
Josuttis/Sutter/Williams: P0660R1: A Cooperatively Interruptible Joining Thread

 1

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P0660R1
Date: 2018-03-10
Reply to: Nicolai Josuttis (nico@josuttis.de), Herb Sutter (hsutter@microsoft.com),
 Anthony Williams (anthony@justsoftwaresolutions.co.uk)
Audience: SG1, LEWG, LWG
Prev. Version: P0660R0

A	Cooperatively	Interruptible	Joining	Thread,	
Rev	1	
Motivation	
For C++17 in Jacksonville 2016 we had an evening session
http://wiki.edg.com/bin/view/Wg21jacksonville/P0206R0
with a very clear directive:

Add an auto-joining (in destructor) thread type under the understanding that its name will be
changed and there will be LEWG review.
SF F N A SA
10 11 1 2 0

Include it in C++17
SF F N A SA
9 5 8 2 0

This clear directive was broken.

Even worse, there is still no proposal to go the path strongly requests here.

And it seems we see more and more the consequences of breaking our own intent: Several guidelines
recommend not to use std::thread for this reason, others teach to use std::thread with care or just
complain about the bad API. For example:

• High Integrity C++ spec by Programming Research recommends:

18.2.1 Use high_integrity::thread in place of std::thread

The destructor of std::thread will call std::terminate if the thread owned by the class is still
joinable. By using a wrapper class a default behavior can be provided.

… followed by full source code for the wrapper.

• Similarly, the C++ Core Guidelines also recommends:

CP.25: Prefer gsl::joining_thread over std::thread

Reason A joining_thread is a thread that joins at the end of its scope.

… and provide a full implementation.

This is the community voting with their feet, almost to the point of rebellion.
It should be a big red flag that the major style guides are consistently repeating this advice and (this part
is very rare) multiple such guides going to the trouble of providing actual code to use instead. At the very
least, it points out that the status quo is leading to divergence (the above are two different wrapper types).

For this reason, this paper proposes a standard thread class that “does the expected thing”:

• Proposing a thread class that uses RAII-style join() if still joinable at destruction time.
• Adding an API to cooperatively signal thread interruption so that a join() in the destructor might

not wait forever.

Josuttis/Sutter/Williams: P0660R1: A Cooperatively Interruptible Joining Thread

 2

New	in	Rev	1	
• Updated terminology
• API clean-ups
• Synopsis of the proposed wording
• A proposed API for waiting condition variables

Motivation	
For a full discussion of the motivation see P0660R0.
The important thing is that this is a long requested feature. The reason that many projects can’t switch
from boost::thread to standard threads and that several guidelines warn against the direct usage of
std::thread.

Key	Design	Decisions	
We need a new thread class, because the change is not compatible with the existing behavior. Also
adding just a template argument with a default value breaks binary compatibility.
So we start to introduce a new family of API’s, all starting with “i” for “interruptible (one letter is key
because programmers should not use std::thread just for the shorter name).

Class std::ithread

We propose a new class std::ithread:

• It is fully compatible to std::thread with its whole API except the destructor, so that programmers
can easily switch from std::thread to this class. The only difference is that the destructor signals
interruption and joins instead of just calling terminate() if the thread is still joinable.

• It provides a supplementary API for cooperative interrupts:
o The calling thread can call interrupt() (directly or via an interrupt token).
o The called thread can (and should) from time to time check for requested interruption (again

directly or via an interrupt token).

The API for std::this_thread is in general extended to be able to cooperate with this class and check
for requested thread interrupts:

namespace this_thread {

 static bool is_interrupted() noexcept;

 static void throw_if_interrupted();

}

In general (i.e., for threads started with std::thread or std::async(), these functions always yield
false or do not throw, respectively. For interrupted std::ithread’s the functions throw or yield true.

Class std::interrupt_token

std:ithread uses a simple helper class std::interrupt_token to signal interrupts, which
• Is cheap to copy
• can signal an interrupt
• allows to check for an interrupt
• can also remove the signal to interrupt

The interrupt mechanism is initializing by passing an initial interrupt state (usually by initializing with
false so that no interrupt is signaled yet; but true is also possible):
 std::interrupt_token it{false};

A default constructor is also provided, which does not initializing the interrupt mechanism to make default
initialized interrupt tokens cheap:
 std::interrupt_token it; // cheap, but interrupt API disabled

You can check whether the interrupt API can be used:

Josuttis/Sutter/Williams: P0660R1: A Cooperatively Interruptible Joining Thread

 3

• bool ready()
o signals whether the interrupt mechanism was initialized

With ready()==true you can call the following member functions to signal and check for interrupts
(otherwise we get undefined behavior):

o bool interrupt()
 signals an interrupt (and returns whether an interrupt was signaled before)

o bool is_interrupted()
 yields whether an interrupt was signaled yet

o bool is_interrupted_and_reset()
 removes any signaled interrupt and returns whether an interrupt was signaled before

o void throw_if_interrupted()
 throws a std::interrupted exception if an interrupt was signaled (yet).

o void throw_if_interrupted_and reset()
 throws a std::interrupted exception if an interrupt was signaled (yet) after removing

the signaled interrupt

The throw_if_interrupted*() functions throw a new standard exception class
std::interrupted. It is intentionally not derived from std::exception to not pollute general
existing handling of std::exception. These exceptions will be automatically be caught by the started
std::ithread so that they just end the started thread without any warning or error if not caught
elsewhere.

All functions are thread-safe in the strong sense: They can be called concurrently without introducing data
races and will behave as if they executed in a single total order consistent with the SC order. (Thus,
internally we use atomic flags and atomic_exchange() or atomic_load()).
Provide operator == to check whether two interrupt_tokens use the same interrupt signal or are both not
ready?

Implementation Hints

An easy way to implement std::interrupt_token is to make it a wrapped
shared_ptr<atomic<bool>>.

• Is pretty cheap to copy (just increments the reference count).
o If this is not good enough, you can pass it by reference (without any danger provided it is

on the stack).

The whole std::ithread API is in principle implementable on top of the existing standard concurrency
library. However, with OS support better performance is possible.

A first example implementation is available at: www.josuttis.de/ithread

Why	(These)	Interruption	Tokens?	
For a full discussion of the motivation of interrupt tokens in general, see P0660R0.
For simplicity and safety we decided to:

• Use only one type
• Guarantee that the token are reference-counted (valid independent from the lifetime of any

thread).
Although, we can think of additional features for the interrupt API such as

• registering one or multiple callbacks,
• holding additional information such as default timeouts for waits

we keep it simple, pretty cheap, and safe.

 	

Josuttis/Sutter/Williams: P0660R1: A Cooperatively Interruptible Joining Thread

 4

How	to	use	std::ithread	
The basic interface of std::ithread supports the following example:
 std::ithread t([] {
 while (!std::this_thread::is_interrupted()) {
 //...
 }
 });

Or:
 std::ithread t([] {
 while (…)
 // …
 std::this_thread::throw_if_interrupted();
 //...
 }
 });

 // optionally (if not called, called by the destructor):
 t.interrupt();
 t.join();

Without calling interrupt() and join() (i.e. if t is still joinable and the destructor of t is called), the
destructor itself calls interrupt() and then join(). Thus, the destructor waits for a cooperative end
of the started thread.
Note that the mechanism does never cancel the thread directly or calls a cancelling low-level thread
function.

If interrupt() is called, the next check for an interrupt by the started thread with
 std::this_thread::is_interrupted()

yields true. Alteratively, a checkpoint such as
 std::this_thread::throw_if_interrupted()

throws std::interrupted. If the exception is not caught inside the called thread, it ends the started
thread silently without calling terminate() (any other uncaught exception inside the called thread still
results into terminate()).
Instead of calling t.interrupt(), you can also call:
 auto it = t.get_interrupt_token();

 …

 it.interrupt();

to cheaply pass a token to other places that might interrupt. The tokens are not bound to the lifetime of
the ithread (but not to the lifetime of the called thread).
Also std::this_thread::get_interrupt_token() yields an interrupt token in the started thread
which you can also use to check for interrupts.

Josuttis/Sutter/Williams: P0660R1: A Cooperatively Interruptible Joining Thread

 5

How	std::ithread	uses	Interrupt	Tokens	
A basic bootstrap of the interrupt objects would be:
 std::interrupt_token interruptor{false};

 std::interrupt_token interruptee(interruptor};

 …

 interruptor.interrupt();

 …

 // usually after a token is passed to the thread that might get interrupted:
 interruptee.throw_if_interrupted();

 // and/or:
 if (interuptee.is_interrupted()) …

Class std::ithread would use interrupt tokens internally this way. Thus, the constructor of a thread
would perform the necessary bootstrap to create the API for the calling thread (being the interrupter) and
the started thread (being the interruptee).
In principle the started thread would get the interrupt token as part of the TLS (it is possible to pass it as
static thread_local data member in class ithread, though). The rough implementation idea is as follows:

class ithread {

 …

 private:

 //*** API for the starting thread:
 interrupt_token _thread_it{interrupt_token{}}; // interrupt token for started thread
 ::std::thread _thread{::std::thread{}}; // started thread (if any)

 //*** API for the started thread (simulated TLS stuff):
 inline static thread_local

 interrupt_token _this_thread_it{interrupt_token{}}; // int.token for this thread
};

// THE constructor that starts the thread:
template <typename Callable, typename... Args>

ithread::ithread(Callable&& cb, Args&&... args)

 : _thread_it{interrupt_token{false}}, // initialize interrupt token
 _thread{[&] (auto&& cb, auto&&... args) { // called lambda in the thread
 // pass the interrupt_token to the started thread
 _this_thread_it = _thread_it;

 …

 }}

{

}

 	

Josuttis/Sutter/Williams: P0660R1: A Cooperatively Interruptible Joining Thread

 6

Convenient	Interruption	Points	for	Blocking	Calls	
This API allows to provide the interrupt mechanism as safe inter-thread communication.
Another question is whether and where to give the ability that the started thread automatically checks for
interrupts while it is blocking/waiting.
For a full discussion of the motivation of using interrupts in blocking/waiting functions, see P0660R0.
In Toronto in 2017, SG1 voted to have some support for it:

Must include some blocking function support in v1.
SF F N A SA
3 6 6 3 0

While there are simple workarounds in several cases (timed waits), at least support for condition variables
seems to be critical because their intent is not to waste CPU time for polling and an implementations
needs OS support.
Note that we do not want to change the existing API of waiting/blocking functions (including exceptions
that can be thrown). Instead, we have to extend the existing API’s by new overloads and or classes.
So, optionally, we proposed the following API:

namespace std {

 class condition_variable {

 public:

 template <class Predicate>

 void wait(interrupt_token,

 unique_lock<mutex>& lock, Predicate pred);

 template <class Predicate>

 void iwait(unique_lock<mutex>& lock, Predicate pred);

 };

}

The specification would be that:
• the wait() overload might also have a spurious wakeup if for the passed interrupt token an

interrupt was signaled (and the thread was started as an std::ithread)
• the new iwait() function might in addition throw std::interrupted if an interrupt was signaled

(and the thread was started as an std::ithread)
In principle, corresponding overloads/supplements are possible for other blocking/waiting functions.

API	of	std::ithread	
Basically, an std::ithread should provide the same interface as std::thread plus the supplementary
interrupt API:

class ithread

{

 public:

 // - cover full API of std::thread to be able to switch from std::thread to std::ithread:

 // note: use std::thread types:
 using id = ::std::thread::id;

 using native_handle_type = ::std::thread::native_handle_type;

 // construct/copy/destroy:
 ithread() noexcept;

 // THE constructor that starts the thread:
 // - NOTE: should SFINAE out copy constructor semantics
 template <typename Callable, typename... Args,

Josuttis/Sutter/Williams: P0660R1: A Cooperatively Interruptible Joining Thread

 7

 typename = enable_if_t<!is_same_v<decay_t<Callable>, ithread>>>

 explicit ithread(Callable&& cb, Args&&... args);

 ~ithread();

 ithread(const ithread&) = delete;

 ithread(ithread&&) noexcept = default;

 ithread& operator=(const ithread&) = delete;

 ithread& operator=(ithread&&) noexcept = default;

 // members:
 void swap(ithread&) noexcept;

 bool joinable() const noexcept;

 void join();

 void detach();

 id get_id() const noexcept;

 native_handle_type native_handle();

 // static members:
 static unsigned hardware_concurrency() noexcept {

 return ::std::thread::hardware_concurrency();

 };

 // supplementary API:
 interrupt_token get_interrupt_token() const noexcept;

 bool interrupt() noexcept {

 return get_interrupt_token().interrupt();

 }

 bool is_interrupted() const noexcept {

 return get_interrupt_token().is_interrupted();

 }

 bool is_interrupted_and_reset() noexcept {

 return get_interrupt_token().is_interrupted_and_reset();

 }

};

Note that native_handle() and get_id() return std::thread types.
We might also provide a get_thread()helper, which (a bit dangerous) would return a reference to the
wrapped std::thread.
We could also add throw_if_interrupted() and throw_if_interrupted_and_reset() here,
but that doesn’t seem to be very useful.

Interrupt	Handling	API	
The basic interrupt handling API, first defines the type for interrupt exceptions:

class interrupted

{

 public:

 explicit interrupted();

 const char* what() const noexcept;

};

An example implementation of interrupt_token might look as follows:

Josuttis/Sutter/Williams: P0660R1: A Cooperatively Interruptible Joining Thread

 8

class interrupt_token {

 private:

 std::shared_ptr<std::atomic<bool>> _ip{nullptr};

 public:

 // default constructor is cheap:
 explicit interrupt_token() = default;

 // enable interrupt mechanisms by passing a bool (usually false):
 explicit interrupt_token(bool b)

 : _ip{new std::atomic<bool>{b}} {

 }

 // interrupt handling:
 bool interrupt() noexcept {

 assert(_ip != nullptr);

 return _ip->exchange(true);

 }

 bool is_interrupted() const noexcept {

 assert(_ip != nullptr);

 return _ip->load();

 }

 bool is_interrupted_and_reset() noexcept {

 assert(_ip != nullptr);

 return _ip->exchange(false);

 }

 void throw_if_interrupted() {

 assert(_ip != nullptr);

 if (_ip->load()) {

 throw ::std::interrupted();

 }

 }

 void throw_if_interrupted_and_reset() {

 assert(_ip != nullptr);

 if (_ip->exchange(false)) {

 throw ::std::interrupted();

 }

 }

};

API	for	Interruptible	Blocking	Convenience	Functions	

See above

API	for	std::this_thread	
namespace std {

 namespace this_thread {

 static interrupt_token get_interrupt_token() noexcept;

 static bool is_interrupted() noexcept;

 static bool is_interrupted_and_reset() noexcept;

 static void throw_if_interrupted();

 static void throw_if_interrupted_and_reset();

 }

}

Josuttis/Sutter/Williams: P0660R1: A Cooperatively Interruptible Joining Thread

 9

Names	
Of course, the proposal raises several questions about names.
To list some alternatives:

Name used here Purpose Alternatives Remarks
ithread cooperatively

interruptible joining
thread

jthread,
task

name should be short
to support convenient
replacement of
std::thread

throw_if_interrupted() throws exception if
interruption was
signaled

interrupt_point()

interrupt_token Checp-to-copy API to
deal with interrupts

interrupt_promise,
interrupt_token,
interrupt_future,
interrupt_source

Could be same or
different types

iwait(),

global convenient
functions using the
thread local interrupt
future

 Naming should be
consistent with ithread

In general, to help application programmers, the prefix should always be consistent and not sometimes
“interrupt_...” and sometimes “interruptible_...” or “interruptions_...”.

 	

Josuttis/Sutter/Williams: P0660R1: A Cooperatively Interruptible Joining Thread

 10

Proposed	Wording	
 (All against N4660)
Full proposed wording at work

Add to 33.3.1 Header <thread> synopsis [thread.syn]
namespace std {

 …

 namespace this_thread {

 static interrupt_token get_interrupt_token() noexcept;

 static bool is_interrupted() noexcept;

 static bool is_interrupted_and_reset() noexcept;

 static void throw_if_interrupted();

 static void throw_if_interrupted_and_reset();

 }

Add as a new chapter in parallel to class thread:
33.3.2 Class ithread [thread.ithread.class]
Namespace std {

 class ithread

 {

 // standardized API as std::thread:
 public:

 // types:
 using id = ::std::thread::id;

 using native_handle_type = ::std::thread::native_handle_type;

 // construct/copy/destroy:
 ithread() noexcept;

 template <typename F, typename... Args>
 explicit ithread(F&& f, Args&&... args);

 ~ithread();

 ithread(const ithread&) = delete;

 ithread(ithread&&) noexcept;

 ithread& operator=(const ithread&) = delete;

 ithread& operator=(ithread&&) noexcept;

 // members:
 void swap(ithread&) noexcept;

 bool joinable() const noexcept;

 void join();

 void detach();

 id get_id() const noexcept;

 native_handle_type native_handle();

 // static members:
 static unsigned hardware_concurrency() noexcept {

 return ::std::thread::hardware_concurrency();

 };

Josuttis/Sutter/Williams: P0660R1: A Cooperatively Interruptible Joining Thread

 11

 // - supplementary interrupt API:
 interrupt_token get_interrupt_token() const noexcept;

 bool interrupt() noexcept {

 return get_interrupt_token().interrupt();

 }

 bool is_interrupted() const noexcept {

 return get_interrupt_token().is_interrupted();

 }

 bool is_interrupted_and_reset() noexcept {

 return get_interrupt_token().is_interrupted_and_reset();

 }

};

Add as a new chapter:

namespace std {

 class interrupt_token {

 public:

 explicit interrupt_token(); // cheap non-initialization

 explicit interrupt_token(bool) // initialization of interrupt mechanism

 bool ready() const;

 bool interrupt() noexcept;

 bool is_interrupted() const noexcept;

 bool is_interrupted_and_reset() noexcept;

 void throw_if_interrupted();

 void throw_if_interrupted_and_reset();

 };

Optionally, add in 33.5.3 Class condition_variable [thread.condition.condvar]

namespace std {

 class condition_variable {

 public:

 …

 template <class Predicate>

 void wait(interrupt_token,

 unique_lock<mutex>& lock, Predicate pred);

 template <class Predicate>

 void iwait(unique_lock<mutex>& lock, Predicate pred);

 };

}

with the following wording (differences to wait() highlighted):

template <class Predicate>
void wait(interrupt_token itok, unique_lock<mutex>& lock, Predicate pred);

Requires: lock.owns_lock() is true and lock.mutex() is locked by the calling thread, and either

— no other thread is waiting on this condition_variable object or
— lock.mutex() returns the same value for each of the lock arguments supplied by all

concurrently waiting (via wait, wait_for, or wait_until) threads.
Effects: Equivalent to:

while (!pred())
 mywait(lock);

Josuttis/Sutter/Williams: P0660R1: A Cooperatively Interruptible Joining Thread

 12

where mywait(lock) performs the following:
— Atomically calls lock.unlock() and blocks on *this.
— When unblocked, calls lock.lock() (possibly blocking on the lock), then returns.
— The function will unblock when signaled by a call to notify_one() or a call to

notify_all(), or itok::is_interrupted(), or spuriously.
Remarks: If the function fails to meet the postcondition, terminate() shall be called (18.5.1). [Note:

This can happen if the re-locking of the mutex throws an exception. —end note]
Postconditions: lock.owns_lock() is true and lock.mutex() is locked by the calling thread.
Throws: std::interrupted() or any exception thrown by pred.

template <class Predicate>
void iwait(unique_lock<mutex>& lock, Predicate pred);

Effects: Equivalent to:

wait(std::this_thread::get_interrupt_token(), lock, pred);

Acknowledgements	
Thanks to all who incredibly helped me to prepare this paper, such as all people in the C++ concurrency
and library working group.
Especially, I want to thank: Howard Hinnant, Hans Boehm, Anthony Williams, Herb Sutter, Ville
Voutilainen, Jeffrey Yasskin.

