
Extension of “Nevergrad”, an Optimisation Platform

Ryan Kroon (Author)
Undergraduate Student
University of Adelaide

ryan.kroon@adelaide.edu.au

Dr. Markus Wagner (Supervisor)
Associate Professor

University of Adelaide
markus.wagner@adelaide.edu.au

ABSTRACT

This paper focuses on an optimisation platform called Nevergrad

which is a Python library that acts as a toolbox for derivative-free

and evolutionary optimisation. It is an open-source project that

strongly welcomes any contributions to benefit the platform. The

aim is to gain a working understanding of Nevergrad before

extending the API via the addition of problem instances that

broaden the application and usability of the platform. The problem

instances considered for contribution are the Team Pursuit Track

Cycling Problem and the Travelling Thief Problem. Extended

focus also relates to the benchmarking of algorithms within

defined problem scenarios.

1 INTRODUCTION
Released in 2018, Nevergrad is an open-source Python 3.6+

toolkit by Facebook and offers an extensive collection of

algorithms for optimisation that avoid gradient calculations. These

algorithms are presented in an easy-to-use Python framework that

enable scientists whose work involve derivative-free optimisation

to implement state-of-the-art algorithms and methods to compare

performance in different scenarios1. The library contains a wide

range of optimisers such as Particle Swarm Optimisation, FastGA,

Covariance Matrix Adaptation, Sequential Quadratic

Programming, Differential Evolution, Population Control

Methods for noise management, Evolution Strategies and many

others. Nevergrad also contains a wide range of test functions to

evaluate the optimisers which helps developers and researchers

find the best optimiser for specific cases or use well-known

benchmarks to evaluate how a method compares with the current

state of the art.

Since its initial release, Nevergrad has become a widely used

research tool. The number of users is likely to increase due to high

level of maintenance and testing that is performed on the API, as

well as how often new features are added to the platform. The use

of optimisation is applicable to many different disciplines,

however, more specifically, most machine learning tasks from

natural language processing to image classification rely on

derivative-free optimisation to tune parameters and possibly

hyperparameters in their models. Given the specialty of

Nevergrad in derivative-free optimisation, Nevergrad is highly

utilised by AI researchers and machine learning specialists11.

However, the platform is still relevant and applicable to other

fields. For example, a recent improvement to Nevergrad is multi-

objective optimisation. This type of optimisation is prominent in

nearly everyone’s life, for instance, take someone who is looking

to buy a house, they may want options that are simultaneously

cheap, nearby the beach, at least two bathrooms etc. And given

the simple ask-and-tell nature of Nevergrad’s API, it can be used

by people who are by no means experts in Python.

The aim for this project is to provide useful and insightful

contributions to Nevergrad that hopefully improve and broadens

its functionality. This will be achieved via the integration of two

problem instances, the Team Pursuit Track Cycling Problem and

the Travelling Thief Problem. Both these problem scenarios will

provide a foundation for future benchmarking studies in

Nevergrad.

2 MOTIVATION

Nevergrad strongly welcomes any contributions to the platform,

so much so that not only is it a reason why Nevergrad is so widely

regarded and utilised, but they have teamed up with IOHprofiler, a

benchmarking framework, to organise the Nevergrad and

IOHprofiler Open Optimisation Competition to reward the most

effective contributions5. There are two tracks; a performance-

oriented track for new algorithms and optimisation methods, and a

general benchmarking practices track which essentially considers

all other relevant ideas such as suggesting new benchmark

problems, performance measures or statistics, visualisation of

benchmark data, extending the functionalities of the

benchmarking environment, or any other relevant improvement5.

The submission deadline for both tracks is September 30, 2021

and an extended focus of this project is to participate in this

competition.

Nevergrad want to promote and welcome as many contributions

to the toolbox as possible because the platform is still new, and

the initial release only contained basic artificial test functions. The

plan was for contributors to add more instances, including

functions that represent physical models. They want to continue to

add functionality to help researchers create and benchmark new

Extension of Nevergrad, an Optimisation Platform Ryan Kroon, A1772052

2

algorithms. The efforts of this project will hopefully work towards

this goal and broaden the functionality of Nevergrad.

Since its release, there have been many contributions and

improvements to Nevergrad. Some recent improvements made by

the maintainers of Nevergrad include Multi-objective

optimisation, Constrained optimisation, simplified problem

parametrisation and competence map optimisers which means

there are now algorithms to automatically select the best

optimisation method, considering the computational budget, the

dimension, the type of variables, and the degree of parallelism11.

Figure 1: Graphic comparing optimisation methods for a set of

example problems

Figure 1 shows the probability of an optimiser outperforming the

other algorithms. Algorithms are ranked left to right on

performance with the 6 best algorithms also listed on the vertical

axis. Yet another recent improvement is an interface with HiPlot,

which is Facebook’s lightweight visualisation tool, and will allow

researchers to easily explore the optimisation process or to use an

interactive plot in a Jupyter notebook to analyse the behaviours of

different algorithms2. The continuous maintenance and addition of

features to Nevergrad contributes to the attractiveness of the

overall platform. Such is the motivation for this project as it will

attempt to facilitate this prospect by providing useful

contributions to Nevergrad in terms of new problem instances for

benchmarking.

3 LITERATURE REVIEW

The papers read for this project fall into three main categories.

The first being the documentation and documents published by

Nevergrad explaining the purpose of their platform and how to

use it. Papers that present Nevergrad or use Nevergrad as a

prominent tool in their work also fall into this category. The

second category relates to benchmarking, including the goals of

benchmarking, the desirable qualities of a problem scenario, and

what constitutes good practice in benchmarking studies. Finally,

papers were read in relation to possible problem instances that

will be added to Nevergrad.

3.1 Nevergrad, an optimisation platform

3.1.1 Using and Applying Nevergrad

Installation of Nevergrad is simple and can be done with a pip

install. It is also simple to install the master branch of the latest

release if needed.

The core object that the user can interact with is called optimiser.

This object implements the optimisation method and can be one of

several different optimisers3. The optimiser facilitates the ask and

tell interface with its three main methods being:

- Ask: suggest a candidate on which to evaluate the

function to optimise.

- Tell: update the optimiser with the value of the function

for a candidate.

- Provide_recommendation: returns the candidate that the

algorithm considers the best.

By using an optimiser, minimisation with Nevergrad is simple and

an example using the OnePlusOne algorithm is given in figure 2

below.

Figure 2: Basic Example to Minimise a Function

There are many optimisers available and Nevergrad contains a

dictionary of all the optimisers which can be printed with the

command below. All algorithms have strengths and weaknesses,

but Nevergrad has provided a list of algorithms with a few helpful

comments and rules of thumb as seen in figure 3 below.

Figure 3: List of Optimisers with Comments from Nevergrad

Extension of Nevergrad, an Optimisation Platform Ryan Kroon, A1772052

3

3.1.2 Contributing a benchmark problem to Nevergrad

As seen in figure 5 below, the documentation includes some

general instructions before making a pull request and thus making

a contribution to Nevergrad.

Figure 4: Steps for Contributing to Nevergrad

Despite there being very detailed guidelines for contributing an

optimisation algorithm to Nevergrad including where to put the

code and which files to update and so forth, such guidelines do

not exist for integrating a problem instance. This meant that

reading of the source code had to be done to understand how

problem functions are defined and run in Nevergrad.

From this source code, it was found that the problem

implementation should be stored separately in a folder under the

directory /nevergrad/functions. However, for Nevergrad to

optimise against this problem, an experiment must be created in

the file /nevergrad/benchmark/experiments.py. Experiment

settings should be set such as the optimisers to use, budget and

number of workers. The driver file of the problem should be

imported in this file and called from the experiment. It is helpful

to look at other experiments as a template. The driver file should

also be edited such that the parameters to be optimised are defined

using Nevergrad’s parametrisation. See Parametrisation API

reference in the documentation to see how this works, but again it

is also helpful to look at driver files of other problems.

Although preliminary, this category is very critical to the project

as it provides the basic knowledge on how to use Nevergrad.

Before making extension to the platform, it is important to

understand how the platform works and operates. Most of the

reading has focused on the official documentation, source code

and papers that present Nevergrad. Further reading included

reading about researchers that have applied Nevergrad as a

prominent tool in their work. This gave a deeper insight into the

capabilities of Nevergrad and the type of work that it is used for.

3.2 Benchmarking Goals
It would be simple if there were some optimal optimisation

algorithm that rendered all the other processes superfluous, but

instead the incredibly large and ever-growing list of optimisation

methods leads to the question of the best strategy. This presents

the importance of benchmarking practices. The questions that are

asked in benchmarking are essentially:

- how well does a certain algorithm perform on a given problem?

- why does an algorithm succeed/fail on a specific test problem?

Preparing a benchmark study can be intricate and complex.

Specifying the goal of the study is very important as it provides

the experimental setup being the choice of problem instances,

algorithm instances, and performance criteria6. These three

aspects are fundamental to every benchmark study and need to be

clearly defined. However, the motivation for performing a

benchmark study can be very diverse. Figure 5 below summarises

the most common objectives for a benchmarking study.

Figure 5: Common Goals of Benchmarking Studies

Arguably the most common goal of benchmarking, visualisation

and basic assessment, aims to uncover which algorithms work

well on a given problem. The study might involve comparing

different algorithms on one or more problems and deciding which

is the best. Another aspect of this type of goal may also be to

assess the problem instance, as benchmarking optimisation

heuristics can help to analyse the problem and to understand its

characteristics.

The second type of goal, sensitivity of performance, can relate to

testing invariances which is when benchmarking is used to test

whether an algorithm possesses the correct invariances in terms of

certain aspects to the problem. Algorithm tuning and

understanding the influence of parameters and algorithmic

components are both similar subsections whereby benchmarking

is used both to understand how much influence certain parameters

have on an algorithm and to also find the best configuration for a

given problem.

The third type of goal, performance extrapolation, refers to a

‘classical hope’ in benchmarking where the generated data can be

used to extrapolate the performance of an algorithm for other

problem instances that haven’t been tested. The hope is that for

previously unseen problem instances, the benchmarking results

can be utilised to design, select or configure an algorithm.

Theory-oriented goals can refer to using benchmarking studies in

order to cross-validate or corroborate the reseults of a previous

theoretical study. Vice-versa, empirical results from

benchmarking studies can provide a source of inspiration for a

theoretical study.

The final type of goal, benchmarking in algorithmic development,

can mean to use benchmarking as a tool to verify whether a given

program performs as expected, because if an algorithm doesn’t

perform as expected, then a source code review may be necessary.

In addition to this, benchmarking can also be used to identify

weak spots to develop better performing algorithms.

Extension of Nevergrad, an Optimisation Platform Ryan Kroon, A1772052

4

Overall, the paper titled Benchmarking in Optimisation: Best

Practice and Open Issues is very well written and informative. I

have learnt the most common goals for benchmarking as well as

the key aspects that set up a good benchmarking study. Given that

benchmarking is a significant part of my project, the paper is very

relevant to understand the importance of the role of benchmarking

in optimisation.

3.3 Problem Instance, Possible Extensions for

Nevergrad
Selecting problem instances to add to Nevergrad is a careful

process as it plays a key element in algorithm benchmarking.

There may be real-world scenarios that present as interesting

optimisation problems. However, there are many characteristics to

a problem, and the more desirable a problem set is for

benchmarking practices, the likelihood that the problem set is

desirable for the Nevergrad platform also increases. The first

desirable characteristic is that a problem must be diverse. This is

because a problem that is difficult for one algorithm may be easy

for another algorithm, so it is good to have a diverse problem set

where the strengths and weaknesses for different algorithms are

discovered. Another important property is that a problem set must

be representative of its own problem class. This gives more credit

when making claims on an algorithm’s performance for the

problem class at hand. A good problem scenario should also be

scalable and tunable which means that characteristics of the

problem, such as the dimensions and the number of objectives,

should be adjustable. The final desirable property is that the

problem already has known optimal solutions which makes it

easier to measure the exact performance of algorithms in relation

to the known optimal performance.

Keeping these desirable qualities in mind, there are a number of

possible problem instances being investigated under the School of

Computer Science, University of Adelaide that can be added to

Nevergrad. Therefore, the papers in this section are highly helpful

toward choosing which problems are suitable for contribution to

Nevergrad. The problem instances which are being considered are

described in the following section.

3.4 Benchmark Problems for Nevergrad Contribution

3.4.1 Team Pursuit Track Cycling Problem

Team pursuit track cycling is a sporting event that involves

multiple team members that work together to complete a race in

the minimum time possible. This takes place on an elliptical track

called a velodrome. The cyclists in the team are allowed to take

turns riding in the front position which allows the other cyclists to

conserve energy through aerodynamic benefit and draft.

Therefore, the team of cyclists are able to maintain a higher

velocity compared to a single cyclist. The changes to the position

of the cyclists are most efficiently made on either of the two

banked turns of the track. The front cyclist moves up the bank and

rejoins the team at the back9.

Both men and women compete in this sporting event, however

there are differences to the sporting rules for each gender. For the

men’s event, there are four cyclists in a team and the race totals

4000 metres over 16 laps. Only three of the four cyclists need to

complete the race meaning one cyclist usually spends longer than

the others in the first position and exhausts his energy and has to

retire from the race. For the women’s event, there are three

cyclists in a team and the race is shorter with 12 laps totaling 3000

metres. However, all three cyclists need to complete the race

which means no one can retire and the workload is usually more

evenly distributed across the team.

There are many ways to improve the performance of a track

cycling team such as the physiological and psychological abilities

of the team members and the technical factors of the bicycles.

However, the optimisation problem that can be worked lies in the

pacing and transition strategy of the cyclists. The pacing strategy

(set of continuous variables) describes the power of the cyclist in

the first position in between each transition, i.e. each race

segment. The transition strategy (set of discrete variables)

describes the positions where a transition is to happen such that it

can only occur on a banked turn of the track10.

Overall, the optimisation problem is very complex and is multi-

objective where the primary is to minimise the total time needed

for a team of cyclists to complete a race. A secondary objective is

to maximise the amount of energy the riders have at the end of the

race. It is also an interesting problem given that it requires the

optimisation of both continuous and discrete variables and

contains separate instances for men and women.

3.4.1 Travelling Thief Problem

This problem has been introduced recently and is comparable to

real-world problems. It is a combination of the Travelling

Salesperson Problem and the Knapsack Problem. There are n

cities, and the distance matrix is given. Also, there are m items

each of them having a value and weight. Every city contains an

item except for the first one. There is a thief who is going to visit

these cities exactly once and pick some items from the cities and

fill his knapsack which has a maximum weight before returning to

the first city. A renting rate R is to be paid per each time unit

being on a way. The thief travels at a speed relevant to the weight

of the knapsack. The goal is to find a tour of maximal profit7.

Figure 6: Illustrative Example of TTP

As seen in figure 6, the problem is presented numerically. Each

node except the first has a set of items. For example, node 2 has

the items I21 with profit 20 and weight 2, and item I22 with profit

30 and weight 3. Let’s assume the problem constraints being a

maximum knapsack weight W = 3, renting rate R = 1, minimum

speed vmin = 0.1 and maximum speed vmax = 1. A tour can be

Extension of Nevergrad, an Optimisation Platform Ryan Kroon, A1772052

5

represented as a vector of nodes to be visited in the order T = (x1,

…., xn) and a packing plan can be represented as a vector of

boolean numbers indicating which items to pick up. Therefore, the

optimum objective function for the illustrated case is F(T,P) = 50

where T = (1, 2, 4, 3) and P = (0, 0, 0, 1, 1, 0). Hence, the optimal

tour is for the thief to travel from city 1 to city 2 then 4 without

picking up any items. Next it travels to city 3 where it picks up

items I32 and I33 for a total profit of 80. However, the knapsack

now has a weight of 2 which slows the speed of the thief the last

part of the tour costs 15 instead of 6. The first 3 parts of the tour

have a total cost of 15. So the final objective value is F(T,P) = 80

– 15 – 15 = 50.

Overall, this category of papers is extremely relevant to my

project as they provide the crucial understanding of both problems

to be implemented and integrated into Nevergrad. The knowledge

and understanding I gain about these problems not only helps with

the implementation of the problems, further increases my

understanding of why these problems are great candidates to be

integrated into Nevergrad for future benchmark purposes.

4 METHODOLOGY

The primary goal for this project was to provide useful and

insightful contributions to Nevergrad that hopefully improve and

broadens its functionality. The methodology to achieve this was to

research relevant problem instances that serve as a ground for

good benchmarking practices. The original goal was to integrate

three appropriate benchmark problems (developed and researched

by Adelaide University). The original timetable is shown in table

1.0 below.

Table 1: Original Project Timetable

Week Description

1 Gain a working understanding of Nevergrad through

reading papers and becoming familiar with the source

code and how to run it.
2

3

4 Gain a working understanding of benchmarking and

various problem instances which can be used to extend

Nevergrad.
5

6 Implement and integrate first problem instance – Team

Pursuit Track Cycling Problem 7

8 Implement and integrate second problem instance –

Travelling Thief Problem 9

10 Implement and integrate third problem instance –

Wave Energy Converter Problem 11

12 Finalise the project – ensure all contributions are

submitted through a GIT pull request. Write final

paper.
13

This was a best-case scenario timeline for the project, however

some challenges arose which meant this couldn’t be achieved.

Fortunately, the methodology was flexibly designed to

accommodate for such contingencies. The plan was simply for

less benchmark problems to be integrated into Nevergrad to allow

for more time to overcome challenges.

The problem instances were implemented in Java which meant a

conversion to Python was necessary, since Nevergrad is a Python

package. This presented the challenge of learning Java, and

subsequently the conceptual differences between Python and Java,

so that I could write efficient Python code that matched the

functionality of the Java code. Another challenge was integrating

the problems into Nevergrad. Despite there being clear steps to

contribute new optimisation algorithms to Nevergrad, there were

no guidelines for contributing a problem, and the large repository

meant it wasn’t obvious where to place the code. It was also a

challenge to understand how experiments and parametrisation

worked so that the problem could be run inside Nevergrad.

Overall, these challenges consequently resulted in only two

problems being contributed (not officially as of yet) to Nevergrad,

the Team Pursuit Track Cycling Problem and the Travelling Thief

Problem.

A secondary goal for the project was to use Nevergrad to optimise

at least one of the problems that had been integrated. This

involved writing experiments in Nevergrad and utilising different

optimisers and experiment settings. This was completed for the

Team Pursuit Track Cycling problem and is explained in further

detail in the experimental setup.

Another goal of the project is somewhat of an extension and refers

to the Open Optimisation Competition. All submissions to

Nevergrad through a pull request are eligible. However, for a

contribution to be officially added to the Nevergrad source code,

it has to be approved by the maintainers of Nevergrad.

Subsequently, the contribution be entered into the competition.

Therefore, the first challenge will be providing a contribution that

is worthy enough to first be officially added to Nevergrad and the

competition. The second goal would then be to produce a

contribution so worthy that it yields a reward from the

competition. The challenge with this goal is beating the majority

of the other competitors as it is likely that the other contributors

are highly skilled researchers that no doubt have great ideas for

extending Nevergrad. The submission deadline is 30 September,

2021.

5 EXPERIMENTAL SETUP

The first step in the experimental setup is to calculate the original

results of the Team Pursuit Track Cycling Problem. This is simply

calculated using default settings of the pacing strategy and

transition strategy. For the men, the default pacing strategy is 550

cycling power for every racing segment and 400 for the women.

The default transition strategy alternates between true and false

for both the men and women.

The next step is to write an experiment in Nevergrad defining the

optimisers, budget, and number of workers. Nevergrad contains

many optimisers, but three basic optimisers called NGOpt10,

CMA and DE were chosen as they ran smoothly and produced

slightly different results opening the door for comparison. When

optimising solely the pacing strategy or transition strategy, a small

budget (say 1000) is sufficient. However, when optimising both

the pacing and transition strategy, the search space becomes

considerably larger and so a larger budget is required. For

simplicity and fair comparisons to be made across the problem

formulations, the budget was set to a reasonable size of 3000, and

the number of workers was set to 10.

Extension of Nevergrad, an Optimisation Platform Ryan Kroon, A1772052

6

For each optimiser and problem formulation, 10 runs were

completed, and the best score was recorded for each repetition.

Standard statistic results can then be calculated such as the mean,

standard deviation and best overall score. Violin plots were

created using the Seaborn library in the Jupyter Notebook

environment. These plots visualized the distribution and

probability density of the data, and was useful to compare the

performance of the optimisation algorithms within each problem

formulation.

It must be noted that while this experimental setup does allow for

some comparison between three optimisers, it is less of a priority

with the main goal being to ensure the problem is properly

integrated into Nevergrad for future benchmarking studies.

6 RESULTS

6.1 Experiment Results and Observations

Using the default settings for the pacing and transition strategy

resulted in scores: Men’s - 268.1 and Women’s - 219.72. The term

score is used for the purpose of comparing the optimisers,

however represents the time (in seconds) that it takes for the team

to finish a race.

Table 2: Optimisation of Men’s Pacing Strategy

 NGOpt10 CMA DE

1 266.8 266.6 262.4

2 266.8 266.6 258.5

3 266.6 266.8 258.8

4 266.6 266.8 261.4

5 266.8 266.6 259.2

6 266.8 266.8 260.8

7 266.6 266.6 261

8 266.6 266.6 261.2

9 266.6 266.8 262.4

10 266.6 266.6 259.2

Mean 266.68 266.68 260.49

S. Dev 0.09798 0.09798 1.383076

Best 266.6 266.6 258.5

Figure 7: Optimisation of Men’s Pacing Strategy, NGOpt and

CMA optimisers

Figure 8: Optimisation of Men’s Pacing Strategy, DE optimiser

The violin plot for this problem formulation was split into two

figures as the results varied to the extent that the plot became

warped and was difficult to visualize.

As seen in figure 6 and 7, NGOpt and CMA produced very

extremely similar results with a mean score of 266.6. Despite

being less accurate with a much large standard deviation, the DE

optimiser considerably outperformed the other two optimisers

with a mean score of 260.49.

Table 3: Optimising Men’s Transition Strategy

 NGOpt10 CMA DE

1 263.28 264.24 264.2

2 264.74 262.7 263.52

3 264.16 262.72 263.4

4 263.3 263.42 263.22

5 263.1 264.5 263.74

6 262.44 262.9 263.36

7 263.72 263.28 263.56

8 263.08 263.52 263.3

9 263.64 263.56 263.3

10 264.52 263.52 263.26

Mean 263.598 263.436 263.486

S. Dev 0.673347 0.563404 0.282

Best 262.44 262.7 263.22

Extension of Nevergrad, an Optimisation Platform Ryan Kroon, A1772052

7

Figure 9: Optimisation of Men’s Transition Strategy

In contrast to the previous problem formulation (optimising

pacing strategy), figure 8 demonstrated that DE was the most

consistent of the optimisers on this occasion. Overall, all three

optimisers performed at a similar level with all achieving a mean

score around 263.5.

Table 4: Optimisation of Men’s Pacing and Transition Strategy

 NGOpt10 CMA DE

1 340.2 343.24 341.12

2 340.06 339.44 344.44

3 340.84 342.64 349.84

4 341 341.06 348.78

5 344.42 342.74 348.18

6 343.72 343.74 346.66

7 338.16 338.74 350.62

8 343.2 342.98 350.62

9 341.48 340.94 349.94

10 344.3 344.16 348.94

Mean 341.738 341.968 347.914

S. Dev 1.980494 1.741452 2.900552

Best 338.16 338.74 341.12

Figure 10: Optimisation of Men’s Pacing and Transition Strategy

As seen in figure 9, NGOpt10 and CMA both had similar

performance with their mean and best scores almost the same. The

DE algorithm did not perform as well as the other two optimisers

on this occasion.

Table 5: Optimisation of Women’s Pacing Strategy

 NGOpt10 CMA DE

1 217.12 217.12 Inf

2 217.12 217.12 Inf

3 217.12 217.12 Inf

4 217.12 217.12 Inf

5 217.12 217.12 Inf

6 217.12 217.12 Inf

7 217.12 217.12 Inf

8 217.12 217.12 Inf

9 217.12 217.12 Inf

10 217.12 217.12 Inf

Mean 217.12 217.12 N/A

S. Dev 0 0 N/A

Best 217.12 217.12 Inf

As seen in table 5, the results produced for this problem

formulation were quite unexpected. The NGOpt10 and CMA

algorithms had identical performance and produced the same

optimised score of 217.12 for each test run. However, the

strangest result was that the DE algorithm was not able to find a

valid score despite being the best performer for the men’s version

of this problem formulation, i.e. optimisation of men’s pacing

strategy.

Given these results, the data was not sufficient to produce any

visualisations.

Table 6: Optimisation of Women’s Transition Strategy

 NGOpt10 CMA DE

1 219.32 216.68 215.28

2 218 215.32 215.36

3 216.52 216.32 215.48

4 216.32 216.68 216.92

5 216.64 216.76 215.16

6 214.08 214.08 215.52

7 216.68 214.28 216.52

8 214.76 216.48 214.36

9 218.4 216.72 216.56

10 216.52 216.88 215.16

Mean 216.724 216.02 215.632

S. Dev 1.492643 1.011494 0.748716

Best 214.08 214.08 214.36

Extension of Nevergrad, an Optimisation Platform Ryan Kroon, A1772052

8

Figure 11: Optimisation of Women’s Transition Strategy

As seen in figure 10, all optimisers performed relatively similar

with mean scores ranging from 215.6 to 216.8 in addition to very

similar overall best scores. The main differences lied in the

consistency with the NGOpt10 optimiser being the least consistent

while the DE optimiser was the most consistent.

Table 7: Optimisation of Women’s Pacing and Transition Strategy

 NGOpt10 CMA DE

1 247.34 246.5 251.88

2 248.3 248.26 252.06

3 247.84 248.88 253.82

4 249.06 248.8 250.14

5 251.28 247.16 252.02

6 249.18 247.22 253.4

7 249.1 248.24 251.72

8 249.5 249.5 252.8

9 249.32 250.6 254.62

10 247.7 250.32 250.36

Mean 248.862 248.548 252.282

S. Dev 1.08109 1.284249 1.350095

Best 247.34 246.5 250.14

Figure 12: Optimisation of Women’s Pacing and Transition

Strategy

As seen in figure 11, the overall performance of the optimisers

mirrored the results of the men’s version of this problem

formulation. NGOpt10 and CMA both had similar performance

with their mean and best scores almost the same. The DE

algorithm did not perform as well as the other two optimisers.

6.2 Final Discussion

Overall, there was not one optimiser that stood out as a ‘clear

winner’ across all the problem formulations. The DE optimiser

did not show any trends in its performance. On some occasions, it

performed with great success, especially in the case of optimising

the men’s pacing strategy. However, other times it would perform

poorly. One clear trend is that the NGOpt10 and CMA optimisers

both had similar performance across all the problem formulations.

The best score found for the men’s team was 262.44

(default=268.1) which came from optimising the men’s transition

strategy. The best score for the women’s team 214.08

(default=219.72) which was also a result of solely optimising the

transition strategy. This was not expected as it was assumed that

optimising both the pacing strategy and transition strategy

simultaneously would produce the best results. However, this

produced the worst results; around 80 seconds slower for the men

and 40 seconds slower for the women.

This could be explained by the much larger search space since the

number of variables to optimise is almost doubled for each

gender. As stated previously, roughly half these variables are

continuous for the pacing strategy, and the other half are discrete

for the transition strategy. However, Nevergrad interpreted all the

variables as continuous and some ‘rabbit code’ was used to

implement the transition strategy. Hence, the parameters were not

setup in the perhaps the correct way which may have had a

negative effect on the optimisers’ performance.

Another explanation could be that simply the optimisers chosen

were not the best and that other optimisers may better handle the

larger search space. In addition, perhaps the budget was set too

low as only one budget was used being 5000. Yet another note to

consider is that the problem is also capable of outputting more

information that would help the optimisers. The energy remaining

of each rider can be passed to the optimiser. This variable would

need to be maximised and serves as a secondary objective.

Extension of Nevergrad, an Optimisation Platform Ryan Kroon, A1772052

9

7 CODE

GitHub Link: https://github.com/facebookresearch/nevergrad.git

The above GitHub link is for Nevergrad. The code described in

this paper can be found in the following directories:

/nevergrad/functions/cycling – implementation of Team Track

Cycling Problem

/nevergrad/functions/ttp – implementation of Travelling Thief

Problem

/nevergrad/benchmark/experiments.py (cycling and ttp functions)

– experiments for both problems.

It must be noted that at the time of writing, neither problem

instances have been officially contributed to Nevergrad. Both

problems should be officially integrated by the end of September

2021.

8 CONCLUSIONS

Developed by Facebook, Nevergrad is a Python library that

supports derivative-free and evolutionary optimisation. The

platform is growing in popularity and is supported by a strong

community of machine learning scientists and other researchers.

The maintainers of Nevergrad strongly welcome contributions to

the platform in the form of new algorithms, benchmark problems

and other ideas. This project focused on the contribution of two

benchmark problems, the Team Pursuit Track Cycling Problem

and the Travelling Thief Problem, both of which have been

thoroughly researched and developed by the School of Computer

Science, University of Adelaide.

These two additions will hopefully broaden the scope and

application of Nevergrad by introducing new and interesting

problem scenarios for future benchmarking studies. The problem

instances have not yet been officially contributed to Nevergrad,

however will be submitted by the end of September, 2021. The

Team Pursuit Track Cycling Problem will be the first to be

submitted as it has already essentially been integrated and

experimented upon with Nevergrad’s API which produced some

interesting results.

Due to the six different problem formulations, the results

highlighted the complexity of the cycling problem, and why it is a

good benchmark problem to be integrated into Nevergrad. It was a

simple experiment phase, however the goal was not so much to

find the best solution and best optimiser, but rather ensure the

problem was integrated correctly into Nevergrad and provide a

basis for future benchmarking studies. There is clearly an

opportunity for further work which includes testing more

optimisers, budgets, and incorporating the second objective of

maximising the energy remaining for each cyclist after the race.

REFERENCES

[1] Choudhury, A., 2021. FB’s New Python Library Nevergrad

Provides A Collection Of Algorithms That Don’t Require

Gradient Computation. Analytics India Magazine. Available

at: https://analyticsindiamag.com/fbs-new-python-library-

nevergrad-provides-a-collection-of-algorithms-that-dont-

require-gradient-computation/

[2] Ai.facebook.com. 2020. Nevergrad, an evolutionary

optimization platform, adds new key features. Available at:

https://ai.facebook.com/blog/nevergrad-an-evolutionary-

optimization-platform-adds-new-key-features/

[3] Facebookresearch.github.io. 2019. Nevergrad - A

gradient-free optimization platform — nevergrad

documentation. Available at:

https://facebookresearch.github.io/nevergrad/index.html

[4] Rapin, J., Bennet, P., Centeno, E., Haziza, D., Moreau, A.

and Teytaud, O., 2020. Open Source Evolutionary

Structured Optimization. In Genetic and Evolutionary

Computation Conference Companion (GECCO ’20

Companion).

[5] Www-ia.lip6.fr. 2021. Open Optimization Competition

2021. Available at: http://www-

ia.lip6.fr/~doerr/OpenOptimizationCompetition2021.html

[6] Bartz-Beielstein, T., Doerr, C., van den Berg, D., Bossek,

J., Chandrasekaran, S., Eftimov, T., Fischbach, A.,

Kerschke, P., La Cava, W., Lopez-Ibanez, M., Malan, K.,

Moore, J., Naujoks, B., Orzechowski, P., Volz, V.,

Wagner, M. and Weise, T., 2020. Benchmarking in

Optimization: Best Practice and Open Issues.

[7] Bonyadi, M., Michalewicz, Z. and Barone, L., 2013. The

travelling thief problem: the first step in the transition

from theoretical problems to realistic problems. Congress

on Evolutionary Computation.

[8] Michalewicz, Z., Neumann., Polyakovskiy, S,. Reza, M.,

Wagner, M., 2014. A Comprehensive Benchmark Set and

Heuristics for the Traveling Thief Problem

[9] Nevergrad : A Python toolbox for performing gradient-free

optimization. 2019. Available at:

https://www.techleer.com/articles/576-nevergrad-a-python-

toolbox-for-performing-gradient-free-

optimization/#:~:text=Nevergrad%20is%20an%20open%2

Dsource,%2Dand%2Dtell%20Python%20framework.

[10] Wagner, M., 2016. Nested Multi- and Many-Objective

Optimization of Team Track Pursuit Cycling. Frontiers in

Applied Mathematics and Statistics.

[11] Day, J., Jordan, D., Kroeger, T., Neumann, F., Wagner,

M., 2013. Evolving Pacing Strategies for Team Pursuit

Track Cycling. Advances in Metaheuristics.

[12] Cs.adelaide.edu.au. 2021. Optimisation and Logistics

(School of Computer Science, The University of Adelaide).

Available at: https://cs.adelaide.edu.au/~optlog/research/

[13] Teytaud, O. and Rapin, J., 2021. Nevergrad: An open

source tool for derivative-free optimization - Facebook

Engineering. [online] Facebook Engineering. Available at:

https://engineering.fb.com/2018/12/20/ai-

research/nevergrad/

https://github.com/facebookresearch/nevergrad.git

