9.36505573e-06, -4.10090557e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 1.4331782861877306e-06 ax = array([-6.43590916e+306, 8.03854825e+306, -8.08330853e+306, 3.10339146e+306, 4.17174226e+306, -1.00045563e+3...08607523e+306, -2.69097816e+306, 9.53567991e+305, 7.80173405e+305, -3.79913811e+306, 1.92567824e+306]) axpy = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) b_norm = 143.31782861877306 callback = None dot = dx = array([4.03874214e+306, 1.64157512e+306, 7.28295635e+306, 4.84102905e+306, 5.50249321e+306, 1.03356996e+307, 5....376e+307, 4.54241008e+306, 5.94745783e+306, 4.66152743e+306, 4.32916501e+306, 4.77697600e+306, 1.42564888e+306]) inner_m = 30 inner_res_0 = 3.2107296460941125e+307 k_outer = 60 matvec = > maxiter = 1000 nrm2 = nx = 7.639251470738288e+307 outer_k = 3 outer_v = [(array([-0.02249817, -0.12052956, -0.13282556, -0.16096993, -0.09748838, 0.1157109 , 0.21903398, 0.33085757...0673, -0.03212151, -0.09127344, 0.10584905, -0.03522568, 0.01248248, 0.01021269, -0.04973181, 0.02520768]))] prepend_outer_v = False pres = np.float64(2.6933967688433435e-13) psolve = > ptol = 4.463715243e-314 ptol_max_factor = 1.0 q = array([-1.96837541e+306, -1.00463466e+307, -5.78538879e+306, 1.63792632e+307, -1.98761722e+306, -5.47681157e+3...88407365e+305, 2.12781942e+306, 6.24869218e+305, -8.48203114e+305, -1.26034830e+306, -5.02380156e+294]) qc = np.float64(-5.0238015636868074e+294) r_norm = 3.2107296460941125e+307 r_outer = array([-6.43590899e+306, 8.03854798e+306, -8.08330832e+306, 3.10339208e+306, 4.17174125e+306, -1.00045552e+3...08607492e+306, -2.69097744e+306, 9.53568096e+305, 7.80172588e+305, -3.79913752e+306, 1.92567790e+306]) rtol = 1e-08 scal = store_outer_Av = True v = array([ 0.04547309, 0.16295718, 0.25732592, 0.01080449, 0.28087092, -0.25135193, 0.0801958 , 0.01702615, ...898112, 0.12433265, 0.05445064, -0.08706023, 0.10951545, 0.30749853, 0.012321 , 0.22142599, -0.21172552]) v0 = array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483, ...96173 , 0.07642631, 0.21716583, -0.2518454 , 0.08381202, -0.02969942, -0.02429892, 0.1183263 , -0.05997633]) vs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., -0.11036795, 0.16143173, 0.23168009, -0.12106369, 0.08571827, 0.13205615, -0.01463886, -0.19094812]), ...] w = array([-0.03007449, -0.0412104 , -0.08369312, -0.10283152, -0.05124978, -0.1147377 , -0.04785413, -0.08566445, ...499563, -0.14603758, -0.09949432, -0.09395127, -0.12455982, -0.07254789, -0.008493 , -0.03777599, 0.00093215]) x = array([4.03874187e+306, 1.64157476e+306, 7.28295561e+306, 4.84102815e+306, 5.50249277e+306, 1.03356986e+307, 5....367e+307, 4.54240925e+306, 5.94745674e+306, 4.66152679e+306, 4.32916494e+306, 4.77697567e+306, 1.42564889e+306]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) y = array([ inf, inf, inf, inf, inf, inf, -inf, inf, -inf, -inf, inf, -inf, -inf, inf, -inf, inf, inf, -inf, inf, -inf, -inf, inf, -inf, inf, inf, -inf, inf, inf, inf, -inf, -inf, -inf, -inf]) yc = np.float64(-7.079499397156333e+307) zs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., -0.11036795, 0.16143173, 0.23168009, -0.12106369, 0.08571827, 0.13205615, -0.01463886, -0.19094812]), ...] ___________________ test_precond_dummy[neg-poisson1d-lgmres] ___________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:299: in test_precond_dummy x, info = case.solver(A, b, M=precond, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = M = 40 N = 40 b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = diagOfA = array([-2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2.]) identity = .identity at 0x7ffb392a6980> precond = <40x40 _CustomLinearOperator with dtype=int8> rtol = 1e-08 x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <40x40 MatrixLinearOperator with dtype=float64> B = array([], shape=(0, 33), dtype=float64) M = <40x40 _CustomLinearOperator with dtype=int8> Q = array([[ 9.75723664e-01, 1.89176584e-01, 8.78684468e-02, ..., -6.34956524e-05, 8.48234847e-04, 2.69339677e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, -3.17529606e-10, 1.00000000e+00]], shape=(34, 34)) R = array([[-3.20383697e+00, 1.11761440e+00, -2.26794049e-01, ..., -3.94496200e-01, 9.36505573e-06, -4.10090557e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 1.4331782861877306e-06 ax = array([-6.43590916e+306, 8.03854825e+306, -8.08330853e+306, 3.10339146e+306, 4.17174226e+306, -1.00045563e+3...08607523e+306, -2.69097816e+306, 9.53567991e+305, 7.80173405e+305, -3.79913811e+306, 1.92567824e+306]) axpy = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) b_norm = 143.31782861877306 callback = None dot = dx = array([4.03874214e+306, 1.64157512e+306, 7.28295635e+306, 4.84102905e+306, 5.50249321e+306, 1.03356996e+307, 5....376e+307, 4.54241008e+306, 5.94745783e+306, 4.66152743e+306, 4.32916501e+306, 4.77697600e+306, 1.42564888e+306]) inner_m = 30 inner_res_0 = 3.2107296460941125e+307 k_outer = 60 matvec = > maxiter = 1000 nrm2 = nx = 7.639251470738288e+307 outer_k = 3 outer_v = [(array([-0.02249817, -0.12052956, -0.13282556, -0.16096993, -0.09748838, 0.1157109 , 0.21903398, 0.33085757...0673, -0.03212151, -0.09127344, 0.10584905, -0.03522568, 0.01248248, 0.01021269, -0.04973181, 0.02520768]))] prepend_outer_v = False pres = np.float64(2.6933967688433435e-13) psolve = > ptol = 4.463715243e-314 ptol_max_factor = 1.0 q = array([-1.96837541e+306, -1.00463466e+307, -5.78538879e+306, 1.63792632e+307, -1.98761722e+306, -5.47681157e+3...88407365e+305, 2.12781942e+306, 6.24869218e+305, -8.48203114e+305, -1.26034830e+306, -5.02380156e+294]) qc = np.float64(-5.0238015636868074e+294) r_norm = 3.2107296460941125e+307 r_outer = array([-6.43590899e+306, 8.03854798e+306, -8.08330832e+306, 3.10339208e+306, 4.17174125e+306, -1.00045552e+3...08607492e+306, -2.69097744e+306, 9.53568096e+305, 7.80172588e+305, -3.79913752e+306, 1.92567790e+306]) rtol = 1e-08 scal = store_outer_Av = True v = array([ 0.04547309, 0.16295718, 0.25732592, 0.01080449, 0.28087092, -0.25135193, 0.0801958 , 0.01702615, ...898112, 0.12433265, 0.05445064, -0.08706023, 0.10951545, 0.30749853, 0.012321 , 0.22142599, -0.21172552]) v0 = array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483, ...96173 , 0.07642631, 0.21716583, -0.2518454 , 0.08381202, -0.02969942, -0.02429892, 0.1183263 , -0.05997633]) vs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., -0.11036795, 0.16143173, 0.23168009, -0.12106369, 0.08571827, 0.13205615, -0.01463886, -0.19094812]), ...] w = array([-0.03007449, -0.0412104 , -0.08369312, -0.10283152, -0.05124978, -0.1147377 , -0.04785413, -0.08566445, ...499563, -0.14603758, -0.09949432, -0.09395127, -0.12455982, -0.07254789, -0.008493 , -0.03777599, 0.00093215]) x = array([4.03874187e+306, 1.64157476e+306, 7.28295561e+306, 4.84102815e+306, 5.50249277e+306, 1.03356986e+307, 5....367e+307, 4.54240925e+306, 5.94745674e+306, 4.66152679e+306, 4.32916494e+306, 4.77697567e+306, 1.42564889e+306]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) y = array([ inf, inf, inf, inf, inf, inf, -inf, inf, -inf, -inf, inf, -inf, -inf, inf, -inf, inf, inf, -inf, inf, -inf, -inf, inf, -inf, inf, inf, -inf, inf, inf, inf, -inf, -inf, -inf, -inf]) yc = np.float64(-7.079499397156333e+307) zs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., -0.11036795, 0.16143173, 0.23168009, -0.12106369, 0.08571827, 0.13205615, -0.01463886, -0.19094812]), ...] __________________ test_convergence[neg-poisson1d-F-gcrotmk] ___________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:265: in test_convergence assert info == 0 E assert 5 == 0 A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = info = 5 rtol = 0.01 x = array([ -16.39046822, -32.41900001, -49.48767072, -66.7221296 , -84.70274083, -103.18806915, -122.47158114,...16448, -639.99024005, -620.06563506, -568.21422582, -496.17377355, -394.28744937, -285.76951412, -135.64604941]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) _________________ test_precond_dummy[neg-poisson1d-F-gcrotmk] __________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:300: in test_precond_dummy assert info == 0 E assert 11 == 0 A = M = 40 N = 40 b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = diagOfA = array([-2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2.,...-2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2.], dtype=float32) identity = .identity at 0x7ffb392a7ce0> info = 11 precond = <40x40 _CustomLinearOperator with dtype=int8> rtol = 1e-08 x = array([ -77.60806035, -154.27013837, -232.59258753, -310.04223863, -389.36368091, -467.52785165, -547.97...-1431.12082042, -1286.10031437, -1108.12543689, -921.35184288, -706.51529926, -490.60534806, -232.41885347]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) ___________________ test_convergence[neg-poisson1d-F-lgmres] ___________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:261: in test_convergence x, info = case.solver(A, b, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = rtol = 0.01 x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <40x40 MatrixLinearOperator with dtype=float32> B = array([], shape=(0, 33), dtype=float64) M = <40x40 IdentityOperator with dtype=float32> Q = array([[ 9.75723664e-01, 1.89176584e-01, 8.78684468e-02, ..., -6.34956524e-05, 8.48234847e-04, 2.69339677e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, -3.17529606e-10, 1.00000000e+00]], shape=(34, 34)) R = array([[-3.20383697e+00, 1.11761440e+00, -2.26794049e-01, ..., -3.94496200e-01, 9.36505573e-06, -4.10090557e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 1.4331782861877307 ax = array([-6.43590916e+306, 8.03854825e+306, -8.08330853e+306, 3.10339146e+306, 4.17174226e+306, -1.00045563e+3...08607523e+306, -2.69097816e+306, 9.53567991e+305, 7.80173405e+305, -3.79913811e+306, 1.92567824e+306]) axpy = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) b_norm = 143.31782861877306 callback = None dot = dx = array([4.03874214e+306, 1.64157512e+306, 7.28295635e+306, 4.84102905e+306, 5.50249321e+306, 1.03356996e+307, 5....376e+307, 4.54241008e+306, 5.94745783e+306, 4.66152743e+306, 4.32916501e+306, 4.77697600e+306, 1.42564888e+306]) inner_m = 30 inner_res_0 = 3.2107296460941125e+307 k_outer = 60 matvec = > maxiter = 1000 nrm2 = nx = 7.639251470738288e+307 outer_k = 3 outer_v = [(array([-0.02249817, -0.12052956, -0.13282556, -0.16096993, -0.09748838, 0.1157109 , 0.21903398, 0.33085757...0673, -0.03212151, -0.09127344, 0.10584905, -0.03522568, 0.01248248, 0.01021269, -0.04973181, 0.02520768]))] prepend_outer_v = False pres = np.float64(2.6933967688433435e-13) psolve = > ptol = 4.463715242830263e-308 ptol_max_factor = 1.0 q = array([-1.96837541e+306, -1.00463466e+307, -5.78538879e+306, 1.63792632e+307, -1.98761722e+306, -5.47681157e+3...88407365e+305, 2.12781942e+306, 6.24869218e+305, -8.48203114e+305, -1.26034830e+306, -5.02380156e+294]) qc = np.float64(-5.0238015636868074e+294) r_norm = 3.2107296460941125e+307 r_outer = array([-6.43590899e+306, 8.03854798e+306, -8.08330832e+306, 3.10339208e+306, 4.17174125e+306, -1.00045552e+3...08607492e+306, -2.69097744e+306, 9.53568096e+305, 7.80172588e+305, -3.79913752e+306, 1.92567790e+306]) rtol = 0.01 scal = store_outer_Av = True v = array([ 0.04547309, 0.16295718, 0.25732592, 0.01080449, 0.28087092, -0.25135193, 0.0801958 , 0.01702615, ...898112, 0.12433265, 0.05445064, -0.08706023, 0.10951545, 0.30749853, 0.012321 , 0.22142599, -0.21172552]) v0 = array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483, ...96173 , 0.07642631, 0.21716583, -0.2518454 , 0.08381202, -0.02969942, -0.02429892, 0.1183263 , -0.05997633]) vs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., -0.11036795, 0.16143173, 0.23168009, -0.12106369, 0.08571827, 0.13205615, -0.01463886, -0.19094812]), ...] w = array([-0.03007449, -0.0412104 , -0.08369312, -0.10283152, -0.05124978, -0.1147377 , -0.04785413, -0.08566445, ...499563, -0.14603758, -0.09949432, -0.09395127, -0.12455982, -0.07254789, -0.008493 , -0.03777599, 0.00093215]) x = array([4.03874187e+306, 1.64157476e+306, 7.28295561e+306, 4.84102815e+306, 5.50249277e+306, 1.03356986e+307, 5....367e+307, 4.54240925e+306, 5.94745674e+306, 4.66152679e+306, 4.32916494e+306, 4.77697567e+306, 1.42564889e+306]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) y = array([ inf, inf, inf, inf, inf, inf, -inf, inf, -inf, -inf, inf, -inf, -inf, inf, -inf, inf, inf, -inf, inf, -inf, -inf, inf, -inf, inf, inf, -inf, inf, inf, inf, -inf, -inf, -inf, -inf]) yc = np.float64(-7.079499397156333e+307) zs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., -0.11036795, 0.16143173, 0.23168009, -0.12106369, 0.08571827, 0.13205615, -0.01463886, -0.19094812]), ...] __________________ test_precond_dummy[neg-poisson1d-F-lgmres] __________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:299: in test_precond_dummy x, info = case.solver(A, b, M=precond, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = M = 40 N = 40 b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = diagOfA = array([-2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2.,...-2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2., -2.], dtype=float32) identity = .identity at 0x7ffb392980e0> precond = <40x40 _CustomLinearOperator with dtype=int8> rtol = 1e-08 x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <40x40 MatrixLinearOperator with dtype=float32> B = array([], shape=(0, 33), dtype=float64) M = <40x40 _CustomLinearOperator with dtype=int8> Q = array([[ 9.75723664e-01, 1.89176584e-01, 8.78684468e-02, ..., -6.34956524e-05, 8.48234847e-04, 2.69339677e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, -3.17529606e-10, 1.00000000e+00]], shape=(34, 34)) R = array([[-3.20383697e+00, 1.11761440e+00, -2.26794049e-01, ..., -3.94496200e-01, 9.36505573e-06, -4.10090557e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 1.4331782861877306e-06 ax = array([-6.43590916e+306, 8.03854825e+306, -8.08330853e+306, 3.10339146e+306, 4.17174226e+306, -1.00045563e+3...08607523e+306, -2.69097816e+306, 9.53567991e+305, 7.80173405e+305, -3.79913811e+306, 1.92567824e+306]) axpy = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) b_norm = 143.31782861877306 callback = None dot = dx = array([4.03874214e+306, 1.64157512e+306, 7.28295635e+306, 4.84102905e+306, 5.50249321e+306, 1.03356996e+307, 5....376e+307, 4.54241008e+306, 5.94745783e+306, 4.66152743e+306, 4.32916501e+306, 4.77697600e+306, 1.42564888e+306]) inner_m = 30 inner_res_0 = 3.2107296460941125e+307 k_outer = 60 matvec = > maxiter = 1000 nrm2 = nx = 7.639251470738288e+307 outer_k = 3 outer_v = [(array([-0.02249817, -0.12052956, -0.13282556, -0.16096993, -0.09748838, 0.1157109 , 0.21903398, 0.33085757...0673, -0.03212151, -0.09127344, 0.10584905, -0.03522568, 0.01248248, 0.01021269, -0.04973181, 0.02520768]))] prepend_outer_v = False pres = np.float64(2.6933967688433435e-13) psolve = > ptol = 4.463715243e-314 ptol_max_factor = 1.0 q = array([-1.96837541e+306, -1.00463466e+307, -5.78538879e+306, 1.63792632e+307, -1.98761722e+306, -5.47681157e+3...88407365e+305, 2.12781942e+306, 6.24869218e+305, -8.48203114e+305, -1.26034830e+306, -5.02380156e+294]) qc = np.float64(-5.0238015636868074e+294) r_norm = 3.2107296460941125e+307 r_outer = array([-6.43590899e+306, 8.03854798e+306, -8.08330832e+306, 3.10339208e+306, 4.17174125e+306, -1.00045552e+3...08607492e+306, -2.69097744e+306, 9.53568096e+305, 7.80172588e+305, -3.79913752e+306, 1.92567790e+306]) rtol = 1e-08 scal = store_outer_Av = True v = array([ 0.04547309, 0.16295718, 0.25732592, 0.01080449, 0.28087092, -0.25135193, 0.0801958 , 0.01702615, ...898112, 0.12433265, 0.05445064, -0.08706023, 0.10951545, 0.30749853, 0.012321 , 0.22142599, -0.21172552]) v0 = array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483, ...96173 , 0.07642631, 0.21716583, -0.2518454 , 0.08381202, -0.02969942, -0.02429892, 0.1183263 , -0.05997633]) vs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., -0.11036795, 0.16143173, 0.23168009, -0.12106369, 0.08571827, 0.13205615, -0.01463886, -0.19094812]), ...] w = array([-0.03007449, -0.0412104 , -0.08369312, -0.10283152, -0.05124978, -0.1147377 , -0.04785413, -0.08566445, ...499563, -0.14603758, -0.09949432, -0.09395127, -0.12455982, -0.07254789, -0.008493 , -0.03777599, 0.00093215]) x = array([4.03874187e+306, 1.64157476e+306, 7.28295561e+306, 4.84102815e+306, 5.50249277e+306, 1.03356986e+307, 5....367e+307, 4.54240925e+306, 5.94745674e+306, 4.66152679e+306, 4.32916494e+306, 4.77697567e+306, 1.42564889e+306]) x0 = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) y = array([ inf, inf, inf, inf, inf, inf, -inf, inf, -inf, -inf, inf, -inf, -inf, inf, -inf, inf, inf, -inf, inf, -inf, -inf, inf, -inf, inf, inf, -inf, inf, inf, inf, -inf, -inf, -inf, -inf]) yc = np.float64(-7.079499397156333e+307) zs = [array([ 0.20045004, -0.25036515, 0.25175923, -0.09665691, -0.12993125, 0.31159756, -0.22019103, -0.05701483,..., -0.11036795, 0.16143173, 0.23168009, -0.12106369, 0.08571827, 0.13205615, -0.01463886, -0.19094812]), ...] _____________________ test_convergence[poisson2d-gcrotmk] ______________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:265: in test_convergence assert info == 0 E assert 12 == 0 A = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) case = info = 12 rtol = 1e-08 x = array([ 153.95087945, 272.77644399, 380.23491049, ..., 3175.86401805, 2359.53772847, 589.64859017], shape=(1600,)) x0 = array([0., 0., 0., ..., 0., 0., 0.], shape=(1600,)) ----------------------------- Captured stdout call ----------------------------- ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to ____________________ test_precond_dummy[poisson2d-gcrotmk] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:300: in test_precond_dummy assert info == 0 E assert 12 == 0 A = M = 1600 N = 1600 b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) case = diagOfA = array([4., 4., 4., ..., 4., 4., 4.], shape=(1600,)) identity = .identity at 0x7ffb392999e0> info = 12 precond = <1600x1600 _CustomLinearOperator with dtype=int8> rtol = 1e-08 x = array([ 153.95087945, 272.77644399, 380.23491049, ..., 3175.86401805, 2359.53772847, 589.64859017], shape=(1600,)) x0 = array([0., 0., 0., ..., 0., 0., 0.], shape=(1600,)) ______________________ test_convergence[poisson2d-lgmres] ______________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:261: in test_convergence x, info = case.solver(A, b, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) case = rtol = 1e-08 x0 = array([0., 0., 0., ..., 0., 0., 0.], shape=(1600,)) lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <1600x1600 MatrixLinearOperator with dtype=float64> B = array([], shape=(0, 33), dtype=float64) M = <1600x1600 IdentityOperator with dtype=float64> Q = array([[ 9.64628563e-01, -2.15227247e-01, 1.13670250e-01, ..., 8.83114473e-06, -4.33120925e-04, 5.69911787e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 1.31582603e-08, 1.00000000e+00]], shape=(34, 34)) R = array([[ 6.62717683e+00, 2.68076567e+00, 5.93313141e-01, ..., -7.69198256e-01, 2.46342983e-07, -1.02063326e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 0.00036933096268793877 ax = array([-1.65860284e+304, 1.13687176e+304, 3.02297974e+304, ..., -8.29180627e+303, 6.03451740e+304, -4.89473022e+304], shape=(1600,)) axpy = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) b_norm = 36933.09626879387 callback = None dot = dx = array([-6.87140847e+303, -3.38067021e+303, 1.60989640e+303, ..., -8.84234191e+302, 9.60777878e+303, -6.39836989e+303], shape=(1600,)) inner_m = 30 inner_res_0 = 9.828987626984914e+305 k_outer = 65 matvec = > maxiter = 1000 nrm2 = nx = 9.289646548794973e+305 outer_k = 3 outer_v = [(array([-0.00014645, -0.01297613, 0.01125253, ..., 0.02822181, 0.01986465, 0.01882956], shape=(1600,)), ar...,)), array([-0.01785432, 0.01223805, 0.03254139, ..., -0.00892586, 0.0649596 , -0.05269017], shape=(1600,)))] prepend_outer_v = False pres = np.float64(5.699117874130207e-12) psolve = > ptol = 3.75756870091036e-310 ptol_max_factor = 1.0 q = array([ 5.56572490e+304, -2.49137010e+305, 2.49924633e+305, 2.29334045e+305, 3.13003078e+305, 2.54258622e+3...46417111e+305, 2.02542630e+304, -5.95064087e+303, -1.62485100e+305, -1.55814348e+305, 5.98041134e+294]) qc = np.float64(5.980411342489953e+294) r_norm = 9.828987626984914e+305 r_outer = array([-1.65834911e+304, 1.13664837e+304, 3.02297847e+304, ..., -8.29269986e+303, 6.03435579e+304, -4.89464518e+304], shape=(1600,)) rtol = 1e-08 scal = store_outer_Av = True v = array([ 0.00377817, -0.00136597, -0.00237204, ..., 0.11223006, -0.00169296, -0.10158123], shape=(1600,)) v0 = array([ 0.01687202, -0.01156425, -0.03075575, ..., 0.00843698, -0.06139346, 0.04979806], shape=(1600,)) vs = [array([ 0.01687202, -0.01156425, -0.03075575, ..., 0.00843698, -0.06139346, 0.04979806], shape=(1600,)), arr... array([ 0.05889197, -0.01953145, 0.01378533, ..., -0.04694802, -0.05935007, 0.01846223], shape=(1600,)), ...] w = array([ 0.01000672, -0.00491003, -0.0011598 , ..., -0.0062382 , -0.00774975, 0.00037599], shape=(1600,)) x = array([-6.87090138e+303, -3.38091903e+303, 1.60983763e+303, ..., -8.84550314e+302, 9.60738606e+303, -6.39835084e+303], shape=(1600,)) x0 = array([0., 0., 0., ..., 0., 0., 0.], shape=(1600,)) y = array([-inf, inf, -inf, inf, -inf, -inf, -inf, -inf, inf, inf, -inf, inf, inf, -inf, -inf, -inf, -inf, inf, -inf, -inf, -inf, inf, inf, -inf, -inf, inf, inf, inf, -inf, -inf, -inf, inf, -inf]) yc = np.float64(1.0562324221073185e+306) zs = [array([ 0.01687202, -0.01156425, -0.03075575, ..., 0.00843698, -0.06139346, 0.04979806], shape=(1600,)), arr... array([ 0.05889197, -0.01953145, 0.01378533, ..., -0.04694802, -0.05935007, 0.01846223], shape=(1600,)), ...] _____________________ test_precond_dummy[poisson2d-lgmres] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:299: in test_precond_dummy x, info = case.solver(A, b, M=precond, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = M = 1600 N = 1600 b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) case = diagOfA = array([4., 4., 4., ..., 4., 4., 4.], shape=(1600,)) identity = .identity at 0x7ffb39299da0> precond = <1600x1600 _CustomLinearOperator with dtype=int8> rtol = 1e-08 x0 = array([0., 0., 0., ..., 0., 0., 0.], shape=(1600,)) lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <1600x1600 MatrixLinearOperator with dtype=float64> B = array([], shape=(0, 33), dtype=float64) M = <1600x1600 _CustomLinearOperator with dtype=int8> Q = array([[ 9.64628563e-01, -2.15227247e-01, 1.13670250e-01, ..., 8.83114473e-06, -4.33120925e-04, 5.69911787e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 1.31582603e-08, 1.00000000e+00]], shape=(34, 34)) R = array([[ 6.62717683e+00, 2.68076567e+00, 5.93313141e-01, ..., -7.69198256e-01, 2.46342983e-07, -1.02063326e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 0.00036933096268793877 ax = array([-1.65860284e+304, 1.13687176e+304, 3.02297974e+304, ..., -8.29180627e+303, 6.03451740e+304, -4.89473022e+304], shape=(1600,)) axpy = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) b_norm = 36933.09626879387 callback = None dot = dx = array([-6.87140847e+303, -3.38067021e+303, 1.60989640e+303, ..., -8.84234191e+302, 9.60777878e+303, -6.39836989e+303], shape=(1600,)) inner_m = 30 inner_res_0 = 9.828987626984914e+305 k_outer = 65 matvec = > maxiter = 1000 nrm2 = nx = 9.289646548794973e+305 outer_k = 3 outer_v = [(array([-0.00014645, -0.01297613, 0.01125253, ..., 0.02822181, 0.01986465, 0.01882956], shape=(1600,)), ar...,)), array([-0.01785432, 0.01223805, 0.03254139, ..., -0.00892586, 0.0649596 , -0.05269017], shape=(1600,)))] prepend_outer_v = False pres = np.float64(5.699117874130207e-12) psolve = > ptol = 3.75756870091036e-310 ptol_max_factor = 1.0 q = array([ 5.56572490e+304, -2.49137010e+305, 2.49924633e+305, 2.29334045e+305, 3.13003078e+305, 2.54258622e+3...46417111e+305, 2.02542630e+304, -5.95064087e+303, -1.62485100e+305, -1.55814348e+305, 5.98041134e+294]) qc = np.float64(5.980411342489953e+294) r_norm = 9.828987626984914e+305 r_outer = array([-1.65834911e+304, 1.13664837e+304, 3.02297847e+304, ..., -8.29269986e+303, 6.03435579e+304, -4.89464518e+304], shape=(1600,)) rtol = 1e-08 scal = store_outer_Av = True v = array([ 0.00377817, -0.00136597, -0.00237204, ..., 0.11223006, -0.00169296, -0.10158123], shape=(1600,)) v0 = array([ 0.01687202, -0.01156425, -0.03075575, ..., 0.00843698, -0.06139346, 0.04979806], shape=(1600,)) vs = [array([ 0.01687202, -0.01156425, -0.03075575, ..., 0.00843698, -0.06139346, 0.04979806], shape=(1600,)), arr... array([ 0.05889197, -0.01953145, 0.01378533, ..., -0.04694802, -0.05935007, 0.01846223], shape=(1600,)), ...] w = array([ 0.01000672, -0.00491003, -0.0011598 , ..., -0.0062382 , -0.00774975, 0.00037599], shape=(1600,)) x = array([-6.87090138e+303, -3.38091903e+303, 1.60983763e+303, ..., -8.84550314e+302, 9.60738606e+303, -6.39835084e+303], shape=(1600,)) x0 = array([0., 0., 0., ..., 0., 0., 0.], shape=(1600,)) y = array([-inf, inf, -inf, inf, -inf, -inf, -inf, -inf, inf, inf, -inf, inf, inf, -inf, -inf, -inf, -inf, inf, -inf, -inf, -inf, inf, inf, -inf, -inf, inf, inf, inf, -inf, -inf, -inf, inf, -inf]) yc = np.float64(1.0562324221073185e+306) zs = [array([ 0.01687202, -0.01156425, -0.03075575, ..., 0.00843698, -0.06139346, 0.04979806], shape=(1600,)), arr... array([ 0.05889197, -0.01953145, 0.01378533, ..., -0.04694802, -0.05935007, 0.01846223], shape=(1600,)), ...] ____________________ test_convergence[poisson2d-F-gcrotmk] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:265: in test_convergence assert info == 0 E assert 12 == 0 A = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) case = info = 12 rtol = 0.01 x = array([ 153.95087945, 272.77644399, 380.23491049, ..., 3175.86401805, 2359.53772847, 589.64859017], shape=(1600,)) x0 = array([0., 0., 0., ..., 0., 0., 0.], shape=(1600,)) ___________________ test_precond_dummy[poisson2d-F-gcrotmk] ____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:300: in test_precond_dummy assert info == 0 E assert 12 == 0 A = M = 1600 N = 1600 b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) case = diagOfA = array([4., 4., 4., ..., 4., 4., 4.], shape=(1600,), dtype=float32) identity = .identity at 0x7ffb3929bb00> info = 12 precond = <1600x1600 _CustomLinearOperator with dtype=int8> rtol = 1e-08 x = array([ 153.95087945, 272.77644399, 380.23491049, ..., 3175.86401805, 2359.53772847, 589.64859017], shape=(1600,)) x0 = array([0., 0., 0., ..., 0., 0., 0.], shape=(1600,)) _____________________ test_convergence[poisson2d-F-lgmres] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:261: in test_convergence x, info = case.solver(A, b, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) case = rtol = 0.01 x0 = array([0., 0., 0., ..., 0., 0., 0.], shape=(1600,)) lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <1600x1600 MatrixLinearOperator with dtype=float32> B = array([], shape=(0, 33), dtype=float64) M = <1600x1600 IdentityOperator with dtype=float32> Q = array([[ 9.64628563e-01, -2.15227247e-01, 1.13670250e-01, ..., 8.83114473e-06, -4.33120925e-04, 5.69911787e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 1.31582603e-08, 1.00000000e+00]], shape=(34, 34)) R = array([[ 6.62717683e+00, 2.68076567e+00, 5.93313141e-01, ..., -7.69198256e-01, 2.46342983e-07, -1.02063326e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 369.3309626879387 ax = array([-1.65860284e+304, 1.13687176e+304, 3.02297974e+304, ..., -8.29180627e+303, 6.03451740e+304, -4.89473022e+304], shape=(1600,)) axpy = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) b_norm = 36933.09626879387 callback = None dot = dx = array([-6.87140847e+303, -3.38067021e+303, 1.60989640e+303, ..., -8.84234191e+302, 9.60777878e+303, -6.39836989e+303], shape=(1600,)) inner_m = 30 inner_res_0 = 9.828987626984914e+305 k_outer = 65 matvec = > maxiter = 1000 nrm2 = nx = 9.289646548794973e+305 outer_k = 3 outer_v = [(array([-0.00014645, -0.01297613, 0.01125253, ..., 0.02822181, 0.01986465, 0.01882956], shape=(1600,)), ar...,)), array([-0.01785432, 0.01223805, 0.03254139, ..., -0.00892586, 0.0649596 , -0.05269017], shape=(1600,)))] prepend_outer_v = False pres = np.float64(5.699117874130207e-12) psolve = > ptol = 3.757568700910377e-304 ptol_max_factor = 1.0 q = array([ 5.56572490e+304, -2.49137010e+305, 2.49924633e+305, 2.29334045e+305, 3.13003078e+305, 2.54258622e+3...46417111e+305, 2.02542630e+304, -5.95064087e+303, -1.62485100e+305, -1.55814348e+305, 5.98041134e+294]) qc = np.float64(5.980411342489953e+294) r_norm = 9.828987626984914e+305 r_outer = array([-1.65834911e+304, 1.13664837e+304, 3.02297847e+304, ..., -8.29269986e+303, 6.03435579e+304, -4.89464518e+304], shape=(1600,)) rtol = 0.01 scal = store_outer_Av = True v = array([ 0.00377817, -0.00136597, -0.00237204, ..., 0.11223006, -0.00169296, -0.10158123], shape=(1600,)) v0 = array([ 0.01687202, -0.01156425, -0.03075575, ..., 0.00843698, -0.06139346, 0.04979806], shape=(1600,)) vs = [array([ 0.01687202, -0.01156425, -0.03075575, ..., 0.00843698, -0.06139346, 0.04979806], shape=(1600,)), arr... array([ 0.05889197, -0.01953145, 0.01378533, ..., -0.04694802, -0.05935007, 0.01846223], shape=(1600,)), ...] w = array([ 0.01000672, -0.00491003, -0.0011598 , ..., -0.0062382 , -0.00774975, 0.00037599], shape=(1600,)) x = array([-6.87090138e+303, -3.38091903e+303, 1.60983763e+303, ..., -8.84550314e+302, 9.60738606e+303, -6.39835084e+303], shape=(1600,)) x0 = array([0., 0., 0., ..., 0., 0., 0.], shape=(1600,)) y = array([-inf, inf, -inf, inf, -inf, -inf, -inf, -inf, inf, inf, -inf, inf, inf, -inf, -inf, -inf, -inf, inf, -inf, -inf, -inf, inf, inf, -inf, -inf, inf, inf, inf, -inf, -inf, -inf, inf, -inf]) yc = np.float64(1.0562324221073185e+306) zs = [array([ 0.01687202, -0.01156425, -0.03075575, ..., 0.00843698, -0.06139346, 0.04979806], shape=(1600,)), arr... array([ 0.05889197, -0.01953145, 0.01378533, ..., -0.04694802, -0.05935007, 0.01846223], shape=(1600,)), ...] ____________________ test_precond_dummy[poisson2d-F-lgmres] ____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:299: in test_precond_dummy x, info = case.solver(A, b, M=precond, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = M = 1600 N = 1600 b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) case = diagOfA = array([4., 4., 4., ..., 4., 4., 4.], shape=(1600,), dtype=float32) identity = .identity at 0x7ffb38f84540> precond = <1600x1600 _CustomLinearOperator with dtype=int8> rtol = 1e-08 x0 = array([0., 0., 0., ..., 0., 0., 0.], shape=(1600,)) lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <1600x1600 MatrixLinearOperator with dtype=float32> B = array([], shape=(0, 33), dtype=float64) M = <1600x1600 _CustomLinearOperator with dtype=int8> Q = array([[ 9.64628563e-01, -2.15227247e-01, 1.13670250e-01, ..., 8.83114473e-06, -4.33120925e-04, 5.69911787e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 1.31582603e-08, 1.00000000e+00]], shape=(34, 34)) R = array([[ 6.62717683e+00, 2.68076567e+00, 5.93313141e-01, ..., -7.69198256e-01, 2.46342983e-07, -1.02063326e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 0.00036933096268793877 ax = array([-1.65860284e+304, 1.13687176e+304, 3.02297974e+304, ..., -8.29180627e+303, 6.03451740e+304, -4.89473022e+304], shape=(1600,)) axpy = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) b_norm = 36933.09626879387 callback = None dot = dx = array([-6.87140847e+303, -3.38067021e+303, 1.60989640e+303, ..., -8.84234191e+302, 9.60777878e+303, -6.39836989e+303], shape=(1600,)) inner_m = 30 inner_res_0 = 9.828987626984914e+305 k_outer = 65 matvec = > maxiter = 1000 nrm2 = nx = 9.289646548794973e+305 outer_k = 3 outer_v = [(array([-0.00014645, -0.01297613, 0.01125253, ..., 0.02822181, 0.01986465, 0.01882956], shape=(1600,)), ar...,)), array([-0.01785432, 0.01223805, 0.03254139, ..., -0.00892586, 0.0649596 , -0.05269017], shape=(1600,)))] prepend_outer_v = False pres = np.float64(5.699117874130207e-12) psolve = > ptol = 3.75756870091036e-310 ptol_max_factor = 1.0 q = array([ 5.56572490e+304, -2.49137010e+305, 2.49924633e+305, 2.29334045e+305, 3.13003078e+305, 2.54258622e+3...46417111e+305, 2.02542630e+304, -5.95064087e+303, -1.62485100e+305, -1.55814348e+305, 5.98041134e+294]) qc = np.float64(5.980411342489953e+294) r_norm = 9.828987626984914e+305 r_outer = array([-1.65834911e+304, 1.13664837e+304, 3.02297847e+304, ..., -8.29269986e+303, 6.03435579e+304, -4.89464518e+304], shape=(1600,)) rtol = 1e-08 scal = store_outer_Av = True v = array([ 0.00377817, -0.00136597, -0.00237204, ..., 0.11223006, -0.00169296, -0.10158123], shape=(1600,)) v0 = array([ 0.01687202, -0.01156425, -0.03075575, ..., 0.00843698, -0.06139346, 0.04979806], shape=(1600,)) vs = [array([ 0.01687202, -0.01156425, -0.03075575, ..., 0.00843698, -0.06139346, 0.04979806], shape=(1600,)), arr... array([ 0.05889197, -0.01953145, 0.01378533, ..., -0.04694802, -0.05935007, 0.01846223], shape=(1600,)), ...] w = array([ 0.01000672, -0.00491003, -0.0011598 , ..., -0.0062382 , -0.00774975, 0.00037599], shape=(1600,)) x = array([-6.87090138e+303, -3.38091903e+303, 1.60983763e+303, ..., -8.84550314e+302, 9.60738606e+303, -6.39835084e+303], shape=(1600,)) x0 = array([0., 0., 0., ..., 0., 0., 0.], shape=(1600,)) y = array([-inf, inf, -inf, inf, -inf, -inf, -inf, -inf, inf, inf, -inf, inf, inf, -inf, -inf, -inf, -inf, inf, -inf, -inf, -inf, inf, inf, -inf, -inf, inf, inf, inf, -inf, -inf, -inf, inf, -inf]) yc = np.float64(1.0562324221073185e+306) zs = [array([ 0.01687202, -0.01156425, -0.03075575, ..., 0.00843698, -0.06139346, 0.04979806], shape=(1600,)), arr... array([ 0.05889197, -0.01953145, 0.01378533, ..., -0.04694802, -0.05935007, 0.01846223], shape=(1600,)), ...] _____________________ test_x0_equals_Mb[poisson1d-gcrotmk] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:525: in test_x0_equals_Mb assert info == 0 E assert 10 == 0 A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = info = 10 rtol = 1e-08 x = array([ 73.64847883, 148.9590012 , 223.44605632, 299.70418436, 374.93452116, 451.97447357, 528.30566118,...20489, 1375.71367223, 1240.37601729, 1076.67767447, 890.88970524, 708.21052344, 479.92172751, 269.98074148]) x0 = 'Mb' _____________________ test_x0_equals_Mb[poisson1d-lgmres] ______________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:522: in test_x0_equals_Mb x, info = case.solver(A, b, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = rtol = 1e-08 x0 = 'Mb' lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <40x40 MatrixLinearOperator with dtype=float64> B = array([], shape=(0, 33), dtype=float64) M = <40x40 IdentityOperator with dtype=float64> Q = array([[ 9.51849174e-01, -2.44428226e-01, 1.65275802e-01, ..., -8.47978574e-05, -5.20799047e-04, 9.37158196e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 1.79946219e-09, 1.00000000e+00]], shape=(34, 34)) R = array([[ 3.26266814e+00, 1.44917214e+00, 2.87034631e-01, ..., -2.40472607e-01, 1.69648934e-06, -6.60943034e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 1.4331782861877306e-06 ax = array([ 4.45581212e+304, 3.13225622e+303, -2.69889698e+304, 4.35710102e+304, 6.78602721e+304, -3.92930351e+3...43542824e+304, -1.12718215e+305, -2.12116795e+305, 3.69254653e+305, -1.92754558e+305, 1.51727809e+305]) axpy = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) b_norm = 143.31782861877306 callback = None dot = dx = array([ 2.06128241e+304, -3.33247304e+303, -3.04100264e+304, -3.04986099e+304, -7.41582037e+304, -1.85678070e+3...49681589e+305, -2.14413925e+305, -1.66428046e+305, 9.36746285e+304, -1.54773498e+304, 6.81252295e+304]) inner_m = 30 inner_res_0 = 7.806810240143335e+305 k_outer = 62 matvec = > maxiter = 1000 nrm2 = nx = 1.1242884019184436e+306 outer_k = 3 outer_v = [(array([ 0.09181701, 0.12625602, 0.17399986, 0.04610213, 0.00495618, -0.08157609, -0.18869354, -0.24190117...0958, -0.07506541, -0.01612078, 0.05724001, -0.10025739, -0.1886676 , 0.3284341 , -0.17144583, 0.13495453]))] prepend_outer_v = False pres = np.float64(9.37158195925454e-13) psolve = > ptol = 1.835805203536e-312 ptol_max_factor = 1.0 q = array([-1.15677611e+305, 3.72084783e+305, 4.80554030e+305, 1.58081505e+305, 1.57689324e+305, -1.31912570e+3...72692508e+304, -4.28378127e+304, -6.01357831e+304, -1.04058930e+305, -5.03109652e+304, -5.04211389e+293]) qc = np.float64(-5.042113886365189e+293) r_norm = 7.806810240143335e+305 r_outer = array([ 4.45580866e+304, 3.13235936e+303, -2.69887448e+304, 4.35710136e+304, 6.78603365e+304, -3.92931425e+3...43545176e+304, -1.12718773e+305, -2.12116500e+305, 3.69254516e+305, -1.92754424e+305, 1.51727803e+305]) rtol = 1e-08 scal = store_outer_Av = True v = array([-0.12432532, -0.16537352, 0.00511984, -0.15984198, 0.03825713, 0.08366582, -0.19510948, 0.09129652, ...706972, 0.2093036 , 0.42524351, 0.16254802, 0.13147566, -0.03085417, 0.0778076 , 0.37400846, 0.14587076]) v0 = array([-0.05707592, -0.00401234, 0.03457077, -0.05581154, -0.08692454, 0.05033188, 0.20218891, -0.05973467, ...203015, 0.10810485, 0.02321616, -0.08243382, 0.14438518, 0.271707 , -0.47299025, 0.24690548, -0.19435313]) vs = [array([-0.05707592, -0.00401234, 0.03457077, -0.05581154, -0.08692454, 0.05033188, 0.20218891, -0.05973467,..., 0.01172554, 0.145218 , -0.01482214, 0.0119575 , -0.17708226, 0.12828523, -0.29436934, 0.03212996]), ...] w = array([ 0.10488088, 0.23303715, 0.29179522, 0.19919522, 0.10430475, -0.0339437 , -0.09990898, -0.07763967, ...311692, 0.1588657 , 0.10745296, 0.05924855, -0.14723372, 0.02114624, -0.00892398, 0.05267053, 0.02449714]) x = array([ 2.06129799e+304, -3.33212672e+303, -3.04095927e+304, -3.04983139e+304, -7.41580487e+304, -1.85678120e+3...49681501e+305, -2.14414144e+305, -1.66428014e+305, 9.36746153e+304, -1.54772716e+304, 6.81252659e+304]) x0 = 'Mb' y = array([ inf, -inf, inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, inf, inf, -inf, -inf, -inf, -inf, inf, inf, -inf, -inf, inf, inf, inf, -inf, inf, inf, -inf, inf, inf, inf, inf, inf]) yc = np.float64(-1.7401682478047498e+306) zs = [array([-0.05707592, -0.00401234, 0.03457077, -0.05581154, -0.08692454, 0.05033188, 0.20218891, -0.05973467,..., 0.01172554, 0.145218 , -0.01482214, 0.0119575 , -0.17708226, 0.12828523, -0.29436934, 0.03212996]), ...] ____________________ test_x0_equals_Mb[poisson1d-F-gcrotmk] ____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:525: in test_x0_equals_Mb assert info == 0 E assert 10 == 0 A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = info = 10 rtol = 1e-08 x = array([ 73.64847883, 148.9590012 , 223.44605632, 299.70418436, 374.93452116, 451.97447357, 528.30566118,...20489, 1375.71367223, 1240.37601729, 1076.67767447, 890.88970524, 708.21052344, 479.92172751, 269.98074148]) x0 = 'Mb' ____________________ test_x0_equals_Mb[poisson1d-F-lgmres] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:522: in test_x0_equals_Mb x, info = case.solver(A, b, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = rtol = 1e-08 x0 = 'Mb' lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <40x40 MatrixLinearOperator with dtype=float32> B = array([], shape=(0, 33), dtype=float64) M = <40x40 IdentityOperator with dtype=float32> Q = array([[ 9.51849174e-01, -2.44428226e-01, 1.65275802e-01, ..., -8.47978574e-05, -5.20799047e-04, 9.37158196e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 1.79946219e-09, 1.00000000e+00]], shape=(34, 34)) R = array([[ 3.26266814e+00, 1.44917214e+00, 2.87034631e-01, ..., -2.40472607e-01, 1.69648934e-06, -6.60943034e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 1.4331782861877306e-06 ax = array([ 4.45581212e+304, 3.13225622e+303, -2.69889698e+304, 4.35710102e+304, 6.78602721e+304, -3.92930351e+3...43542824e+304, -1.12718215e+305, -2.12116795e+305, 3.69254653e+305, -1.92754558e+305, 1.51727809e+305]) axpy = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) b_norm = 143.31782861877306 callback = None dot = dx = array([ 2.06128241e+304, -3.33247304e+303, -3.04100264e+304, -3.04986099e+304, -7.41582037e+304, -1.85678070e+3...49681589e+305, -2.14413925e+305, -1.66428046e+305, 9.36746285e+304, -1.54773498e+304, 6.81252295e+304]) inner_m = 30 inner_res_0 = 7.806810240143335e+305 k_outer = 62 matvec = > maxiter = 1000 nrm2 = nx = 1.1242884019184436e+306 outer_k = 3 outer_v = [(array([ 0.09181701, 0.12625602, 0.17399986, 0.04610213, 0.00495618, -0.08157609, -0.18869354, -0.24190117...0958, -0.07506541, -0.01612078, 0.05724001, -0.10025739, -0.1886676 , 0.3284341 , -0.17144583, 0.13495453]))] prepend_outer_v = False pres = np.float64(9.37158195925454e-13) psolve = > ptol = 1.835805203536e-312 ptol_max_factor = 1.0 q = array([-1.15677611e+305, 3.72084783e+305, 4.80554030e+305, 1.58081505e+305, 1.57689324e+305, -1.31912570e+3...72692508e+304, -4.28378127e+304, -6.01357831e+304, -1.04058930e+305, -5.03109652e+304, -5.04211389e+293]) qc = np.float64(-5.042113886365189e+293) r_norm = 7.806810240143335e+305 r_outer = array([ 4.45580866e+304, 3.13235936e+303, -2.69887448e+304, 4.35710136e+304, 6.78603365e+304, -3.92931425e+3...43545176e+304, -1.12718773e+305, -2.12116500e+305, 3.69254516e+305, -1.92754424e+305, 1.51727803e+305]) rtol = 1e-08 scal = store_outer_Av = True v = array([-0.12432532, -0.16537352, 0.00511984, -0.15984198, 0.03825713, 0.08366582, -0.19510948, 0.09129652, ...706972, 0.2093036 , 0.42524351, 0.16254802, 0.13147566, -0.03085417, 0.0778076 , 0.37400846, 0.14587076]) v0 = array([-0.05707592, -0.00401234, 0.03457077, -0.05581154, -0.08692454, 0.05033188, 0.20218891, -0.05973467, ...203015, 0.10810485, 0.02321616, -0.08243382, 0.14438518, 0.271707 , -0.47299025, 0.24690548, -0.19435313]) vs = [array([-0.05707592, -0.00401234, 0.03457077, -0.05581154, -0.08692454, 0.05033188, 0.20218891, -0.05973467,..., 0.01172554, 0.145218 , -0.01482214, 0.0119575 , -0.17708226, 0.12828523, -0.29436934, 0.03212996]), ...] w = array([ 0.10488088, 0.23303715, 0.29179522, 0.19919522, 0.10430475, -0.0339437 , -0.09990898, -0.07763967, ...311692, 0.1588657 , 0.10745296, 0.05924855, -0.14723372, 0.02114624, -0.00892398, 0.05267053, 0.02449714]) x = array([ 2.06129799e+304, -3.33212672e+303, -3.04095927e+304, -3.04983139e+304, -7.41580487e+304, -1.85678120e+3...49681501e+305, -2.14414144e+305, -1.66428014e+305, 9.36746153e+304, -1.54772716e+304, 6.81252659e+304]) x0 = 'Mb' y = array([ inf, -inf, inf, -inf, inf, inf, inf, inf, -inf, -inf, -inf, inf, inf, -inf, -inf, -inf, -inf, inf, inf, -inf, -inf, inf, inf, inf, -inf, inf, inf, -inf, inf, inf, inf, inf, inf]) yc = np.float64(-1.7401682478047498e+306) zs = [array([-0.05707592, -0.00401234, 0.03457077, -0.05581154, -0.08692454, 0.05033188, 0.20218891, -0.05973467,..., 0.01172554, 0.145218 , -0.01482214, 0.0119575 , -0.17708226, 0.12828523, -0.29436934, 0.03212996]), ...] ___________________ test_x0_equals_Mb[neg-poisson1d-gcrotmk] ___________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:525: in test_x0_equals_Mb assert info == 0 E assert 9 == 0 A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = info = 9 rtol = 1e-08 x = array([ -66.53813786, -132.32844072, -198.91621511, -266.73545392, -334.37411611, -404.05196247, -472.46...-1480.46459099, -1341.24057017, -1177.88805801, -1000.61072927, -775.17301285, -541.50829503, -249.25848842]) x0 = 'Mb' ___________________ test_x0_equals_Mb[neg-poisson1d-lgmres] ____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:522: in test_x0_equals_Mb x, info = case.solver(A, b, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = rtol = 1e-08 x0 = 'Mb' lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <40x40 MatrixLinearOperator with dtype=float64> B = array([], shape=(0, 33), dtype=float64) M = <40x40 IdentityOperator with dtype=float64> Q = array([[ 9.43119187e-01, 3.21996152e-01, 6.39608763e-02, ..., -8.86974013e-05, 6.90553272e-04, 6.49983461e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, -9.41250281e-09, 1.00000000e+00]], shape=(34, 34)) R = array([[-2.72390159e+00, 1.84693838e+00, -2.14878270e-01, ..., -1.48608393e-01, 9.55141763e-04, -7.12095279e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 1.4331782861877306e-06 ax = array([ 1.31469256e+304, 1.64125759e+303, -1.06681640e+304, -7.24604696e+303, 1.54470366e+304, 2.06988225e+3...61768730e+303, 2.80248350e+303, -7.84959212e+303, 3.45386051e+303, 5.21768087e+303, -5.82443283e+303]) axpy = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) b_norm = 143.31782861877306 callback = None dot = dx = array([-6.42724187e+303, 2.92441890e+302, 8.65338324e+303, 6.34616058e+303, -3.20710904e+303, 2.68665790e+3...99643877e+303, 2.89927240e+303, 5.60458953e+303, 4.60314536e+302, -1.23009995e+303, 2.29716644e+303]) inner_m = 30 inner_res_0 = 4.1395965701443856e+304 k_outer = 60 matvec = > maxiter = 1000 nrm2 = nx = 5.482599123341741e+304 outer_k = 3 outer_v = [(array([-0.00727033, 0.03256041, 0.08994849, 0.11909803, 0.12136977, 0.08697481, 0.03596854, 0.03902715...5473, -0.03963138, 0.1382546 , -0.02950585, 0.05111597, -0.14317283, 0.06299677, 0.09516802, -0.10623488]))] prepend_outer_v = False pres = np.float64(6.4998346113539215e-12) psolve = > ptol = 3.4621206726377e-311 ptol_max_factor = 1.0 q = array([-5.86241081e+303, -1.81014660e+304, 2.59646936e+304, 7.50395995e+303, 9.57541339e+302, -1.11315510e+3...19361191e+303, 1.85159098e+303, -5.10199267e+302, 1.23729914e+303, -3.07745119e+303, -1.21011791e+294]) qc = np.float64(-1.2101179112814286e+294) r_norm = 4.1395965701443856e+304 r_outer = array([ 1.31478751e+304, 1.64074058e+303, -1.06694803e+304, -7.24623860e+303, 1.54477354e+304, 2.07057256e+3...61728174e+303, 2.80297270e+303, -7.85070789e+303, 3.45373691e+303, 5.21976431e+303, -5.82596119e+303]) rtol = 1e-08 scal = store_outer_Av = True v = array([ 0.11744259, 0.11414032, 0.24108904, -0.29086888, -0.13125492, -0.154456 , 0.16044571, 0.1224835 , ...448382, 0.0540057 , -0.24622651, -0.02720097, -0.01763437, -0.04315014, 0.19880981, -0.02431756, 0.03306646]) v0 = array([-0.31761247, -0.03963528, 0.25774203, 0.17504698, -0.37317007, -0.0500187 , 0.19242902, 0.12242425, ...714746, 0.05250899, -0.18309755, 0.03906858, -0.06771125, 0.18964911, -0.08343173, -0.12609355, 0.14073741]) vs = [array([-0.31761247, -0.03963528, 0.25774203, 0.17504698, -0.37317007, -0.0500187 , 0.19242902, 0.12242425,...01, 2.26723336e-01, -1.83391359e-01, -2.53476618e-01, -1.60179798e-01, 7.77193213e-02, 6.88389022e-02]), ...] w = array([-0.00828793, 0.07956704, 0.11479245, 0.0164932 , -0.10110072, -0.14747116, -0.12361486, -0.19646773, ...675961, 0.02033305, 0.02313126, -0.01872766, -0.01997269, 0.02870084, -0.03587971, -0.11311722, 0.02098127]) x = array([-6.42732392e+303, 2.93227256e+302, 8.65451902e+303, 6.34633048e+303, -3.20809666e+303, 2.68521161e+3...99626027e+303, 2.89908187e+303, 5.60487618e+303, 4.59962592e+302, -1.23121408e+303, 2.29737355e+303]) x0 = 'Mb' y = array([ inf, inf, inf, inf, -8.98565260e+307, -8.97634816e+3... -7.06265358e+307, -1.21197935e+307, 6.82325693e+307, -inf, -inf, -inf]) yc = np.float64(-1.0840270772360963e+305) zs = [array([-0.31761247, -0.03963528, 0.25774203, 0.17504698, -0.37317007, -0.0500187 , 0.19242902, 0.12242425,...01, 2.26723336e-01, -1.83391359e-01, -2.53476618e-01, -1.60179798e-01, 7.77193213e-02, 6.88389022e-02]), ...] __________________ test_x0_equals_Mb[neg-poisson1d-F-gcrotmk] __________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:525: in test_x0_equals_Mb assert info == 0 E assert 9 == 0 A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = info = 9 rtol = 1e-08 x = array([ -66.53813786, -132.32844072, -198.91621511, -266.73545392, -334.37411611, -404.05196247, -472.46...-1480.46459099, -1341.24057017, -1177.88805801, -1000.61072927, -775.17301285, -541.50829503, -249.25848842]) x0 = 'Mb' __________________ test_x0_equals_Mb[neg-poisson1d-F-lgmres] ___________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:522: in test_x0_equals_Mb x, info = case.solver(A, b, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) case = rtol = 1e-08 x0 = 'Mb' lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <40x40 MatrixLinearOperator with dtype=float32> B = array([], shape=(0, 33), dtype=float64) M = <40x40 IdentityOperator with dtype=float32> Q = array([[ 9.43119187e-01, 3.21996152e-01, 6.39608763e-02, ..., -8.86974013e-05, 6.90553272e-04, 6.49983461e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, -9.41250281e-09, 1.00000000e+00]], shape=(34, 34)) R = array([[-2.72390159e+00, 1.84693838e+00, -2.14878270e-01, ..., -1.48608393e-01, 9.55141763e-04, -7.12095279e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 1.4331782861877306e-06 ax = array([ 1.31469256e+304, 1.64125759e+303, -1.06681640e+304, -7.24604696e+303, 1.54470366e+304, 2.06988225e+3...61768730e+303, 2.80248350e+303, -7.84959212e+303, 3.45386051e+303, 5.21768087e+303, -5.82443283e+303]) axpy = b = array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.]) b_norm = 143.31782861877306 callback = None dot = dx = array([-6.42724187e+303, 2.92441890e+302, 8.65338324e+303, 6.34616058e+303, -3.20710904e+303, 2.68665790e+3...99643877e+303, 2.89927240e+303, 5.60458953e+303, 4.60314536e+302, -1.23009995e+303, 2.29716644e+303]) inner_m = 30 inner_res_0 = 4.1395965701443856e+304 k_outer = 60 matvec = > maxiter = 1000 nrm2 = nx = 5.482599123341741e+304 outer_k = 3 outer_v = [(array([-0.00727033, 0.03256041, 0.08994849, 0.11909803, 0.12136977, 0.08697481, 0.03596854, 0.03902715...5473, -0.03963138, 0.1382546 , -0.02950585, 0.05111597, -0.14317283, 0.06299677, 0.09516802, -0.10623488]))] prepend_outer_v = False pres = np.float64(6.4998346113539215e-12) psolve = > ptol = 3.4621206726377e-311 ptol_max_factor = 1.0 q = array([-5.86241081e+303, -1.81014660e+304, 2.59646936e+304, 7.50395995e+303, 9.57541339e+302, -1.11315510e+3...19361191e+303, 1.85159098e+303, -5.10199267e+302, 1.23729914e+303, -3.07745119e+303, -1.21011791e+294]) qc = np.float64(-1.2101179112814286e+294) r_norm = 4.1395965701443856e+304 r_outer = array([ 1.31478751e+304, 1.64074058e+303, -1.06694803e+304, -7.24623860e+303, 1.54477354e+304, 2.07057256e+3...61728174e+303, 2.80297270e+303, -7.85070789e+303, 3.45373691e+303, 5.21976431e+303, -5.82596119e+303]) rtol = 1e-08 scal = store_outer_Av = True v = array([ 0.11744259, 0.11414032, 0.24108904, -0.29086888, -0.13125492, -0.154456 , 0.16044571, 0.1224835 , ...448382, 0.0540057 , -0.24622651, -0.02720097, -0.01763437, -0.04315014, 0.19880981, -0.02431756, 0.03306646]) v0 = array([-0.31761247, -0.03963528, 0.25774203, 0.17504698, -0.37317007, -0.0500187 , 0.19242902, 0.12242425, ...714746, 0.05250899, -0.18309755, 0.03906858, -0.06771125, 0.18964911, -0.08343173, -0.12609355, 0.14073741]) vs = [array([-0.31761247, -0.03963528, 0.25774203, 0.17504698, -0.37317007, -0.0500187 , 0.19242902, 0.12242425,...01, 2.26723336e-01, -1.83391359e-01, -2.53476618e-01, -1.60179798e-01, 7.77193213e-02, 6.88389022e-02]), ...] w = array([-0.00828793, 0.07956704, 0.11479245, 0.0164932 , -0.10110072, -0.14747116, -0.12361486, -0.19646773, ...675961, 0.02033305, 0.02313126, -0.01872766, -0.01997269, 0.02870084, -0.03587971, -0.11311722, 0.02098127]) x = array([-6.42732392e+303, 2.93227256e+302, 8.65451902e+303, 6.34633048e+303, -3.20809666e+303, 2.68521161e+3...99626027e+303, 2.89908187e+303, 5.60487618e+303, 4.59962592e+302, -1.23121408e+303, 2.29737355e+303]) x0 = 'Mb' y = array([ inf, inf, inf, inf, -8.98565260e+307, -8.97634816e+3... -7.06265358e+307, -1.21197935e+307, 6.82325693e+307, -inf, -inf, -inf]) yc = np.float64(-1.0840270772360963e+305) zs = [array([-0.31761247, -0.03963528, 0.25774203, 0.17504698, -0.37317007, -0.0500187 , 0.19242902, 0.12242425,...01, 2.26723336e-01, -1.83391359e-01, -2.53476618e-01, -1.60179798e-01, 7.77193213e-02, 6.88389022e-02]), ...] _____________________ test_x0_equals_Mb[poisson2d-gcrotmk] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:525: in test_x0_equals_Mb assert info == 0 E assert 12 == 0 A = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) case = info = 12 rtol = 1e-08 x = array([ 123.23037436, 281.76607121, 389.52689326, ..., 3800.15672497, 2419.79920877, 2793.53532328], shape=(1600,)) x0 = 'Mb' ----------------------------- Captured stdout call ----------------------------- DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL _____________________ test_x0_equals_Mb[poisson2d-lgmres] ______________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:522: in test_x0_equals_Mb x, info = case.solver(A, b, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) case = rtol = 1e-08 x0 = 'Mb' lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <1600x1600 MatrixLinearOperator with dtype=float64> B = array([], shape=(0, 33), dtype=float64) M = <1600x1600 IdentityOperator with dtype=float64> Q = array([[ 9.66141027e-01, -1.88970536e-01, 1.49154989e-01, ..., 9.20782683e-06, -2.63154329e-04, 4.83868563e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 1.83872546e-09, 1.00000000e+00]], shape=(34, 34)) R = array([[ 6.76098181e+00, 2.47217267e+00, 5.98722261e-01, ..., 7.02082766e-01, -1.33111460e-05, -1.83260876e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 0.00036933096268793877 ax = array([ 2.47437129e+306, -2.83777383e+306, 2.71320240e+306, ..., -1.02950211e+306, 1.34871084e+306, -4.27475070e+305], shape=(1600,)) axpy = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) b_norm = 36933.09626879387 callback = None dot = dx = array([ 4.36452707e+305, -4.13934376e+305, 2.98970682e+305, ..., -2.53450918e+305, 1.36950235e+305, -6.32207241e+304], shape=(1600,)) inner_m = 30 inner_res_0 = 6.609300945270136e+307 k_outer = 61 matvec = > maxiter = 1000 nrm2 = nx = 3.484386271010668e+307 outer_k = 3 outer_v = [(array([-0.02546783, 0.023025 , -0.00582023, ..., -0.03157881, -0.01061253, -0.01368958], shape=(1600,)), ar...,)), array([ 0.07101312, -0.08144257, 0.07786744, ..., -0.02954615, 0.03870727, -0.0122683 ], shape=(1600,)))] prepend_outer_v = False pres = np.float64(4.838685631405656e-13) psolve = > ptol = 5.58804880798e-312 ptol_max_factor = 1.0 q = array([-4.13561348e+306, 1.64961994e+307, -8.77134127e+305, 3.46330200e+306, -8.52526198e+306, -2.73905082e+3...54677152e+306, 3.83155768e+305, -8.14644224e+305, -1.88180417e+307, 5.41623299e+306, -3.31234777e+295]) qc = np.float64(-3.312347765701557e+295) r_norm = 6.609300945270136e+307 r_outer = array([ 2.47437211e+306, -2.83777400e+306, 2.71320098e+306, ..., -1.02950084e+306, 1.34871069e+306, -4.27475196e+305], shape=(1600,)) rtol = 1e-08 scal = store_outer_Av = True v = array([-0.00502472, 0.00410427, 0.0007251 , ..., 0.0453261 , -0.08406914, 0.00401416], shape=(1600,)) v0 = array([-0.03743773, 0.04293607, -0.04105125, ..., 0.01557655, -0.02040625, 0.00646778], shape=(1600,)) vs = [array([-0.03743773, 0.04293607, -0.04105125, ..., 0.01557655, -0.02040625, 0.00646778], shape=(1600,)), arr... array([ 0.0162858 , 0.00498073, 0.02482007, ..., -0.00743527, -0.07616628, -0.01833725], shape=(1600,)), ...] w = array([ 0.00421532, -0.00015887, -0.00355474, ..., 0.01120765, 0.00502216, 0.0013848 ], shape=(1600,)) x = array([ 4.36452941e+305, -4.13934385e+305, 2.98970485e+305, ..., -2.53450297e+305, 1.36950513e+305, -6.32206473e+304], shape=(1600,)) x0 = 'Mb' y = array([-inf, inf, -inf, inf, -inf, inf, -inf, -inf, -inf, -inf, -inf, inf, -inf, inf, inf, inf, -inf, -inf, -inf, -inf, inf, -inf, -inf, -inf, -inf, inf, inf, -inf, -inf, inf, inf, -inf, -inf]) yc = np.float64(-3.331611559859661e+307) zs = [array([-0.03743773, 0.04293607, -0.04105125, ..., 0.01557655, -0.02040625, 0.00646778], shape=(1600,)), arr... array([ 0.0162858 , 0.00498073, 0.02482007, ..., -0.00743527, -0.07616628, -0.01833725], shape=(1600,)), ...] ____________________ test_x0_equals_Mb[poisson2d-F-gcrotmk] ____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:525: in test_x0_equals_Mb assert info == 0 E assert 12 == 0 A = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) case = info = 12 rtol = 1e-08 x = array([ 123.23037436, 281.76607121, 389.52689326, ..., 3800.15672497, 2419.79920877, 2793.53532328], shape=(1600,)) x0 = 'Mb' ____________________ test_x0_equals_Mb[poisson2d-F-lgmres] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py:522: in test_x0_equals_Mb x, info = case.solver(A, b, x0=x0, rtol=rtol) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) case = rtol = 1e-08 x0 = 'Mb' lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py:187: in lgmres y *= inner_res_0 E RuntimeWarning: overflow encountered in multiply A = <1600x1600 MatrixLinearOperator with dtype=float32> B = array([], shape=(0, 33), dtype=float64) M = <1600x1600 IdentityOperator with dtype=float32> Q = array([[ 9.66141027e-01, -1.88970536e-01, 1.49154989e-01, ..., 9.20782683e-06, -2.63154329e-04, 4.83868563e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 1.83872546e-09, 1.00000000e+00]], shape=(34, 34)) R = array([[ 6.76098181e+00, 2.47217267e+00, 5.98722261e-01, ..., 7.02082766e-01, -1.33111460e-05, -1.83260876e....00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], shape=(34, 33)) atol = 0.00036933096268793877 ax = array([ 2.47437129e+306, -2.83777383e+306, 2.71320240e+306, ..., -1.02950211e+306, 1.34871084e+306, -4.27475070e+305], shape=(1600,)) axpy = b = array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.597e+03, 1.598e+03, 1.599e+03], shape=(1600,)) b_norm = 36933.09626879387 callback = None dot = dx = array([ 4.36452707e+305, -4.13934376e+305, 2.98970682e+305, ..., -2.53450918e+305, 1.36950235e+305, -6.32207241e+304], shape=(1600,)) inner_m = 30 inner_res_0 = 6.609300945270136e+307 k_outer = 61 matvec = > maxiter = 1000 nrm2 = nx = 3.484386271010668e+307 outer_k = 3 outer_v = [(array([-0.02546783, 0.023025 , -0.00582023, ..., -0.03157881, -0.01061253, -0.01368958], shape=(1600,)), ar...,)), array([ 0.07101312, -0.08144257, 0.07786744, ..., -0.02954615, 0.03870727, -0.0122683 ], shape=(1600,)))] prepend_outer_v = False pres = np.float64(4.838685631405656e-13) psolve = > ptol = 5.58804880798e-312 ptol_max_factor = 1.0 q = array([-4.13561348e+306, 1.64961994e+307, -8.77134127e+305, 3.46330200e+306, -8.52526198e+306, -2.73905082e+3...54677152e+306, 3.83155768e+305, -8.14644224e+305, -1.88180417e+307, 5.41623299e+306, -3.31234777e+295]) qc = np.float64(-3.312347765701557e+295) r_norm = 6.609300945270136e+307 r_outer = array([ 2.47437211e+306, -2.83777400e+306, 2.71320098e+306, ..., -1.02950084e+306, 1.34871069e+306, -4.27475196e+305], shape=(1600,)) rtol = 1e-08 scal = store_outer_Av = True v = array([-0.00502472, 0.00410427, 0.0007251 , ..., 0.0453261 , -0.08406914, 0.00401416], shape=(1600,)) v0 = array([-0.03743773, 0.04293607, -0.04105125, ..., 0.01557655, -0.02040625, 0.00646778], shape=(1600,)) vs = [array([-0.03743773, 0.04293607, -0.04105125, ..., 0.01557655, -0.02040625, 0.00646778], shape=(1600,)), arr... array([ 0.0162858 , 0.00498073, 0.02482007, ..., -0.00743527, -0.07616628, -0.01833725], shape=(1600,)), ...] w = array([ 0.00421532, -0.00015887, -0.00355474, ..., 0.01120765, 0.00502216, 0.0013848 ], shape=(1600,)) x = array([ 4.36452941e+305, -4.13934385e+305, 2.98970485e+305, ..., -2.53450297e+305, 1.36950513e+305, -6.32206473e+304], shape=(1600,)) x0 = 'Mb' y = array([-inf, inf, -inf, inf, -inf, inf, -inf, -inf, -inf, -inf, -inf, inf, -inf, inf, inf, inf, -inf, -inf, -inf, -inf, inf, -inf, -inf, -inf, -inf, inf, inf, -inf, -inf, inf, inf, -inf, -inf]) yc = np.float64(-3.331611559859661e+307) zs = [array([-0.03743773, 0.04293607, -0.04105125, ..., 0.01557655, -0.02040625, 0.00646778], shape=(1600,)), arr... array([ 0.0162858 , 0.00498073, 0.02482007, ..., -0.00743527, -0.07616628, -0.01833725], shape=(1600,)), ...] ________________________ TestLGMRES.test_preconditioner ________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lgmres.py:69: in test_preconditioner x0, count_0 = do_solve() ^^^^^^^^^^ M = <6x6 _CustomLinearOperator with dtype=int64> pc = self = lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lgmres.py:59: in do_solve assert_(allclose(A@x0, b, rtol=1e-12, atol=1e-12), norm(A@x0-b)) E AssertionError: 30992.335793605263 count_0 = 7000 flag = 1000 kw = {} sup = x0 = array([-25376.57855606, -738.0926326 , 2597.34657348, 7179.21279595, -603.95288054, -5709.92079627]) ___________________________ TestLGMRES.test_outer_v ____________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lgmres.py:82: in test_outer_v x0, count_0 = do_solve(outer_k=6, outer_v=outer_v) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ outer_v = [(array([-0.79913234, -0.51246912, -0.07917315, -0.13570272, -0.27131376, 0.02163637]), array([ 1.28052293, -1... array([ 1.75917176e+00, 2.75443149e-02, -9.46838479e-02, 2.57604389e-01, 8.01295277e-01, 1.11775335e-03]))] self = lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lgmres.py:59: in do_solve assert_(allclose(A@x0, b, rtol=1e-12, atol=1e-12), norm(A@x0-b)) E AssertionError: 21.521328614451477 count_0 = 7000 flag = 1000 kw = {'outer_k': 6, 'outer_v': [(array([-0.79913234, -0.51246912, -0.07917315, -0.13570272, -0.27131376, 0.02163637...array([ 1.75917176e+00, 2.75443149e-02, -9.46838479e-02, 2.57604389e-01, 8.01295277e-01, 1.11775335e-03]))]} sup = x0 = array([ 40.68420243, 3.26664923, -11.17450313, -10.48149737, -4.31105444, 9.35873108]) ___________________________ TestLGMRES.test_arnoldi ____________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lgmres.py:125: in test_arnoldi assert_allclose(x0, x1) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E E Mismatched elements: 2000 / 2000 (100%) E Max absolute difference among violations: 1.346051 E Max relative difference among violations: 158.40798188 E ACTUAL: array([0.391221, 0.905977, 0.59785 , ..., 0.034925, 0.163087, 0.348719], E shape=(2000,)) E DESIRED: array([0.458091, 0.896705, 0.591731, ..., 0.012636, 0.153791, 0.34515 ], E shape=(2000,)) A = b = array([0.69594252, 0.89668391, 0.59171721, ..., 0.02600555, 0.13650546, 0.34514164], shape=(2000,)) flag0 = 1 flag1 = 1 norm = np.float64(4.464269429256065) rng = Generator(PCG64) at 0x7FFB38AD89E0 self = sup = x0 = array([0.39122076, 0.90597714, 0.59784977, ..., 0.03492464, 0.16308729, 0.34871869], shape=(2000,)) x1 = array([0.45809085, 0.89670496, 0.5917311 , ..., 0.01263631, 0.15379144, 0.34514974], shape=(2000,)) __________________ TestLGMRES.test_breakdown_underdetermined ___________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lgmres.py:209: in test_breakdown_underdetermined assert_allclose(resp, res, err_msg=repr(b)) E AssertionError: E Not equal to tolerance rtol=1e-07, atol=0 E array([1, 1, 1, 1]) E Mismatched elements: 1 / 1 (100%) E Max absolute difference among violations: 0.00958232 E Max relative difference among violations: 0.00958232 E ACTUAL: array(1.009582) E DESIRED: array(1.) A = array([[0., 1., 1., 1.], [0., 0., 1., 1.], [0., 0., 0., 1.], [0., 0., 0., 0.]]) K = array([[1., 3., 3., 1.], [1., 2., 1., 0.], [1., 1., 0., 0.], [1., 0., 0., 0.]]) _ = array([4.89471764, 1. , 0.20430188, 0. ]) b = array([1, 1, 1, 1]) bs = [array([1, 1, 1, 1]), array([1, 1, 1, 0]), array([1, 1, 0, 0]), array([1, 0, 0, 0])] info = 1 res = np.float64(1.0) resp = np.float64(1.009582322647739) self = sup = x = array([1.00000000e+00, 3.33066907e-15, 4.44089210e-16, 1.00000000e+00]) xp = array([ 0.44660239, -0.15612083, -0.00720409, 1.08406382]) y = array([ 1., -1., 1., 0.]) _______________________________ test_lsqr_basic ________________________________ lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lsqr.py:50: in test_lsqr_basic svx, *_ = np.linalg.lstsq(Gext, bext, rcond=None) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Gext = array([[ 9.29066539, 4.55133144, 9.86732501, ..., 2.92262464, 1.31334065, 3.04357241], [ 8.2906653...], [ 0. , 0. , 0. , ..., 0. , 0. , 1.5 ]], shape=(70, 35)) _ = [2, 4, 4.011076759874673, 4.819657503997066, 250.9447515688949, 204.17309202814258, ...] b_copy = array([ 0.52348052, 0.1240291 , 0.51144054, 0.84561751, -0.54316446, 1.39094184, -1.57957491, -1.0069042 , ...366889, -1.06795115, 0.35761587, 0.40983072, 0.43030608, -1.31641137, 1.17515402, -1.56571725, 0.27112069]) bext = array([ 0.52348052, 0.1240291 , 0.51144054, 0.84561751, -0.54316446, 1.39094184, -1.57957491, -1.0069042 , ... , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]) damp = 1.5 svx = array([ 0.51771087, 0.11825944, 0.50567089, 0.83984786, -0.54893411, 1.38517219, -1.58534456, -1.01267385, ...789923, -1.0737208 , 0.35184622, 0.40406106, 0.42453642, -1.32218102, 1.16938437, -1.57148691, 0.26535104]) xo = array([ 0.15653978, 0.03954643, 0.15034124, 0.26781892, -0.15993099, 0.43456936, -0.48510204, -0.3076466 , ...778359, -0.32427656, 0.11051158, 0.1252692 , 0.13802543, -0.3958532 , 0.36554574, -0.47525375, 0.08719032]) /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:2564: in lstsq x, resids, rank, s = _umath_linalg.lstsq(a, b, rcond, _ = a = array([[ 9.29066539, 4.55133144, 9.86732501, ..., 2.92262464, 1.31334065, 3.04357241], [ 8.2906653...], [ 0. , 0. , 0. , ..., 0. , 0. , 1.5 ]], shape=(70, 35)) b = array([[ 0.52348052], [ 0.1240291 ], [ 0.51144054], [ 0.84561751], [-0.54316446], [... ], [ 0. ], [ 0. ], [ 0. ], [ 0. ], [ 0. ]]) is_1d = True m = 70 m2 = 70 n = 35 n_rhs = 1 rcond = np.float64(1.554312234475219e-14) result_real_t = result_t = signature = 'ddd->ddid' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:175: in _raise_linalgerror_lstsq raise LinAlgError("SVD did not converge in Linear Least Squares") E numpy.linalg.LinAlgError: SVD did not converge in Linear Least Squares err = 'invalid value' flag = 12 _______________________ test_svdp[LM-True-float32-array] _______________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = True k = 3 m = 20 n = 10 which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) Msp = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) constructor = dtype = f = 0.8 irl_mode = True k = 3 m = 20 n = 10 tol = 0.0001 which = 'LM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _____________________ test_svdp[LM-True-float32-csr_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = True k = 3 m = 20 n = 10 which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) Msp = constructor = dtype = f = 0.8 irl_mode = True k = 3 m = 20 n = 10 tol = 0.0001 which = 'LM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _____________________ test_svdp[LM-True-float32-csc_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = True k = 3 m = 20 n = 10 which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) Msp = constructor = dtype = f = 0.8 irl_mode = True k = 3 m = 20 n = 10 tol = 0.0001 which = 'LM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _______________________ test_svdp[LM-True-float64-array] _______________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = True k = 3 m = 20 n = 10 which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) Msp = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) constructor = dtype = f = 0.8 irl_mode = True k = 3 m = 20 n = 10 tol = 1e-08 which = 'LM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _____________________ test_svdp[LM-True-float64-csr_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = True k = 3 m = 20 n = 10 which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) Msp = constructor = dtype = f = 0.8 irl_mode = True k = 3 m = 20 n = 10 tol = 1e-08 which = 'LM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _____________________ test_svdp[LM-True-float64-csc_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = True k = 3 m = 20 n = 10 which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) Msp = constructor = dtype = f = 0.8 irl_mode = True k = 3 m = 20 n = 10 tol = 1e-08 which = 'LM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 ______________________ test_svdp[LM-False-float32-array] _______________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = False k = 3 m = 20 n = 10 which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) Msp = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) constructor = dtype = f = 0.8 irl_mode = False k = 3 m = 20 n = 10 tol = 0.0001 which = 'LM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 ____________________ test_svdp[LM-False-float32-csr_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = False k = 3 m = 20 n = 10 which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) Msp = constructor = dtype = f = 0.8 irl_mode = False k = 3 m = 20 n = 10 tol = 0.0001 which = 'LM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 ____________________ test_svdp[LM-False-float32-csc_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = False k = 3 m = 20 n = 10 which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) Msp = constructor = dtype = f = 0.8 irl_mode = False k = 3 m = 20 n = 10 tol = 0.0001 which = 'LM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 ______________________ test_svdp[LM-False-float64-array] _______________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = False k = 3 m = 20 n = 10 which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) Msp = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) constructor = dtype = f = 0.8 irl_mode = False k = 3 m = 20 n = 10 tol = 1e-08 which = 'LM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 ____________________ test_svdp[LM-False-float64-csr_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = False k = 3 m = 20 n = 10 which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) Msp = constructor = dtype = f = 0.8 irl_mode = False k = 3 m = 20 n = 10 tol = 1e-08 which = 'LM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 ____________________ test_svdp[LM-False-float64-csc_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = False k = 3 m = 20 n = 10 which = 'LM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) Msp = constructor = dtype = f = 0.8 irl_mode = False k = 3 m = 20 n = 10 tol = 1e-08 which = 'LM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _______________________ test_svdp[SM-True-float32-array] _______________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = True k = 3 m = 20 n = 10 which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) Msp = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) constructor = dtype = f = 0.8 irl_mode = True k = 3 m = 20 n = 10 tol = 0.0001 which = 'SM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _____________________ test_svdp[SM-True-float32-csr_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = True k = 3 m = 20 n = 10 which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) Msp = constructor = dtype = f = 0.8 irl_mode = True k = 3 m = 20 n = 10 tol = 0.0001 which = 'SM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _____________________ test_svdp[SM-True-float32-csc_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = True k = 3 m = 20 n = 10 which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) Msp = constructor = dtype = f = 0.8 irl_mode = True k = 3 m = 20 n = 10 tol = 0.0001 which = 'SM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _______________________ test_svdp[SM-True-float64-array] _______________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = True k = 3 m = 20 n = 10 which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) Msp = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) constructor = dtype = f = 0.8 irl_mode = True k = 3 m = 20 n = 10 tol = 1e-08 which = 'SM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _____________________ test_svdp[SM-True-float64-csr_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = True k = 3 m = 20 n = 10 which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) Msp = constructor = dtype = f = 0.8 irl_mode = True k = 3 m = 20 n = 10 tol = 1e-08 which = 'SM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 _____________________ test_svdp[SM-True-float64-csc_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:89: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = True k = 3 m = 20 n = 10 which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) Msp = constructor = dtype = f = 0.8 irl_mode = True k = 3 m = 20 n = 10 tol = 1e-08 which = 'SM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 ______________________ test_svdp[SM-False-float32-array] _______________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:87: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = False k = 3 m = 20 message = "`which`='SM' requires irl_mode=True" n = 10 which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) Msp = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) constructor = dtype = f = 0.8 irl_mode = False k = 3 m = 20 n = 10 tol = 0.0001 which = 'SM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 During handling of the above exception, another exception occurred: lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:86: in test_svdp with assert_raises(ValueError, match=message): ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E AssertionError: Regex pattern did not match. E Regex: "`which`='SM' requires irl_mode=True" E Input: 'SVD did not converge' ctor = dtype = irl = False k = 3 m = 20 message = "`which`='SM' requires irl_mode=True" n = 10 which = 'SM' ____________________ test_svdp[SM-False-float32-csr_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:87: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = False k = 3 m = 20 message = "`which`='SM' requires irl_mode=True" n = 10 which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) Msp = constructor = dtype = f = 0.8 irl_mode = False k = 3 m = 20 n = 10 tol = 0.0001 which = 'SM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 During handling of the above exception, another exception occurred: lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:86: in test_svdp with assert_raises(ValueError, match=message): ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E AssertionError: Regex pattern did not match. E Regex: "`which`='SM' requires irl_mode=True" E Input: 'SVD did not converge' ctor = dtype = irl = False k = 3 m = 20 message = "`which`='SM' requires irl_mode=True" n = 10 which = 'SM' ____________________ test_svdp[SM-False-float32-csc_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:87: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = False k = 3 m = 20 message = "`which`='SM' requires irl_mode=True" n = 10 which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) Msp = constructor = dtype = f = 0.8 irl_mode = False k = 3 m = 20 n = 10 tol = 0.0001 which = 'SM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.1518936 , 1.0276338 , 0.44883183, -0.763452 , 1.4589411 , -0.62412786, 0. .... , 2.395508 , -0.09541191, -2.7258537 , -2.4564352 , -4.4197083 , -0.6558337 ]], dtype=float32) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 During handling of the above exception, another exception occurred: lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:86: in test_svdp with assert_raises(ValueError, match=message): ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E AssertionError: Regex pattern did not match. E Regex: "`which`='SM' requires irl_mode=True" E Input: 'SVD did not converge' ctor = dtype = irl = False k = 3 m = 20 message = "`which`='SM' requires irl_mode=True" n = 10 which = 'SM' ______________________ test_svdp[SM-False-float64-array] _______________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:87: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = False k = 3 m = 20 message = "`which`='SM' requires irl_mode=True" n = 10 which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) Msp = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) constructor = dtype = f = 0.8 irl_mode = False k = 3 m = 20 n = 10 tol = 1e-08 which = 'SM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 During handling of the above exception, another exception occurred: lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:86: in test_svdp with assert_raises(ValueError, match=message): ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E AssertionError: Regex pattern did not match. E Regex: "`which`='SM' requires irl_mode=True" E Input: 'SVD did not converge' ctor = dtype = irl = False k = 3 m = 20 message = "`which`='SM' requires irl_mode=True" n = 10 which = 'SM' ____________________ test_svdp[SM-False-float64-csr_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:87: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = False k = 3 m = 20 message = "`which`='SM' requires irl_mode=True" n = 10 which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) Msp = constructor = dtype = f = 0.8 irl_mode = False k = 3 m = 20 n = 10 tol = 1e-08 which = 'SM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 During handling of the above exception, another exception occurred: lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:86: in test_svdp with assert_raises(ValueError, match=message): ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E AssertionError: Regex pattern did not match. E Regex: "`which`='SM' requires irl_mode=True" E Input: 'SVD did not converge' ctor = dtype = irl = False k = 3 m = 20 message = "`which`='SM' requires irl_mode=True" n = 10 which = 'SM' ____________________ test_svdp[SM-False-float64-csc_array] _____________________ lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:87: in test_svdp check_svdp(n, m, ctor, dtype, k, irl, which) ctor = dtype = irl = False k = 3 m = 20 message = "`which`='SM' requires irl_mode=True" n = 10 which = 'SM' lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:59: in check_svdp u1, sigma1, vt1 = np.linalg.svd(M, full_matrices=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ M = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) Msp = constructor = dtype = f = 0.8 irl_mode = False k = 3 m = 20 n = 10 tol = 1e-08 which = 'SM' /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1862: in svd u, s, vh = gufunc(a, signature=signature) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ a = array([[ 0.48813504, 2.15189366, 1.02763376, 0.44883183, -0.76345201, 1.45894113, -0.62412789, 0. ...6251, -3.13806994, 0. , 2.39550795, -0.09541191, -2.72585372, -2.45643518, -4.4197084 , -0.65583374]]) compute_uv = True full_matrices = False gufunc = hermitian = False m = 10 n = 20 np = result_t = signature = 'd->ddd' t = wrap = /usr/lib/python3.12/site-packages/numpy/linalg/_linalg.py:172: in _raise_linalgerror_svd_nonconvergence raise LinAlgError("SVD did not converge") E numpy.linalg.LinAlgError: SVD did not converge err = 'invalid value' flag = 12 During handling of the above exception, another exception occurred: lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py:86: in test_svdp with assert_raises(ValueError, match=message): ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E AssertionError: Regex pattern did not match. E Regex: "`which`='SM' requires irl_mode=True" E Input: 'SVD did not converge' ctor = dtype = irl = False k = 3 m = 20 message = "`which`='SM' requires irl_mode=True" n = 10 which = 'SM' _________________________________ test_cython __________________________________ lib/python3.12/site-packages/scipy/special/tests/test_extending.py:23: in test_cython extensions, extensions_cpp = _test_cython_extension(tmp_path, srcdir) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ srcdir = '/home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.testenv/lib/python3.12/site-packages/scipy/special' tmp_path = PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython2') lib/python3.12/site-packages/scipy/_lib/_testutils.py:320: in _test_cython_extension subprocess.check_call(["meson", "compile", "-vv"], cwd=target_dir) build_dir = PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython2/140735883390096/special/tests/_cython_examples') f = <_io.TextIOWrapper name='/tmp/pytest-of-buildozer/pytest-53/test_cython2/140735883390096/special/tests/_cython_examples/interpreter-native-file.ini' mode='w' encoding='UTF-8'> mod_name = 'special' native_file = '/tmp/pytest-of-buildozer/pytest-53/test_cython2/140735883390096/special/tests/_cython_examples/interpreter-native-file.ini' pytest = srcdir = '/home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.testenv/lib/python3.12/site-packages/scipy/special' target_dir = PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython2/140735883390096/special/tests/_cython_examples/build') tmp_path = PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython2/140735883390096') /usr/lib/python3.12/subprocess.py:413: in check_call raise CalledProcessError(retcode, cmd) E subprocess.CalledProcessError: Command '['meson', 'compile', '-vv']' returned non-zero exit status 1. cmd = ['meson', 'compile', '-vv'] kwargs = {'cwd': PosixPath('/tmp/pytest-of-buildozer/pytest-53/test_cython2/140735883390096/special/tests/_cython_examples/build')} popenargs = (['meson', 'compile', '-vv'],) retcode = 1 ----------------------------- Captured stdout call ----------------------------- 1.9.1 The Meson build system Version: 1.9.1 Source dir: /tmp/pytest-of-buildozer/pytest-53/test_cython2/140735883390096/special/tests/_cython_examples Build dir: /tmp/pytest-of-buildozer/pytest-53/test_cython2/140735883390096/special/tests/_cython_examples/build Build type: native build Project name: random-build-examples Project version: undefined C compiler for the host machine: cc (gcc 15.2.0 "cc (Alpine 15.2.0) 15.2.0") C linker for the host machine: cc ld.bfd 2.45 C++ compiler for the host machine: c++ (gcc 15.2.0 "c++ (Alpine 15.2.0) 15.2.0") C++ linker for the host machine: c++ ld.bfd 2.45 Cython compiler for the host machine: cython (cython 3.1.6) Host machine cpu family: ppc64 Host machine cpu: ppc64le Program python found: YES (/home/buildozer/aports/community/py3-scipy/src/scipy-1.16.3/.testenv/bin/python) Found pkg-config: YES (/usr/bin/pkg-config) 2.5.1 Run-time dependency python found: YES 3.12 Build targets in project: 3 random-build-examples undefined User defined options Native files: /tmp/pytest-of-buildozer/pytest-53/test_cython2/140735883390096/special/tests/_cython_examples/interpreter-native-file.ini Found ninja-1.9 at /usr/bin/ninja [1/7] /usr/bin/meson --internal copy ../extending.pyx extending_cpp.pyx [2/7] cython -M --fast-fail -3 -Xfreethreading_compatible=True /tmp/pytest-of-buildozer/pytest-53/test_cython2/140735883390096/special/tests/_cython_examples/extending.pyx -o extending.cpython-312-powerpc64le-linux-musl.so.p/extending.pyx.c [3/7] cython -M --fast-fail -3 --cplus -Xfreethreading_compatible=True extending_cpp.pyx -o extending_cpp.cpython-312-powerpc64le-linux-musl.so.p/extending_cpp.pyx.cpp Error compiling Cython file: ------------------------------------------------------------ ... #!/usr/bin/env python3 #cython: language_level=3 #cython: boundscheck=False #cython: wraparound=False from scipy.special.cython_special cimport beta, gamma ^ ------------------------------------------------------------ /tmp/pytest-of-buildozer/pytest-53/test_cython2/140735883390096/special/tests/_cython_examples/extending.pyx:6:0: 'scipy/special/cython_special.pxd' not found Error compiling Cython file: ------------------------------------------------------------ ... #!/usr/bin/env python3 #cython: language_level=3 #cython: boundscheck=False #cython: wraparound=False from scipy.special.cython_special cimport beta, gamma ^ ------------------------------------------------------------ extending_cpp.pyx:6:0: 'scipy/special/cython_special.pxd' not found INFO: autodetecting backend as ninja INFO: calculating backend command to run: /usr/bin/ninja -v ----------------------------- Captured stderr call ----------------------------- ninja: job failed: cython -M --fast-fail -3 -Xfreethreading_compatible=True /tmp/pytest-of-buildozer/pytest-53/test_cython2/140735883390096/special/tests/_cython_examples/extending.pyx -o extending.cpython-312-powerpc64le-linux-musl.so.p/extending.pyx.c ninja: job failed: cython -M --fast-fail -3 --cplus -Xfreethreading_compatible=True extending_cpp.pyx -o extending_cpp.cpython-312-powerpc64le-linux-musl.so.p/extending_cpp.pyx.cpp ninja: subcommands failed _____________________________ test_marginal_1_axis _____________________________ lib/python3.12/site-packages/scipy/stats/tests/test_kdeoth.py:491: in test_marginal_1_axis assert_allclose(pdf, ref, rtol=1e-6) E AssertionError: E Not equal to tolerance rtol=1e-06, atol=0 E E Mismatched elements: 3 / 3 (100%) E Max absolute difference among violations: 2.0625326e-07 E Max relative difference among violations: 0.0473992 E ACTUAL: array([1.439410e-05, 1.769699e-05, 4.145155e-06]) E DESIRED: array([1.427864e-05, 1.754312e-05, 4.351408e-06]) dataset = array([[-8.73054956e-01, 1.00934323e+00, 1.44545465e+00, 7.07989566e-01, -1.42140600e-01, -1.81679425e-01, ... 4.93289300e-01, 3.94341478e-01, 3.89180995e-01, 3.82390373e-01, 4.65779599e-02, 1.42091505e-01]]) dimensions = array([1, 2, 3, 4, 5, 6, 7, 8, 9]) kde = marginal = marginal_pdf = .marginal_pdf at 0x7ffb514187c0> marginal_pdf_single = .marginal_pdf_single at 0x7ffb51418a40> n_data = 50 n_dim = 10 pdf = array([1.43941039e-05, 1.76969943e-05, 4.14515511e-06]) points = array([[ 0.36662314, -0.54532751, -2.01418078], [-0.51662321, 0.02059488, -1.58271746], [-0.9840509 , -...1754886, 0.3813976 ], [-0.52473095, -1.11873771, -0.11129915], [-1.14743507, -0.54737004, 0.33012987]]) ref = array([1.42786362e-05, 1.75431165e-05, 4.35140837e-06]) rng = Generator(PCG64) at 0x7FFB513E8200 _________________ TestMultivariateNormal.test_degenerate_array _________________ lib/python3.12/site-packages/scipy/stats/tests/test_multivariate.py:677: in test_degenerate_array X = multivariate_normal.rvs(mean=mn, cov=vr, size=k) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ X = array([[ 1.59936215e-02, -1.26350899e-01, -2.62722789e-04, 2.43554358e-01, -4.65752406e-01], [ 1.13376...4.43945831e-01], [ 5.08470967e-02, -4.01696160e-01, -8.35251158e-04, 7.74310668e-01, -1.48072511e+00]]) k = 10 logpdf = array([-1.06517076, -0.99242274, -1.18098957, -1.09194387, -1.81633793, -1.0043905 , -1.16263055, -0.95768275, -1.0517981 , -2.39696344]) mn = array([0., 0., 0., 0., 0.]) n = 5 pdf = array([0.344669 , 0.37067755, 0.30697482, 0.33556357, 0.16262019, 0.36626781, 0.31266262, 0.38378117, 0.34930909, 0.09099384]) r = 2 self = u = array([[-0.62849873, -0.59052465], [ 0.2357704 , -0.49338461], [-0.37976327, -0.09335542], [-0.58614322, 0.24939942], [-0.24822901, 0.58046271]]) vr = array([[ 0.74373002, 0.14317438, 0.29380941, 0.22111376, -0.18676592], [ 0.14317438, 0.29901606, -0.0434768...506, 0.19931288, 0.40576395, 0.29026482], [-0.18676592, -0.34491642, 0.04007892, 0.29026482, 0.3985546 ]]) lib/python3.12/site-packages/scipy/stats/_multivariate.py:777: in rvs out = random_state.multivariate_normal(mean, cov, size) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ cov = array([[ 0.74373002, 0.14317438, 0.29380941, 0.22111376, -0.18676592], [ 0.14317438, 0.29901606, -0.0434768...506, 0.19931288, 0.40576395, 0.29026482], [-0.18676592, -0.34491642, 0.04007892, 0.29026482, 0.3985546 ]]) cov_object = dim = 5 mean = array([0., 0., 0., 0., 0.]) random_state = RandomState(MT19937) at 0x7FFB9218DA40 self = size = 10 numpy/random/mtrand.pyx:4260: in numpy.random.mtrand.RandomState.multivariate_normal ??? E RuntimeWarning: covariance is not symmetric positive-semidefinite. =========================== short test summary info ============================ FAILED lib/python3.12/site-packages/scipy/cluster/tests/test_vq.py::TestKMeans::test_kmeans2_high_dim[numpy] FAILED lib/python3.12/site-packages/scipy/cluster/tests/test_vq.py::TestKMeans::test_krandinit[numpy] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::test_dtype_preservation[float64-AAA] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_exp FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_tan FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_infinite_data FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_nan FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_residues FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_basic_functions[-5e-13-1e-07] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_basic_functions[-2e-13-1e-07_0] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_basic_functions[-3.5e-12-0] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_basic_functions[-2e-12-0] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_basic_functions[-1e-14-0] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_basic_functions[-2e-13-1e-07_1] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_basic_functions[-1e-06-1e-07] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bary_rational.py::TestAAA::test_poles_zeros_residues FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bsplines.py::TestLSQ::test_lstsq[norm-eq] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_bsplines.py::TestLSQ::test_lstsq[qr] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py::test_conditionally_positive_definite[gaussian] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py::test_conditionally_positive_definite[inverse_multiquadric] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py::test_conditionally_positive_definite[inverse_quadratic] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py::test_conditionally_positive_definite[linear] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py::test_conditionally_positive_definite[multiquadric] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py::TestRBFInterpolatorNeighborsNone::test_smoothing_limit_2d FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_rbfinterp.py::TestRBFInterpolatorNeighborsInf::test_smoothing_limit_2d FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_rgi.py::TestRegularGridInterpolator::test_nonscalar_values[cubic] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_rgi.py::TestInterpN::test_nonscalar_values[cubic] FAILED lib/python3.12/site-packages/scipy/interpolate/tests/test_rgi.py::TestInterpN::test_matrix_input[quintic] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-gelsd-20-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-gelsd-20-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-gelsd-200-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-gelsd-200-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-gelss-20-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-gelss-20-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-gelss-200-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-gelss-200-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-gelsy-200-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-gelsy-200-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-None-20-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-None-20-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-None-200-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[True-None-200-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-gelsd-20-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-gelsd-20-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-gelsd-200-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-gelsd-200-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-gelss-20-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-gelss-20-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-gelss-200-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-gelss-200-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-gelsy-200-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-gelsy-200-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-None-20-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-None-20-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-None-200-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_exact[False-None-200-longdouble] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestLstsq::test_random_overdet FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_basic.py::TestPinv::test_atol_rtol FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_batch.py::TestBatch::test_two_generic_matrix_inputs[float64-fun_n_out5] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_batch.py::TestBatch::test_cossin[float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_batch.py::TestBatch::test_are[float32-solve_continuous_are] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_batch.py::TestBatch::test_are[float64-solve_continuous_are] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestEigh::test_various_drivers_generalized[gv-1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestEigh::test_various_drivers_generalized[gv-2] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestEigh::test_various_drivers_generalized[gv-3] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestEigh::test_various_drivers_generalized[gvd-1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestEigh::test_various_drivers_generalized[gvd-2] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestEigh::test_various_drivers_generalized[gvd-3] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestEigh::test_various_drivers_generalized[gvx-1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestEigh::test_various_drivers_generalized[gvx-2] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestEigh::test_various_drivers_generalized[gvx-3] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestSVD_GESDD::test_random FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestSVD_GESVD::test_random FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestRQ::test_random FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestRQ::test_random_tall FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestRQ::test_random_trap FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestRQ::test_random_trap_economic FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestOrdQZWorkspaceSize::test_decompose FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::test_orth FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestNullSpace::test_null_space FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestNullSpace::test_null_space_options[gesdd-True-True] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestNullSpace::test_null_space_options[gesdd-True-False] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestNullSpace::test_null_space_options[gesdd-False-True] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestNullSpace::test_null_space_options[gesdd-False-False] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestNullSpace::test_null_space_options[gesvd-True-True] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestNullSpace::test_null_space_options[gesvd-True-False] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestNullSpace::test_null_space_options[gesvd-False-True] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp.py::TestNullSpace::test_null_space_options[gesvd-False-False] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cholesky.py::TestCholesky::test_random FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py::test_cossin[True-40-12-20-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py::test_cossin[True-40-30-1-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py::test_cossin[True-40-1-30-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py::test_cossin[True-100-50-1-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py::test_cossin[True-100-50-50-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py::test_cossin[False-40-12-20-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py::test_cossin[False-40-30-1-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py::test_cossin[False-40-1-30-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py::test_cossin[False-100-50-1-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_cossin.py::test_cossin[False-100-50-50-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_ldl.py::test_ldl_type_size_combinations_real[150-float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py::TestQRupdate_d::test_non_unit_strides_economic_rank_p FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py::TestQRupdate_d::test_non_itemsize_strides_economic_rank_p FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_decomp_update.py::test_form_qTu FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_extending.py::test_cython FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_real_id_fixed_precision[float64-False-False] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_real_id_fixed_precision[float64-True-False] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_real_id_fixed_precision[float64-True-True] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_svd_fixed_precision[float64-False-False] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_svd_fixed_precision[float64-True-False] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_svd_fixed_precision[float64-True-True] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_svd_fixed_rank[float64-False-False] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_svd_fixed_rank[float64-True-False] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_svd_fixed_rank[float64-True-True] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_id_to_svd[float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_estimate_spectral_norm[float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_rank_estimates_array[float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_interpolative.py::TestInterpolativeDecomposition::test_rank_estimates_lin_op[float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gglse FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_sygst FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_tzrzf FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_ormrz_unmrz FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_pftrf FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_pftri FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_pftrs FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_pstrf FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_pstf2 FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-2-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-2-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-2-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-2-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-2-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-2-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-2-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-2-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-2-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-2-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-2-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-2-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-3-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-3-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-3-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-3-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-3-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-3-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-3-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-3-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-3-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-3-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-3-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-0-3-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-1-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-2-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-2-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-2-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-2-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-2-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-2-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-2-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-2-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-2-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-2-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-2-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-2-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-3-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-3-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-3-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-3-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-3-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-3-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-3-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-3-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-3-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-3-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-3-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-2-3-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-2-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-2-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-2-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-2-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-2-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-2-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-2-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-2-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-2-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-2-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-2-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-2-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-3-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-3-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-3-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-3-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-3-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-3-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-3-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-3-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-3-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-3-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-3-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-0-3-3-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-2-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-2-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-2-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-2-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-2-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-2-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-2-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-2-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-2-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-2-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-2-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-2-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-3-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-3-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-3-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-3-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-3-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-3-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-3-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-3-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-3-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-3-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-3-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-0-3-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-1-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-2-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-2-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-2-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-2-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-2-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-2-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-2-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-2-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-2-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-2-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-2-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-2-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-3-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-3-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-3-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-3-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-3-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-3-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-3-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-3-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-3-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-3-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-3-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-2-3-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-2-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-2-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-2-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-2-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-2-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-2-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-2-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-2-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-2-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-2-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-2-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-2-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-3-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-3-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-3-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-3-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-3-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-3-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-3-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-3-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-3-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-3-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-3-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[0-1-3-3-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-2-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-2-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-2-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-2-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-2-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-2-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-2-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-2-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-2-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-2-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-2-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-2-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-3-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-3-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-3-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-3-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-3-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-3-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-3-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-3-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-3-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-3-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-3-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-0-3-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-1-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-2-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-2-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-2-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-2-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-2-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-2-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-2-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-2-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-2-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-2-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-2-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-2-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-3-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-3-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-3-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-3-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-3-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-3-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-3-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-3-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-3-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-3-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-3-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-2-3-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-2-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-2-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-2-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-2-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-2-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-2-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-2-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-2-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-2-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-2-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-2-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-2-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-3-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-3-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-3-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-3-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-3-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-3-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-3-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-3-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-3-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-3-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-3-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-0-3-3-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-2-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-2-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-2-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-2-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-2-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-2-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-2-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-2-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-2-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-2-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-2-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-2-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-3-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-3-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-3-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-3-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-3-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-3-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-3-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-3-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-3-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-3-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-3-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-0-3-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-1-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-2-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-2-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-2-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-2-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-2-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-2-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-2-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-2-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-2-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-2-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-2-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-2-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-3-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-3-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-3-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-3-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-3-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-3-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-3-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-3-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-3-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-3-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-3-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-2-3-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-0-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-0-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-0-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-0-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-0-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-0-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-0-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-0-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-0-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-0-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-0-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-0-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-1-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-1-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-1-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-1-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-1-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-1-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-1-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-1-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-1-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-1-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-1-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-1-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-2-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-2-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-2-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-2-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-2-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-2-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-2-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-2-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-2-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-2-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-2-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-2-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-3-0-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-3-0-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-3-1-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-3-1-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-3-2-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-3-2-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-3-3-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-3-3-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-3-4-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-3-4-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-3-5-float64-size0] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_gejsv_general[1-1-3-3-5-float64-size1] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_orcsd_uncsd[float64] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_lapack.py::test_pptrs_pptri_pptrf_ppsv_ppcon[float64-True] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_matfuncs.py::TestExpmConditionNumber::test_expm_cond_fuzz FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_procrustes.py::test_orthogonal_procrustes FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py::TestSolveContinuousAre::test_solve_continuous_are[5-case5] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py::TestSolveContinuousAre::test_solve_continuous_are[12-case12] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py::TestSolveContinuousAre::test_solve_continuous_are[14-case14] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py::TestSolveContinuousAre::test_solve_continuous_are[15-case15] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py::TestSolveContinuousAre::test_solve_continuous_are[17-case17] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py::TestSolveDiscreteAre::test_solve_discrete_are[13-case13] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py::TestSolveDiscreteAre::test_solve_discrete_are[18-case18] FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py::test_solve_generalized_continuous_are FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_solvers.py::test_solve_generalized_discrete_are FAILED lib/python3.12/site-packages/scipy/linalg/tests/test_special_matrices.py::TestInvHilbert::test_inverse FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRSVD::test_infeasible_m_gt_n FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRSVD::test_infeasible_m_eq_n FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRSVD::test_infeasible_m_lt_n FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRSVD::test_m_gt_n FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRSVD::test_m_lt_n_rank_deficient FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRSVD::test_dense1 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRSVD::test_dense2 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRSVD::test_dense3 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRSVD::test_m_lt_n_sparse FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRSVD::test_m_eq_n_sparse FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRSVD::test_magic_square FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRSVD::test_magic_square2 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRPivotDense::test_dense1 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRPivotDense::test_m_lt_n_sparse FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRPivotDense::test_m_eq_n_sparse FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRPivotDense::test_magic_square2 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRID::test_no_redundancy FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRID::test_infeasible_m_gt_n FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRID::test_infeasible_m_eq_n FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRID::test_infeasible_m_lt_n FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRID::test_m_gt_n FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRID::test_m_lt_n_rank_deficient FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRID::test_dense3 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRID::test_m_lt_n_sparse FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRID::test_m_eq_n_sparse FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRID::test_magic_square FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRID::test_magic_square2 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRPivotSparse::test_dense1 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRPivotSparse::test_m_lt_n_sparse FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRPivotSparse::test_m_eq_n_sparse FAILED lib/python3.12/site-packages/scipy/optimize/tests/test__remove_redundancy.py::TestRRPivotSparse::test_magic_square2 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_cobyla.py::TestBounds::test_basic FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_constraint_conversion.py::TestNewToOldCobyla::test_list_of_problems FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_extending.py::test_cython FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py::TestDogbox::test_solver_selection FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py::TestDogbox::test_numerical_jac FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py::TestDogbox::test_with_bounds FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py::TestDogbox::test_bvp FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py::TestTRF::test_solver_selection FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py::TestTRF::test_numerical_jac FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py::TestTRF::test_with_bounds FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_least_squares.py::TestTRF::test_bvp FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py::TestLinprogIPDense::test_remove_redundancy_infeasibility FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py::TestLinprogIPSparse::test_remove_redundancy_infeasibility FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py::TestRRSVD::test_RR_infeasibility FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py::TestRRSVD::test_bug_7044 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py::TestRRPivot::test_RR_infeasibility FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py::TestRRID::test_RR_infeasibility FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py::TestRRID::test_bug_10349 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py::TestRRID::test_bug_7044 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_linprog.py::TestRRID::test_enzo_example_b FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_minpack.py::TestCurveFit::test_curvefit_omitnan[2] FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_minpack.py::TestCurveFit::test_dtypes2 FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_nonlin.py::TestLinear::test_krylov FAILED lib/python3.12/site-packages/scipy/optimize/tests/test_nonlin.py::TestJacobianDotSolve::test_krylov FAILED lib/python3.12/site-packages/scipy/signal/tests/test_fir_filter_design.py::TestFirls::test_rank_deficient[numpy] FAILED lib/python3.12/site-packages/scipy/signal/tests/test_ltisys.py::TestPlacePoles::test_complex FAILED lib/python3.12/site-packages/scipy/signal/tests/test_savitzky_golay.py::test_sg_coeffs_trivial FAILED lib/python3.12/site-packages/scipy/signal/tests/test_savitzky_golay.py::test_sg_coeffs_compare FAILED lib/python3.12/site-packages/scipy/signal/tests/test_savitzky_golay.py::test_sg_coeffs_exact FAILED lib/python3.12/site-packages/scipy/signal/tests/test_savitzky_golay.py::test_sg_coeffs_large FAILED lib/python3.12/site-packages/scipy/signal/tests/test_signaltools.py::test_filtfilt_gust[numpy] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py::test_MikotaPair[128] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py::test_MikotaPair[256] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py::test_MikotaPair[512] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py::test_MikotaPair[1024] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py::test_MikotaPair[2048] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svds_parameter_k_which[LM-3] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svds_parameter_k_which[LM-5] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svds_parameter_k_which[SM-3] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svds_parameter_k_which[SM-5] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svds_parameter_tol FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_v0 FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_rng FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_rng_2 FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_rng_3 FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_return_singular_vectors[shape0-True] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_return_singular_vectors[shape0-False] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_return_singular_vectors[shape0-u] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_return_singular_vectors[shape0-vh] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_return_singular_vectors[shape1-True] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_return_singular_vectors[shape1-False] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_return_singular_vectors[shape1-u] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_return_singular_vectors[shape1-vh] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_return_singular_vectors[shape2-True] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_return_singular_vectors[shape2-False] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_return_singular_vectors[shape2-u] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_return_singular_vectors[shape2-vh] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svd_linop FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_small_sigma[float-shape0] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_small_sigma[float-shape1] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_small_sigma[float-shape2] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_small_sigma2[float] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svds_input_validation_ncv_1[4] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_ARPACK::test_svds_input_validation_ncv_1[5_0] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svds_parameter_k_which[LM-3] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svds_parameter_k_which[LM-5] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svds_parameter_k_which[SM-3] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svds_parameter_k_which[SM-5] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svds_parameter_tol FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_v0 FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_rng FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_rng_2 FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_rng_3 FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_return_singular_vectors[shape0-True] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_return_singular_vectors[shape0-False] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_return_singular_vectors[shape0-u] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_return_singular_vectors[shape0-vh] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_return_singular_vectors[shape1-True] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_return_singular_vectors[shape1-False] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_return_singular_vectors[shape1-u] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_return_singular_vectors[shape1-vh] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_return_singular_vectors[shape2-True] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_return_singular_vectors[shape2-False] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_return_singular_vectors[shape2-u] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_return_singular_vectors[shape2-vh] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_svd_linop FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_small_sigma[float-shape0] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_small_sigma[float-shape1] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_small_sigma[float-shape2] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_LOBPCG::test_small_sigma2[float] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svds_parameter_k_which[LM-3] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svds_parameter_k_which[LM-5] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svds_parameter_k_which[SM-3] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svds_parameter_k_which[SM-5] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svds_parameter_tol FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_v0 FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_rng FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_rng_2 FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_rng_3 FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_maxiter FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_return_singular_vectors[shape0-True] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_return_singular_vectors[shape0-False] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_return_singular_vectors[shape0-u] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_return_singular_vectors[shape0-vh] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_return_singular_vectors[shape1-True] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_return_singular_vectors[shape1-False] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_return_singular_vectors[shape1-u] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_return_singular_vectors[shape1-vh] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_return_singular_vectors[shape2-True] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_return_singular_vectors[shape2-False] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_return_singular_vectors[shape2-u] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_return_singular_vectors[shape2-vh] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_simple[asarray-False-True-1-A0] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_simple[asarray-False-True-1-A1] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_simple[asarray-True-True-1-A1] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_simple[csc_array-False-True-1-A0] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_simple[csc_array-False-True-1-A1] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_simple[csc_array-True-True-1-A1] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_simple[aslinearoperator-False-True-1-A0] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_simple[aslinearoperator-False-True-1-A1] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_svd_simple[aslinearoperator-True-True-1-A1] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_small_sigma[float-shape0] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_small_sigma[float-shape1] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_small_sigma[float-shape2] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py::Test_SVDS_PROPACK::test_small_sigma2[float] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py::TestGCROTMK::test_arnoldi FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py::TestGCROTMK::test_truncate FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_convergence[poisson1d-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_precond_dummy[poisson1d-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_convergence[poisson1d-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_precond_dummy[poisson1d-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_convergence[poisson1d-F-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_precond_dummy[poisson1d-F-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_convergence[poisson1d-F-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_precond_dummy[poisson1d-F-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_convergence[neg-poisson1d-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_precond_dummy[neg-poisson1d-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_convergence[neg-poisson1d-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_precond_dummy[neg-poisson1d-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_convergence[neg-poisson1d-F-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_precond_dummy[neg-poisson1d-F-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_convergence[neg-poisson1d-F-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_precond_dummy[neg-poisson1d-F-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_convergence[poisson2d-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_precond_dummy[poisson2d-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_convergence[poisson2d-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_precond_dummy[poisson2d-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_convergence[poisson2d-F-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_precond_dummy[poisson2d-F-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_convergence[poisson2d-F-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_precond_dummy[poisson2d-F-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_x0_equals_Mb[poisson1d-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_x0_equals_Mb[poisson1d-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_x0_equals_Mb[poisson1d-F-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_x0_equals_Mb[poisson1d-F-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_x0_equals_Mb[neg-poisson1d-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_x0_equals_Mb[neg-poisson1d-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_x0_equals_Mb[neg-poisson1d-F-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_x0_equals_Mb[neg-poisson1d-F-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_x0_equals_Mb[poisson2d-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_x0_equals_Mb[poisson2d-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_x0_equals_Mb[poisson2d-F-gcrotmk] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_iterative.py::test_x0_equals_Mb[poisson2d-F-lgmres] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lgmres.py::TestLGMRES::test_preconditioner FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lgmres.py::TestLGMRES::test_outer_v FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lgmres.py::TestLGMRES::test_arnoldi FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lgmres.py::TestLGMRES::test_breakdown_underdetermined FAILED lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests/test_lsqr.py::test_lsqr_basic FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[LM-True-float32-array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[LM-True-float32-csr_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[LM-True-float32-csc_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[LM-True-float64-array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[LM-True-float64-csr_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[LM-True-float64-csc_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[LM-False-float32-array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[LM-False-float32-csr_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[LM-False-float32-csc_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[LM-False-float64-array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[LM-False-float64-csr_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[LM-False-float64-csc_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[SM-True-float32-array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[SM-True-float32-csr_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[SM-True-float32-csc_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[SM-True-float64-array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[SM-True-float64-csr_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[SM-True-float64-csc_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[SM-False-float32-array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[SM-False-float32-csr_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[SM-False-float32-csc_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[SM-False-float64-array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[SM-False-float64-csr_array] FAILED lib/python3.12/site-packages/scipy/sparse/linalg/tests/test_propack.py::test_svdp[SM-False-float64-csc_array] FAILED lib/python3.12/site-packages/scipy/special/tests/test_extending.py::test_cython FAILED lib/python3.12/site-packages/scipy/stats/tests/test_kdeoth.py::test_marginal_1_axis FAILED lib/python3.12/site-packages/scipy/stats/tests/test_multivariate.py::TestMultivariateNormal::test_degenerate_array = 1038 failed, 77447 passed, 5232 skipped, 306 xfailed, 17 xpassed in 4301.33s (1:11:41) = parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value ** On entry to DLASCL parameter number 4 had an illegal value WARNING: Maximum dimension of Krylov subspace exceeded prior to convergence. Try increasing KMAX. neig = 0 >>> py3-scipy: Entering fakeroot... libfakeroot internal error: payload not recognized! >>> py3-scipy-tests*: Running split function tests... 'usr/lib/python3.12/site-packages/scipy/differentiate/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/differentiate/tests' 'usr/lib/python3.12/site-packages/scipy/sparse/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/sparse/tests' 'usr/lib/python3.12/site-packages/scipy/sparse/csgraph/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/sparse/csgraph/tests' 'usr/lib/python3.12/site-packages/scipy/sparse/linalg/_dsolve/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/sparse/linalg/_dsolve/tests' 'usr/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/arpack/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/arpack/tests' 'usr/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/tests' 'usr/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests' 'usr/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tests' 'usr/lib/python3.12/site-packages/scipy/sparse/linalg/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/sparse/linalg/tests' 'usr/lib/python3.12/site-packages/scipy/special/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/special/tests' 'usr/lib/python3.12/site-packages/scipy/datasets/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/datasets/tests' 'usr/lib/python3.12/site-packages/scipy/fft/_pocketfft/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/fft/_pocketfft/tests' 'usr/lib/python3.12/site-packages/scipy/fft/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/fft/tests' 'usr/lib/python3.12/site-packages/scipy/io/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/io/tests' 'usr/lib/python3.12/site-packages/scipy/io/_harwell_boeing/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/io/_harwell_boeing/tests' 'usr/lib/python3.12/site-packages/scipy/io/matlab/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/io/matlab/tests' 'usr/lib/python3.12/site-packages/scipy/io/arff/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/io/arff/tests' 'usr/lib/python3.12/site-packages/scipy/signal/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/signal/tests' 'usr/lib/python3.12/site-packages/scipy/odr/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/odr/tests' 'usr/lib/python3.12/site-packages/scipy/ndimage/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/ndimage/tests' 'usr/lib/python3.12/site-packages/scipy/spatial/transform/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/spatial/transform/tests' 'usr/lib/python3.12/site-packages/scipy/spatial/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/spatial/tests' 'usr/lib/python3.12/site-packages/scipy/integrate/_ivp/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/integrate/_ivp/tests' 'usr/lib/python3.12/site-packages/scipy/integrate/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/integrate/tests' 'usr/lib/python3.12/site-packages/scipy/interpolate/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/interpolate/tests' 'usr/lib/python3.12/site-packages/scipy/linalg/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/linalg/tests' 'usr/lib/python3.12/site-packages/scipy/fftpack/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/fftpack/tests' 'usr/lib/python3.12/site-packages/scipy/cluster/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/cluster/tests' 'usr/lib/python3.12/site-packages/scipy/optimize/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/optimize/tests' 'usr/lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/tests' 'usr/lib/python3.12/site-packages/scipy/constants/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/constants/tests' 'usr/lib/python3.12/site-packages/scipy/_lib/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/_lib/tests' 'usr/lib/python3.12/site-packages/scipy/stats/tests' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-tests/usr/lib/python3.12/site-packages/scipy/stats/tests' >>> py3-scipy-tests*: Preparing subpackage py3-scipy-tests... >>> py3-scipy-tests*: Stripping binaries >>> WARNING: py3-scipy-tests*: No arch specific binaries found so arch should probably be set to "noarch" >>> py3-scipy-tests*: Running postcheck for py3-scipy-tests >>> WARNING: py3-scipy-tests*: Found __pycache__ but package name doesn't end with -pyc >>> py3-scipy-pyc*: Running split function pyc... 'usr/lib/python3.12/site-packages/scipy/differentiate/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/differentiate/__pycache__' 'usr/lib/python3.12/site-packages/scipy/sparse/csgraph/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/sparse/csgraph/__pycache__' 'usr/lib/python3.12/site-packages/scipy/sparse/linalg/_dsolve/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/sparse/linalg/_dsolve/__pycache__' 'usr/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/arpack/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/arpack/__pycache__' 'usr/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/__pycache__' 'usr/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/__pycache__' 'usr/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/__pycache__' 'usr/lib/python3.12/site-packages/scipy/sparse/linalg/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/sparse/linalg/__pycache__' 'usr/lib/python3.12/site-packages/scipy/sparse/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/sparse/__pycache__' 'usr/lib/python3.12/site-packages/scipy/special/_precompute/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/special/_precompute/__pycache__' 'usr/lib/python3.12/site-packages/scipy/special/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/special/__pycache__' 'usr/lib/python3.12/site-packages/scipy/datasets/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/datasets/__pycache__' 'usr/lib/python3.12/site-packages/scipy/fft/_pocketfft/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/fft/_pocketfft/__pycache__' 'usr/lib/python3.12/site-packages/scipy/fft/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/fft/__pycache__' 'usr/lib/python3.12/site-packages/scipy/io/_harwell_boeing/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/io/_harwell_boeing/__pycache__' 'usr/lib/python3.12/site-packages/scipy/io/matlab/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/io/matlab/__pycache__' 'usr/lib/python3.12/site-packages/scipy/io/_fast_matrix_market/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/io/_fast_matrix_market/__pycache__' 'usr/lib/python3.12/site-packages/scipy/io/arff/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/io/arff/__pycache__' 'usr/lib/python3.12/site-packages/scipy/io/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/io/__pycache__' 'usr/lib/python3.12/site-packages/scipy/signal/windows/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/signal/windows/__pycache__' 'usr/lib/python3.12/site-packages/scipy/signal/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/signal/__pycache__' 'usr/lib/python3.12/site-packages/scipy/odr/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/odr/__pycache__' 'usr/lib/python3.12/site-packages/scipy/ndimage/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/ndimage/__pycache__' 'usr/lib/python3.12/site-packages/scipy/spatial/transform/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/spatial/transform/__pycache__' 'usr/lib/python3.12/site-packages/scipy/spatial/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/spatial/__pycache__' 'usr/lib/python3.12/site-packages/scipy/integrate/_ivp/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/integrate/_ivp/__pycache__' 'usr/lib/python3.12/site-packages/scipy/integrate/_rules/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/integrate/_rules/__pycache__' 'usr/lib/python3.12/site-packages/scipy/integrate/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/integrate/__pycache__' 'usr/lib/python3.12/site-packages/scipy/misc/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/misc/__pycache__' 'usr/lib/python3.12/site-packages/scipy/interpolate/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/interpolate/__pycache__' 'usr/lib/python3.12/site-packages/scipy/linalg/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/linalg/__pycache__' 'usr/lib/python3.12/site-packages/scipy/fftpack/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/fftpack/__pycache__' 'usr/lib/python3.12/site-packages/scipy/cluster/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/cluster/__pycache__' 'usr/lib/python3.12/site-packages/scipy/optimize/_highspy/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/optimize/_highspy/__pycache__' 'usr/lib/python3.12/site-packages/scipy/optimize/_trlib/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/optimize/_trlib/__pycache__' 'usr/lib/python3.12/site-packages/scipy/optimize/cython_optimize/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/optimize/cython_optimize/__pycache__' 'usr/lib/python3.12/site-packages/scipy/optimize/_lsq/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/optimize/_lsq/__pycache__' 'usr/lib/python3.12/site-packages/scipy/optimize/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/optimize/__pycache__' 'usr/lib/python3.12/site-packages/scipy/optimize/_shgo_lib/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/optimize/_shgo_lib/__pycache__' 'usr/lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/__pycache__' 'usr/lib/python3.12/site-packages/scipy/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/__pycache__' 'usr/lib/python3.12/site-packages/scipy/constants/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/constants/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/cobyqa/subsolvers/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/cobyqa/subsolvers/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/cobyqa/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/cobyqa/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/cobyqa/utils/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/cobyqa/utils/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/pyprima/common/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/pyprima/common/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/pyprima/cobyla/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/pyprima/cobyla/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/pyprima/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/pyprima/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/array_api_extra/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/array_api_extra/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/array_api_extra/_lib/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/array_api_extra/_lib/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/array_api_extra/_lib/_utils/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/array_api_extra/_lib/_utils/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/_uarray/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/_uarray/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/common/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/common/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/cupy/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/cupy/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/torch/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/torch/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/numpy/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/numpy/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/dask/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/dask/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/dask/array/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/array_api_compat/dask/array/__pycache__' 'usr/lib/python3.12/site-packages/scipy/_lib/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/_lib/__pycache__' 'usr/lib/python3.12/site-packages/scipy/stats/_levy_stable/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/stats/_levy_stable/__pycache__' 'usr/lib/python3.12/site-packages/scipy/stats/_rcont/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/stats/_rcont/__pycache__' 'usr/lib/python3.12/site-packages/scipy/stats/_unuran/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/stats/_unuran/__pycache__' 'usr/lib/python3.12/site-packages/scipy/stats/__pycache__' -> '/home/buildozer/aports/community/py3-scipy/pkg/py3-scipy-pyc/usr/lib/python3.12/site-packages/scipy/stats/__pycache__' >>> py3-scipy-pyc*: Preparing subpackage py3-scipy-pyc... >>> py3-scipy-pyc*: Running postcheck for py3-scipy-pyc >>> py3-scipy*: Running postcheck for py3-scipy >>> py3-scipy*: Preparing package py3-scipy... >>> py3-scipy*: Stripping binaries >>> py3-scipy*: Scanning shared objects >>> py3-scipy-tests*: Scanning shared objects >>> py3-scipy-pyc*: Tracing dependencies... python3~3.12 >>> py3-scipy-pyc*: Package size: 12.4 MB >>> py3-scipy-pyc*: Compressing data... >>> py3-scipy-pyc*: Create checksum... >>> py3-scipy-pyc*: Create py3-scipy-pyc-1.16.3-r0.apk >>> py3-scipy-tests*: Tracing dependencies... py3-pooch py3-numpy python3~3.12 >>> py3-scipy-tests*: Package size: 26.7 MB >>> py3-scipy-tests*: Compressing data... >>> py3-scipy-tests*: Create checksum... >>> py3-scipy-tests*: Create py3-scipy-tests-1.16.3-r0.apk >>> py3-scipy*: Tracing dependencies... py3-pooch py3-numpy python3~3.12 openblas so:libc.musl-ppc64le.so.1 so:libgcc_s.so.1 so:libgfortran.so.5 so:libstdc++.so.6 >>> py3-scipy*: Package size: 64.3 MB >>> py3-scipy*: Compressing data... >>> py3-scipy*: Create checksum... >>> py3-scipy*: Create py3-scipy-1.16.3-r0.apk >>> py3-scipy: Build complete at Sat, 15 Nov 2025 10:42:29 +0000 elapsed time 1h 19m 7s >>> py3-scipy: Cleaning up srcdir >>> py3-scipy: Cleaning up pkgdir >>> py3-scipy: Uninstalling dependencies... ( 1/85) Purging .makedepends-py3-scipy (20251115.092326) ( 2/85) Purging py3-pooch-pyc (1.8.2-r1) ( 3/85) Purging py3-pooch (1.8.2-r1) ( 4/85) Purging py3-platformdirs-pyc (4.5.0-r0) ( 5/85) Purging py3-platformdirs (4.5.0-r0) ( 6/85) Purging py3-requests-pyc (2.32.5-r0) ( 7/85) Purging py3-requests (2.32.5-r0) ( 8/85) Purging py3-certifi-pyc (2025.10.5-r0) ( 9/85) Purging py3-certifi (2025.10.5-r0) (10/85) Purging py3-charset-normalizer-pyc (3.4.4-r0) (11/85) Purging py3-charset-normalizer (3.4.4-r0) (12/85) Purging py3-idna-pyc (3.10-r0) (13/85) Purging py3-idna (3.10-r0) (14/85) Purging py3-urllib3-pyc (1.26.20-r0) (15/85) Purging py3-urllib3 (1.26.20-r0) (16/85) Purging cython-pyc (3.1.6-r0) (17/85) Purging cython (3.1.6-r0) (18/85) Purging openblas-dev (0.3.30-r0) (19/85) Purging gfortran (15.2.0-r2) (20/85) Purging libquadmath (15.2.0-r2) (21/85) Purging liblapack (0.3.30-r0) (22/85) Purging liblapacke (0.3.30-r0) (23/85) Purging py3-gpep517-pyc (19-r1) (24/85) Purging py3-gpep517 (19-r1) (25/85) Purging py3-installer-pyc (0.7.0-r2) (26/85) Purging py3-installer (0.7.0-r2) (27/85) Purging py3-meson-python-pyc (0.18.0-r1) (28/85) Purging py3-meson-python (0.18.0-r1) (29/85) Purging py3-pyproject-metadata-pyc (0.9.1-r0) (30/85) Purging py3-pyproject-metadata (0.9.1-r0) (31/85) Purging py3-numpy-dev (2.3.4-r0) (32/85) Purging py3-numpy-f2py (2.3.4-r0) (33/85) Purging py3-pybind11-dev (2.13.6-r0) (34/85) Purging py3-pybind11-pyc (2.13.6-r0) (35/85) Purging py3-pybind11 (2.13.6-r0) (36/85) Purging py3-setuptools-pyc (80.9.0-r2) (37/85) Purging py3-setuptools (80.9.0-r2) (38/85) Purging py3-wheel-pyc (0.46.1-r0) (39/85) Purging py3-wheel (0.46.1-r0) (40/85) Purging python3-dev (3.12.12-r0) (41/85) Purging pythran-pyc (0.18.0-r0) (42/85) Purging pythran (0.18.0-r0) (43/85) Purging py3-beniget-pyc (0.4.2-r0) (44/85) Purging py3-beniget (0.4.2-r0) (45/85) Purging py3-gast-pyc (0.6.0-r0) (46/85) Purging py3-gast (0.6.0-r0) (47/85) Purging py3-numpy-tests (2.3.4-r0) (48/85) Purging py3-numpy-pyc (2.3.4-r0) (49/85) Purging py3-numpy (2.3.4-r0) (50/85) Purging openblas (0.3.30-r0) (51/85) Purging py3-ply-pyc (3.11-r11) (52/85) Purging py3-ply (3.11-r11) (53/85) Purging py3-hypothesis-pyc (6.146.0-r0) (54/85) Purging py3-hypothesis (6.146.0-r0) (55/85) Purging py3-attrs-pyc (25.3.0-r0) (56/85) Purging py3-attrs (25.3.0-r0) (57/85) Purging py3-sortedcontainers-pyc (2.4.0-r5) (58/85) Purging py3-sortedcontainers (2.4.0-r5) (59/85) Purging py3-pytest-pyc (8.4.2-r1) (60/85) Purging py3-pytest (8.4.2-r1) (61/85) Purging py3-iniconfig-pyc (2.3.0-r0) (62/85) Purging py3-iniconfig (2.3.0-r0) (63/85) Purging py3-packaging-pyc (25.0-r0) (64/85) Purging py3-packaging (25.0-r0) (65/85) Purging py3-parsing-pyc (3.2.3-r0) (66/85) Purging py3-parsing (3.2.3-r0) (67/85) Purging py3-pluggy-pyc (1.6.0-r0) (68/85) Purging py3-pluggy (1.6.0-r0) (69/85) Purging py3-py-pyc (1.11.0-r4) (70/85) Purging py3-py (1.11.0-r4) (71/85) Purging py3-pygments-pyc (2.19.2-r0) (72/85) Purging py3-pygments (2.19.2-r0) (73/85) Purging abuild-meson (1.9.1-r0) (74/85) Purging meson-pyc (1.9.1-r0) (75/85) Purging meson (1.9.1-r0) (76/85) Purging samurai (1.2-r7) (77/85) Purging python3-pyc (3.12.12-r0) (78/85) Purging python3-pycache-pyc0 (3.12.12-r0) (79/85) Purging pyc (3.12.12-r0) (80/85) Purging python3 (3.12.12-r0) (81/85) Purging gdbm (1.26-r0) (82/85) Purging libgfortran (15.2.0-r2) (83/85) Purging libpanelw (6.5_p20251010-r0) (84/85) Purging mpdecimal (4.0.1-r0) (85/85) Purging xz-libs (5.8.1-r0) busybox-1.37.0-r25.trigger: Executing script... OK: 579 MiB in 151 packages >>> py3-scipy: Updating the community/ppc64le repository index... >>> py3-scipy: Signing the index...