
The Apriori Algorithm
Association rule learning,
the Apriori algorithm and

it’s implementation

tommyod @ github

Presentation: github.com/tommyod/Efficient-Apriori/blob/master/docs/presentation/apriori.pdf

December 28, 2018

1 / 28

Table of contents

A problem: learning association rules

A solution: the Apriori algorithm

A practical matter: writing a Python implementation

Summary and references

2 / 28

A problem: learning association rules

3 / 28

Motivating example

Example (Learning from transactions)

Consider the following set of transactions.

{eggs, bread, jam, bacon}
{apples, eggs, bacon}

{bacon, bread}
{ice cream, bread, bacon}

What interesting information can we infer from this data?
Examples:
• The itemsets {bacon, bread} and {bacon, eggs} often appear in the

transactions, with counts 3 and 2, respectively.

• The rule {bread} ⇒ {bacon} is meaningful in the sense that
P(bacon|bread) = 1.

4 / 28

Formal problem statement

Problem

Given a database T = {t1, t2, . . . , tm}, where the ti are transactions, and a set of
items I = {i1, i2, . . . , in}, learn meaningful rules X ⇒ Y , where X ,Y ⊂ I .

To accomplish this, we need measures of the meaningfulness of association rules.

5 / 28

Properties of association rules

Definition (Support)

The support of an association rule X ⇒ Y is the frequency of which X ∪ Y
appears in the transactions T , i.e. support(X ⇒ Y) := P(X ,Y).

• No reason to distinguish between the support of an itemset, and the
support of an association rule, i.e. support(X ⇒ Y) = support(X ∪ Y).

• An important property of support is that
support({eggs, bacon}) ≤ support({bacon}).

More formally, we observe that:

Theorem (Downward closure property of sets)

If s ⊂ S , then support(s) ≥ support(S).

6 / 28

Properties of association rules

Definition (Confidence)

The confidence of the association rule X ⇒ Y is given by

confidence(X ⇒ Y) = P(Y |X) =
P(X ,Y)

P(X)
=

support(X ⇒ Y)

support(X)
.

Notice the following interesting property.

Example

The confidence of {A,B} ⇒ {C} will always be greater than, or equal to,
{A} ⇒ {B,C}. By definition we have

support({A,B} ⇒ {C})
support({A,B})

≥ support({A} ⇒ {B,C})
support({A})

,

where the numerator is identical, and support({A}) ≥ support({A,B})

7 / 28

Properties of association rules

Definition (Confidence)

The confidence of the association rule X ⇒ Y is given by

confidence(X ⇒ Y) = P(Y |X) =
P(X ,Y)

P(X)
=

support(X ⇒ Y)

support(X)
.

Theorem (Downward closure property of rules)

Consider the rule (X − y)⇒ y and (X − Y)⇒ Y , where y ⊂ Y . Then

confidence ((X − y)⇒ y) ≥ confidence ((X − Y)⇒ Y)

Proof. The numerator is identical, but the denominator has
support(X − y) ≤ support(X − Y) by the downward closure property of sets.

8 / 28

Examples of support and confidence

Example (Support and confidence of a rule)

Consider again the following set of transactions.

{eggs, bread, jam, bacon}
{apples, eggs, bacon}

{bacon, bread}
{ice cream, bread, bacon}

• The rule {bread} ⇒ {bacon} has support 3/4, confidence 1.

– Support 3/4 since {bread, bacon} appears in 3 of the transactions.

– Confidence 1 since {bread} appears 3 times, and in 3 of those
{bacon} also appears.

9 / 28

A naive algorithm

Example (Naive algorithm for learning rules)

for subsets of every size k = 1, . . . , |I |
for every subset of size k

for every split of this subset into {X} ⇒ {Y }
compute support and confidence of the rule
by counting the support in the transactions

• Fantastic staring point for an algorithm, since it (1) clearly terminates in
finite time, (2) is simple to implement and (3) will run reasonably fast on
small problem instances.

• Terribly slow on realistic problem instances, since it must check every
possible itemset against every transaction.

10 / 28

A solution: the Apriori algorithm

11 / 28

Overview of apriori

• Split the problem into two distinct phases.

– Finding meaningful (high support) itemsets.

– Generating meaningful (high confidence) rules.

• Phase 1

– The user specifies a desired minimum support.

– The algorithm exploits the downward closure property, i.e.
support(S) ≤ support(s) if s ⊂ S .

∗ No reason to check S if s has low support.

– Bottom-up approach to subset generation.

• Phase 2

– The user specifies a desired minimum confidence.

– Also exploits the above downward closure property.

– Bottom-up approach to rule generation.

12 / 28

Phase 1: Generating itemsets (example 1)

Example (Itemset generation via Apriori)

Consider again the following set of transactions.
{eggs, bread, jam, bacon}
{apples, eggs, bacon}

{bacon, bread}
{ice cream, bread, bacon}

• We set the minimum confidence to 50 %.

– Itemsets of size 1 with desired confidence are
{bacon}, {bread} and {eggs}. They are called large itemsets of size 1.

– From these, we can form
{bacon, bread}, {bacon, eggs} and {bread, eggs}. These are
candidate itemsets of size 2.

– Large itemsets of size 2: {bacon, bread} and {bacon, eggs}.

13 / 28

Phase 1: Generating itemsets (example 2)

Example

Transactions

{1, 2, 7, 4}
{2, 3, 4}
{1, 6, 3}
{1, 2, 4, 5}

Iteration 1

• Running the algorithm with minimum support 50 %.

• Candidate itemsets of size 1:

– {1}, {2}, {3}, {4}, {5}, {6}, {7}
• Large itemsets of size 1:

– {1}, {2}, {3}, {4}

14 / 28

Phase 1: Generating itemsets (example 2)

Example

Transactions

{1, 2, 7, 4}
{2, 3, 4}
{1, 6, 3}
{1, 2, 4, 5}

Iteration 2

• Running the algorithm with minimum support 50 %.

• Candidate itemsets of size 2:

– {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}
• Large itemsets of size 2:

– {1, 2}, {1, 4}, {2, 4}

15 / 28

Phase 1: Generating itemsets (example 2)

Example

Transactions

{1, 2, 7, 4}
{2, 3, 4}
{1, 6, 3}
{1, 2, 4, 5}

Iteration 3

• Running the algorithm with minimum support 50 %.

• Candidate itemsets of size 3:

– {1, 2, 4}
• Large itemsets of size 3:

– {1, 2, 4}

16 / 28

Phase 1: Pseudocode

Algorithm sketch
Create L1, a set of large itemsets of size 1

j = 1
while Lj is not empty do:

create every candidate set Cj+1 from Lj
prune candidates a priori Cj+1 (every subset must be in Lj)

for every transaction ti ∈ T do:
count occurrences of every set in Cj+1 in ti

j = j + 1

Iterating through the transactions checking for every possible candidate in Cj+1 is
expensive. Optimizations: choosing good data structures, pruning transactions.

17 / 28

Phase 1: Pseudocode - Details on candidates and pruning

create every candidate set Cj+1 from Lj
prune candidates a priori Cj+1 (every subset must be in Lj)

Example Given large itemsets of size 3
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}.
• Naive candidates are
{2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}, {1, 2, 3, 4}.
• Apriori-gen candidates are {1, 2, 3, 4}, {1, 3, 4, 5}. Generated efficiently by

keeping the itemsets sorted.

• While the itemset {1, 2, 3, 4} is kept, {1, 3, 4, 5} is discarded since the
subset {1, 3, 5} ⊂ {1, 3, 4, 5} is not among the large itemsets of size 3 .

The example above is from page 4 in the referenced paper.

18 / 28

Phase 1: Pseudocode - Details on counting occurences

for every transaction ti ∈ T do:
count occurrences of every set in Cj+1 in ti

Example
Check if A = {1, 3, 7} is a subset of B = {1, 2, 3, 5, 7, 9}.
• A naive computation checks if every element of A is found in B . This has

computational complexity O(|A||B |), where |A| is the size of A.

• A better approach is to use binary search when B is sorted. The
computational complexity becomes O(|A| log2 |B |).

• Using hash tables (e.g. the built-in set.issubset in Python), the
computational complexity is down to O(|A|).

For the given example, this resolves to approximately 18, 8 and 3 operations.

19 / 28

Phase 2: Building association rules (example)

• In practice this step is much faster than Phase 1.

• The efficient algorithm exploits the downward closure property.

Example

Consider rules made from ABCD. First the algorithm tries to move itemsets of
size 1 to the right hand side, i.e. one of {{A}, {B}, {C}, {D}}.

BCD ⇒ A ACD ⇒ B

ABD ⇒ C ABC ⇒ D

Assume that only ABC ⇒ D and ACD ⇒ B had high enough confidence. Then
the only rule created from ABCD with a size 2 itemset on the right hand side
worth considering is AC ⇒ BD. This is a direct result of the downward closure
property.

Recursive function which is not very easy to explain in detail.

20 / 28

The Apriori algorithm on real data

Consider the following data set, with 32.561 rows.

Education Marital-status Relationship Race Sex Income Age

Bachelors Never-married Not-in-family White Male ≤50K middle-aged
Bachelors Married-civ-spouse Husband White Male ≤50K old
HS-grad Divorced Not-in-family White Male ≤50K middle-aged
11th Married-civ-spouse Husband Black Male ≤50K old
Bachelors Married-civ-spouse Wife Black Female ≤50K young
...

...
...

...
...

...
...

Masters Married-civ-spouse Wife White Female ≤50K middle-aged
9th Married-spouse-absent Not-in-family Black Female ≤50K middle-aged
HS-grad Married-civ-spouse Husband White Male >50K old
Masters Never-married Not-in-family White Female >50K middle-aged

The data may be found at https://archive.ics.uci.edu/ml/datasets/adult.

21 / 28

https://archive.ics.uci.edu/ml/datasets/adult

The Apriori algorithm on real data

Some rules are obvious in retrospect:

{Husband} ⇒ {Male}
{≤ 50K,Husband} ⇒ {Male}

{Husband,middle-aged} ⇒ {Male,Married-civ-spouse}

Some are more interesting:

{HS-grad} ⇒ {≤ 50K}
{≤ 50K, young} ⇒ {Never-married}

{Husband} ⇒ {Male,Married-civ-spouse,middle-aged}

The meaningfulness of a rule may be measured by confidence, lift and conviction.

22 / 28

A practical matter: writing a Python implementation

23 / 28

Overview of workflow

• Write simple functions first, i.e. the building blocks (e.g. pruning)

• Add doctests and unit tests (e.g. examples from paper)

• Implement a naive, but correct algorithm

• Implement an asymptotically fast algorithm

• Test the preceding two implementations against each other

• Optimize implementation by profiling the code (find bottlenecks)

Understand → Naive algorithm → Asymptotically fast → Further optimizations

24 / 28

Software testing

• Unit tests

– Test a simple function f (xi) = yi for known cases i = 1, 2, . . .

– Doubles as documentation when writing doctests in Python

• Property tests

– Fix a property, i.e. f (a, b) = f (b, a) for every a, b

– Generate many random inputs a, b to make sure the property holds

• Testing against R, Wikipedia, etc

– Generate some inputs and test against the arules package

25 / 28

Software structure

apriori

itemsets_from_transactions

apriori_gen

join_step prune_step

generate_rules_apriori

_ap_genrules

Phase 1 Phase 2

Software found at https://github.com/tommyod/Efficient-Apriori.

26 / 28

https://github.com/tommyod/Efficient-Apriori

Summary and references

27 / 28

Summary and references

The Apriori algorithm discovers frequent itemsets in phase 1, and meaningful
association rules in phase 2. Both phases employ clever bottom-up algorithms.
By application of the downward closure property of itemsets (support) and rules
(confidence), candidates may be pruned prior to expensive computations.

• The Python implementation

– github.com/tommyod/Efficient-Apriori

• The original paper

– Agrawal et al, Fast Algorithms for Mining Association Rules, 1994
http://www.cse.msu.edu/~cse960/Papers/

MiningAssoc-AgrawalAS-VLDB94.pdf

28 / 28

https://github.com/tommyod/Efficient-Apriori/
http://www.cse.msu.edu/~cse960/Papers/MiningAssoc-AgrawalAS-VLDB94.pdf
http://www.cse.msu.edu/~cse960/Papers/MiningAssoc-AgrawalAS-VLDB94.pdf

	A problem: learning association rules
	A solution: the Apriori algorithm
	A practical matter: writing a Python implementation
	Summary and references

