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ABSTRACT 

This paper focuses on an optimisation platform called Nevergrad 

which is a Python library that acts as a toolbox for derivative-free 

and evolutionary optimisation. It is an open-source project that 

strongly welcomes any contributions to benefit the platform. The 

aim is to gain a working understanding of Nevergrad before 

extending the API via the addition of problem instances that 

broaden the application and usability of the platform. The problem 

instances considered for contribution are the Team Pursuit Track 

Cycling Problem and the Travelling Thief Problem. Extended 

focus also relates to the benchmarking of algorithms within 

defined problem scenarios. 

1 INTRODUCTION  
Released in 2018, Nevergrad is an open-source Python 3.6+ 

toolkit by Facebook and offers an extensive collection of 

algorithms for optimisation that avoid gradient calculations. These 

algorithms are presented in an easy-to-use Python framework that 

enable scientists whose work involve derivative-free optimisation 

to implement state-of-the-art algorithms and methods to compare 

performance in different scenarios1. The library contains a wide 

range of optimisers such as Particle Swarm Optimisation, FastGA, 

Covariance Matrix Adaptation, Sequential Quadratic 

Programming, Differential Evolution, Population Control 

Methods for noise management, Evolution Strategies and many 

others. Nevergrad also contains a wide range of test functions to 

evaluate the optimisers which helps developers and researchers 

find the best optimiser for specific cases or use well-known 

benchmarks to evaluate how a method compares with the current 

state of the art.  

Since its initial release, Nevergrad has become a widely used 

research tool. The number of users is likely to increase due to high 

level of maintenance and testing that is performed on the API, as 

well as how often new features are added to the platform. The use 

of optimisation is applicable to many different disciplines, 

however, more specifically, most machine learning tasks from 

natural language processing to image classification rely on 

derivative-free optimisation to tune parameters and possibly 

hyperparameters in their models. Given the specialty of 

Nevergrad in derivative-free optimisation, Nevergrad is highly 

utilised by AI researchers and machine learning specialists11. 

However, the platform is still relevant and applicable to other 

fields. For example, a recent improvement to Nevergrad is multi-

objective optimisation. This type of optimisation is prominent in 

nearly everyone’s life, for instance, take someone who is looking 

to buy a house, they may want options that are simultaneously 

cheap, nearby the beach, at least two bathrooms etc. And given 

the simple ask-and-tell nature of Nevergrad’s API, it can be used 

by people who are by no means experts in Python. 

 

The aim for this project is to provide useful and insightful 

contributions to Nevergrad that hopefully improve and broadens 

its functionality. This will be achieved via the integration of two 

problem instances, the Team Pursuit Track Cycling Problem and 

the Travelling Thief Problem. Both these problem scenarios will 

provide a foundation for future benchmarking studies in 

Nevergrad. 

2   MOTIVATION 

Nevergrad strongly welcomes any contributions to the platform, 

so much so that not only is it a reason why Nevergrad is so widely 

regarded and utilised, but they have teamed up with IOHprofiler, a 

benchmarking framework, to organise the Nevergrad and 

IOHprofiler Open Optimisation Competition to reward the most 

effective contributions5. There are two tracks; a performance-

oriented track for new algorithms and optimisation methods, and a 

general benchmarking practices track which essentially considers 

all other relevant ideas such as suggesting new benchmark 

problems, performance measures or statistics, visualisation of 

benchmark data, extending the functionalities of the 

benchmarking environment, or any other relevant improvement5. 

The submission deadline for both tracks is September 30, 2021 

and an extended focus of this project is to participate in this 

competition. 

Nevergrad want to promote and welcome as many contributions 

to the toolbox as possible because the platform is still new, and 

the initial release only contained basic artificial test functions. The 

plan was for contributors to add more instances, including 

functions that represent physical models. They want to continue to 

add functionality to help researchers create and benchmark new 
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algorithms. The efforts of this project will hopefully work towards 

this goal and broaden the functionality of Nevergrad. 

Since its release, there have been many contributions and 

improvements to Nevergrad. Some recent improvements made by 

the maintainers of Nevergrad include Multi-objective 

optimisation, Constrained optimisation, simplified problem 

parametrisation and competence map optimisers which means 

there are now algorithms to automatically select the best 

optimisation method, considering the computational budget, the 

dimension, the type of variables, and the degree of parallelism11.  

Figure 1: Graphic comparing optimisation methods for a set of 

example problems 

Figure 1 shows the probability of an optimiser outperforming the 

other algorithms. Algorithms are ranked left to right on 

performance with the 6 best algorithms also listed on the vertical 

axis. Yet another recent improvement is an interface with HiPlot, 

which is Facebook’s lightweight visualisation tool, and will allow 

researchers to easily explore the optimisation process or to use an 

interactive plot in a Jupyter notebook to analyse the behaviours of 

different algorithms2. The continuous maintenance and addition of 

features to Nevergrad contributes to the attractiveness of the 

overall platform. Such is the motivation for this project as it will 

attempt to facilitate this prospect by providing useful 

contributions to Nevergrad in terms of new problem instances for 

benchmarking. 

3 LITERATURE REVIEW 

The papers read for this project fall into three main categories. 

The first being the documentation and documents published by 

Nevergrad explaining the purpose of their platform and how to 

use it. Papers that present Nevergrad or use Nevergrad as a 

prominent tool in their work also fall into this category. The 

second category relates to benchmarking, including the goals of 

benchmarking, the desirable qualities of a problem scenario, and 

what constitutes good practice in benchmarking studies. Finally, 

papers were read in relation to possible problem instances that 

will be added to Nevergrad. 

 

3.1 Nevergrad, an optimisation platform 

3.1.1 Using and Applying Nevergrad 

Installation of Nevergrad is simple and can be done with a pip 

install. It is also simple to install the master branch of the latest 

release if needed.  

The core object that the user can interact with is called optimiser. 

This object implements the optimisation method and can be one of 

several different optimisers3. The optimiser facilitates the ask and 

tell interface with its three main methods being: 

- Ask: suggest a candidate on which to evaluate the 

function to optimise. 

- Tell: update the optimiser with the value of the function 

for a candidate. 

- Provide_recommendation: returns the candidate that the 

algorithm considers the best. 

 

By using an optimiser, minimisation with Nevergrad is simple and 

an example using the OnePlusOne algorithm is given in figure 2 

below. 

Figure 2: Basic Example to Minimise a Function 

There are many optimisers available and Nevergrad contains a 

dictionary of all the optimisers which can be printed with the 

command below. All algorithms have strengths and weaknesses, 

but Nevergrad has provided a list of algorithms with a few helpful 

comments and rules of thumb as seen in figure 3 below. 

Figure 3: List of Optimisers with Comments from Nevergrad 
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3.1.2 Contributing a benchmark problem to Nevergrad 

As seen in figure 5 below, the documentation includes some 

general instructions before making a pull request and thus making 

a contribution to Nevergrad.  

 
Figure 4: Steps for Contributing to Nevergrad 

 

Despite there being very detailed guidelines for contributing an 

optimisation algorithm to Nevergrad including where to put the 

code and which files to update and so forth, such guidelines do 

not exist for integrating a problem instance. This meant that 

reading of the source code had to be done to understand how 

problem functions are defined and run in Nevergrad.  

 

From this source code, it was found that the problem 

implementation should be stored separately in a folder under the 

directory /nevergrad/functions. However, for Nevergrad to 

optimise against this problem, an experiment must be created in 

the file /nevergrad/benchmark/experiments.py. Experiment 

settings should be set such as the optimisers to use, budget and 

number of workers. The driver file of the problem should be 

imported in this file and called from the experiment. It is helpful 

to look at other experiments as a template. The driver file should 

also be edited such that the parameters to be optimised are defined 

using Nevergrad’s parametrisation. See Parametrisation API 

reference in the documentation to see how this works, but again it 

is also helpful to look at driver files of other problems. 

 

Although preliminary, this category is very critical to the project 

as it provides the basic knowledge on how to use Nevergrad.  

Before making extension to the platform, it is important to 

understand how the platform works and operates. Most of the 

reading has focused on the official documentation, source code 

and papers that present Nevergrad. Further reading included 

reading about researchers that have applied Nevergrad as a 

prominent tool in their work. This gave a deeper insight into the 

capabilities of Nevergrad and the type of work that it is used for. 

3.2 Benchmarking Goals 
It would be simple if there were some optimal optimisation 

algorithm that rendered all the other processes superfluous, but 

instead the incredibly large and ever-growing list of optimisation 

methods leads to the question of the best strategy. This presents 

the importance of benchmarking practices. The questions that are 

asked in benchmarking are essentially: 

- how well does a certain algorithm perform on a given problem? 

- why does an algorithm succeed/fail on a specific test problem? 

Preparing a benchmark study can be intricate and complex. 

Specifying the goal of the study is very important as it provides 

the experimental setup being the choice of problem instances, 

algorithm instances, and performance criteria6. These three 

aspects are fundamental to every benchmark study and need to be 

clearly defined. However, the motivation for performing a 

benchmark study can be very diverse. Figure 5 below summarises 

the most common objectives for a benchmarking study. 

Figure 5: Common Goals of Benchmarking Studies 

Arguably the most common goal of benchmarking, visualisation 

and basic assessment, aims to uncover which algorithms work 

well on a given problem. The study might involve comparing 

different algorithms on one or more problems and deciding which 

is the best. Another aspect of this type of goal may also be to 

assess the problem instance, as benchmarking optimisation 

heuristics can help to analyse the problem and to understand its 

characteristics.  

The second type of goal, sensitivity of performance, can relate to 

testing invariances which is when benchmarking is used to test 

whether an algorithm possesses the correct invariances in terms of 

certain aspects to the problem. Algorithm tuning and 

understanding the influence of parameters and algorithmic 

components are both similar subsections whereby benchmarking 

is used both to understand how much influence certain parameters 

have on an algorithm and to also find the best configuration for a 

given problem. 

The third type of goal, performance extrapolation, refers to a 

‘classical hope’ in benchmarking where the generated data can be 

used to extrapolate the performance of an algorithm for other 

problem instances that haven’t been tested. The hope is that for 

previously unseen problem instances, the benchmarking results 

can be utilised to design, select or configure an algorithm. 

Theory-oriented goals can refer to using benchmarking studies in 

order to cross-validate or corroborate the reseults of a previous 

theoretical study. Vice-versa, empirical results from 

benchmarking studies can provide a source of inspiration for a 

theoretical study. 

The final type of goal, benchmarking in algorithmic development, 

can mean to use benchmarking as a tool to verify whether a given 

program performs as expected, because if an algorithm doesn’t 

perform as expected, then a source code review may be necessary. 

In addition to this, benchmarking can also be used to identify 

weak spots to develop better performing algorithms. 
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Overall, the paper titled Benchmarking in Optimisation: Best 

Practice and Open Issues is very well written and informative. I 

have learnt the most common goals for benchmarking as well as 

the key aspects that set up a good benchmarking study. Given that 

benchmarking is a significant part of my project, the paper is very 

relevant to understand the importance of the role of benchmarking 

in optimisation. 

3.3 Problem Instance, Possible Extensions for 

Nevergrad 
Selecting problem instances to add to Nevergrad is a careful 

process as it plays a key element in algorithm benchmarking. 

There may be real-world scenarios that present as interesting 

optimisation problems. However, there are many characteristics to 

a problem, and the more desirable a problem set is for 

benchmarking practices, the likelihood that the problem set is 

desirable for the Nevergrad platform also increases. The first 

desirable characteristic is that a problem must be diverse. This is 

because a problem that is difficult for one algorithm may be easy 

for another algorithm, so it is good to have a diverse problem set 

where the strengths and weaknesses for different algorithms are 

discovered. Another important property is that a problem set must 

be representative of its own problem class. This gives more credit 

when making claims on an algorithm’s performance for the 

problem class at hand. A good problem scenario should also be 

scalable and tunable which means that characteristics of the 

problem, such as the dimensions and the number of objectives, 

should be adjustable. The final desirable property is that the 

problem already has known optimal solutions which makes it 

easier to measure the exact performance of algorithms in relation 

to the known optimal performance.  

Keeping these desirable qualities in mind, there are a number of 

possible problem instances being investigated under the School of 

Computer Science, University of Adelaide that can be added to 

Nevergrad. Therefore, the papers in this section are highly helpful 

toward choosing which problems are suitable for contribution to 

Nevergrad. The problem instances which are being considered are 

described in the following section. 

3.4 Benchmark Problems for Nevergrad Contribution 

3.4.1 Team Pursuit Track Cycling Problem 

Team pursuit track cycling is a sporting event that involves 

multiple team members that work together to complete a race in 

the minimum time possible. This takes place on an elliptical track 

called a velodrome. The cyclists in the team are allowed to take 

turns riding in the front position which allows the other cyclists to 

conserve energy through aerodynamic benefit and draft. 

Therefore, the team of cyclists are able to maintain a higher 

velocity compared to a single cyclist. The changes to the position 

of the cyclists are most efficiently made on either of the two 

banked turns of the track. The front cyclist moves up the bank and 

rejoins the team at the back9.  

 

Both men and women compete in this sporting event, however 

there are differences to the sporting rules for each gender. For the 

men’s event, there are four cyclists in a team and the race totals 

4000 metres over 16 laps. Only three of the four cyclists need to 

complete the race meaning one cyclist usually spends longer than 

the others in the first position and exhausts his energy and has to 

retire from the race. For the women’s event, there are three 

cyclists in a team and the race is shorter with 12 laps totaling 3000 

metres. However, all three cyclists need to complete the race 

which means no one can retire and the workload is usually more 

evenly distributed across the team. 

 

There are many ways to improve the performance of a track 

cycling team such as the physiological and psychological abilities 

of the team members and the technical factors of the bicycles. 

However, the optimisation problem that can be worked lies in the 

pacing and transition strategy of the cyclists. The pacing strategy 

(set of continuous variables) describes the power of the cyclist in 

the first position in between each transition, i.e. each race 

segment. The transition strategy (set of discrete variables) 

describes the positions where a transition is to happen such that it 

can only occur on a banked turn of the track10. 

 

Overall, the optimisation problem is very complex and is multi-

objective where the primary is to minimise the total time needed 

for a team of cyclists to complete a race. A secondary objective is 

to maximise the amount of energy the riders have at the end of the 

race. It is also an interesting problem given that it requires the 

optimisation of both continuous and discrete variables and 

contains separate instances for men and women.  

 

3.4.1 Travelling Thief Problem 

This problem has been introduced recently and is comparable to 

real-world problems. It is a combination of the Travelling 

Salesperson Problem and the Knapsack Problem. There are n 

cities, and the distance matrix is given. Also, there are m items 

each of them having a value and weight. Every city contains an 

item except for the first one. There is a thief who is going to visit 

these cities exactly once and pick some items from the cities and 

fill his knapsack which has a maximum weight before returning to 

the first city. A renting rate R is to be paid per each time unit 

being on a way. The thief travels at a speed relevant to the weight 

of the knapsack. The goal is to find a tour of maximal profit7. 

 
Figure 6: Illustrative Example of TTP 

As seen in figure 6, the problem is presented numerically. Each 

node except the first has a set of items. For example, node 2 has 

the items I21 with profit 20 and weight 2, and item I22 with profit 

30 and weight 3. Let’s assume the problem constraints being a 

maximum knapsack weight W = 3, renting rate R = 1, minimum 

speed vmin = 0.1 and maximum speed vmax = 1. A tour can be 
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represented as a vector of nodes to be visited in the order T = (x1, 

…., xn) and a packing plan can be represented as a vector of 

boolean numbers indicating which items to pick up. Therefore, the 

optimum objective function for the illustrated case is F(T,P) = 50 

where T = (1, 2, 4, 3) and P = (0, 0, 0, 1, 1, 0). Hence, the optimal 

tour is for the thief to travel from city 1 to city 2 then 4 without 

picking up any items. Next it travels to city 3 where it picks up 

items I32 and I33 for a total profit of 80. However, the knapsack 

now has a weight of 2 which slows the speed of the thief the last 

part of the tour costs 15 instead of 6. The first 3 parts of the tour 

have a total cost of 15. So the final objective value is F(T,P) = 80 

– 15 – 15 = 50. 

Overall, this category of papers is extremely relevant to my 

project as they provide the crucial understanding of both problems 

to be implemented and integrated into Nevergrad. The knowledge 

and understanding I gain about these problems not only helps with 

the implementation of the problems, further increases my 

understanding of why these problems are great candidates to be 

integrated into Nevergrad for future benchmark purposes. 

 

4 METHODOLOGY 

The primary goal for this project was to provide useful and 

insightful contributions to Nevergrad that hopefully improve and 

broadens its functionality. The methodology to achieve this was to 

research relevant problem instances that serve as a ground for 

good benchmarking practices. The original goal was to integrate 

three appropriate benchmark problems (developed and researched 

by Adelaide University). The original timetable is shown in table 

1.0 below. 

 

Table 1: Original Project Timetable 

Week Description 

1       Gain a working understanding of Nevergrad through 

reading papers and becoming familiar with the source 

code and how to run it. 
2 

3 

4 Gain a working understanding of benchmarking and 

various problem instances which can be used to extend 

Nevergrad. 
5 

6 Implement and integrate first problem instance – Team 

Pursuit Track Cycling Problem 7 

8 Implement and integrate second problem instance – 

Travelling Thief Problem 9 

10 Implement and integrate third problem instance – 

Wave Energy Converter Problem 11 

12 Finalise the project – ensure all contributions are 

submitted through a GIT pull request. Write final 

paper. 
13 

 

This was a best-case scenario timeline for the project, however 

some challenges arose which meant this couldn’t be achieved. 

Fortunately, the methodology was flexibly designed to 

accommodate for such contingencies. The plan was simply for 

less benchmark problems to be integrated into Nevergrad to allow 

for more time to overcome challenges.  

 

The problem instances were implemented in Java which meant a 

conversion to Python was necessary, since Nevergrad is a Python 

package. This presented the challenge of learning Java, and 

subsequently the conceptual differences between Python and Java, 

so that I could write efficient Python code that matched the 

functionality of the Java code. Another challenge was integrating 

the problems into Nevergrad. Despite there being clear steps to 

contribute new optimisation algorithms to Nevergrad, there were 

no guidelines for contributing a problem, and the large repository 

meant it wasn’t obvious where to place the code. It was also a 

challenge to understand how experiments and parametrisation 

worked so that the problem could be run inside Nevergrad. 

Overall, these challenges consequently resulted in only two 

problems being contributed (not officially as of yet) to Nevergrad, 

the Team Pursuit Track Cycling Problem and the Travelling Thief 

Problem. 

 

A secondary goal for the project was to use Nevergrad to optimise 

at least one of the problems that had been integrated. This 

involved writing experiments in Nevergrad and utilising different 

optimisers and experiment settings. This was completed for the 

Team Pursuit Track Cycling problem and is explained in further 

detail in the experimental setup. 

 

Another goal of the project is somewhat of an extension and refers 

to the Open Optimisation Competition. All submissions to 

Nevergrad through a pull request are eligible. However, for a 

contribution to be officially added to the Nevergrad source code, 

it has to be approved by the maintainers of Nevergrad. 

Subsequently, the contribution be entered into the competition. 

Therefore, the first challenge will be providing a contribution that 

is worthy enough to first be officially added to Nevergrad and the 

competition. The second goal would then be to produce a 

contribution so worthy that it yields a reward from the 

competition. The challenge with this goal is beating the majority 

of the other competitors as it is likely that the other contributors 

are highly skilled researchers that no doubt have great ideas for 

extending Nevergrad. The submission deadline is 30 September, 

2021.  

 

5 EXPERIMENTAL SETUP 

The first step in the experimental setup is to calculate the original 

results of the Team Pursuit Track Cycling Problem. This is simply 

calculated using default settings of the pacing strategy and 

transition strategy. For the men, the default pacing strategy is 550 

cycling power for every racing segment and 400 for the women. 

The default transition strategy alternates between true and false 

for both the men and women.  

 

The next step is to write an experiment in Nevergrad defining the 

optimisers, budget, and number of workers. Nevergrad contains 

many optimisers, but three basic optimisers called NGOpt10, 

CMA and DE were chosen as they ran smoothly and produced 

slightly different results opening the door for comparison. When 

optimising solely the pacing strategy or transition strategy, a small 

budget (say 1000) is sufficient. However, when optimising both 

the pacing and transition strategy, the search space becomes 

considerably larger and so a larger budget is required. For 

simplicity and fair comparisons to be made across the problem 

formulations, the budget was set to a reasonable size of 3000, and 

the number of workers was set to 10. 
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For each optimiser and problem formulation, 10 runs were 

completed, and the best score was recorded for each repetition. 

Standard statistic results can then be calculated such as the mean, 

standard deviation and best overall score. Violin plots were 

created using the Seaborn library in the Jupyter Notebook 

environment. These plots visualized the distribution and 

probability density of the data, and was useful to compare the 

performance of the optimisation algorithms within each problem 

formulation.  

 

It must be noted that while this experimental setup does allow for 

some comparison between three optimisers, it is less of a priority 

with the main goal being to ensure the problem is properly 

integrated into Nevergrad for future benchmarking studies. 

 

6 RESULTS 

6.1 Experiment Results and Observations 

Using the default settings for the pacing and transition strategy 

resulted in scores: Men’s - 268.1 and Women’s - 219.72. The term 

score is used for the purpose of comparing the optimisers, 

however represents the time (in seconds) that it takes for the team 

to finish a race. 

 

Table 2: Optimisation of Men’s Pacing Strategy 

 NGOpt10 CMA DE 

1 266.8 266.6 262.4 

2 266.8 266.6 258.5 

3 266.6 266.8 258.8 

4 266.6 266.8 261.4 

5 266.8 266.6 259.2 

6 266.8 266.8 260.8 

7 266.6 266.6 261 

8 266.6 266.6 261.2 

9 266.6 266.8 262.4 

10 266.6 266.6 259.2 

Mean 266.68 266.68 260.49 

S. Dev 0.09798 0.09798 1.383076 

Best 266.6 266.6 258.5 

 

 
Figure 7: Optimisation of Men’s Pacing Strategy, NGOpt and 

CMA optimisers 

 

 
Figure 8: Optimisation of Men’s Pacing Strategy, DE optimiser 

 

The violin plot for this problem formulation was split into two 

figures as the results varied to the extent that the plot became 

warped and was difficult to visualize.  

 

As seen in figure 6 and 7, NGOpt and CMA produced very 

extremely similar results with a mean score of 266.6. Despite 

being less accurate with a much large standard deviation, the DE 

optimiser considerably outperformed the other two optimisers 

with a mean score of 260.49.  

 

Table 3: Optimising Men’s Transition Strategy 

 NGOpt10 CMA DE 

1 263.28 264.24 264.2 

2 264.74 262.7 263.52 

3 264.16 262.72 263.4 

4 263.3 263.42 263.22 

5 263.1 264.5 263.74 

6 262.44 262.9 263.36 

7 263.72 263.28 263.56 

8 263.08 263.52 263.3 

9 263.64 263.56 263.3 

10 264.52 263.52 263.26 

Mean 263.598 263.436 263.486 

S. Dev 0.673347 0.563404 0.282 

Best 262.44 262.7 263.22 
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Figure 9: Optimisation of Men’s Transition Strategy 

 

In contrast to the previous problem formulation (optimising 

pacing strategy), figure 8 demonstrated that DE was the most 

consistent of the optimisers on this occasion. Overall, all three 

optimisers performed at a similar level with all achieving a mean 

score around 263.5. 

 

Table 4: Optimisation of Men’s Pacing and Transition Strategy 

 NGOpt10 CMA DE 

1 340.2 343.24 341.12 

2 340.06 339.44 344.44 

3 340.84 342.64 349.84 

4 341 341.06 348.78 

5 344.42 342.74 348.18 

6 343.72 343.74 346.66 

7 338.16 338.74 350.62 

8 343.2 342.98 350.62 

9 341.48 340.94 349.94 

10 344.3 344.16 348.94 

Mean 341.738 341.968 347.914 

S. Dev 1.980494 1.741452 2.900552 

Best 338.16 338.74 341.12 

 

 
Figure 10: Optimisation of Men’s Pacing and Transition Strategy 

 

As seen in figure 9, NGOpt10 and CMA both had similar 

performance with their mean and best scores almost the same. The 

DE algorithm did not perform as well as the other two optimisers 

on this occasion. 

 
Table 5: Optimisation of Women’s Pacing Strategy 

 NGOpt10 CMA DE 

1 217.12 217.12 Inf 

2 217.12 217.12 Inf 

3 217.12 217.12 Inf 

4 217.12 217.12 Inf 

5 217.12 217.12 Inf 

6 217.12 217.12 Inf 

7 217.12 217.12 Inf 

8 217.12 217.12 Inf 

9 217.12 217.12 Inf 

10 217.12 217.12 Inf 

Mean 217.12 217.12 N/A 

S. Dev 0 0 N/A 

Best 217.12 217.12 Inf 

 
As seen in table 5, the results produced for this problem 

formulation were quite unexpected. The NGOpt10 and CMA 

algorithms had identical performance and produced the same 

optimised score of 217.12 for each test run. However, the 

strangest result was that the DE algorithm was not able to find a 

valid score despite being the best performer for the men’s version 

of this problem formulation, i.e. optimisation of men’s pacing 

strategy. 

 

Given these results, the data was not sufficient to produce any 

visualisations. 

 
Table 6: Optimisation of Women’s Transition Strategy 

 NGOpt10 CMA DE 

1 219.32 216.68 215.28 

2 218 215.32 215.36 

3 216.52 216.32 215.48 

4 216.32 216.68 216.92 

5 216.64 216.76 215.16 

6 214.08 214.08 215.52 

7 216.68 214.28 216.52 

8 214.76 216.48 214.36 

9 218.4 216.72 216.56 

10 216.52 216.88 215.16 

Mean 216.724 216.02 215.632 

S. Dev 1.492643 1.011494 0.748716 

Best 214.08 214.08 214.36 
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Figure 11: Optimisation of Women’s Transition Strategy 

 

As seen in figure 10, all optimisers performed relatively similar 

with mean scores ranging from 215.6 to 216.8 in addition to very 

similar overall best scores. The main differences lied in the 

consistency with the NGOpt10 optimiser being the least consistent 

while the DE optimiser was the most consistent. 

 

Table 7: Optimisation of Women’s Pacing and Transition Strategy 

 NGOpt10 CMA DE 

1 247.34 246.5 251.88 

2 248.3 248.26 252.06 

3 247.84 248.88 253.82 

4 249.06 248.8 250.14 

5 251.28 247.16 252.02 

6 249.18 247.22 253.4 

7 249.1 248.24 251.72 

8 249.5 249.5 252.8 

9 249.32 250.6 254.62 

10 247.7 250.32 250.36 

Mean 248.862 248.548 252.282 

S. Dev 1.08109 1.284249 1.350095 

Best 247.34 246.5 250.14 

 

 

 
Figure 12: Optimisation of Women’s Pacing and Transition 

Strategy 

 

As seen in figure 11, the overall performance of the optimisers 

mirrored the results of the men’s version of this problem 

formulation. NGOpt10 and CMA both had similar performance 

with their mean and best scores almost the same. The DE 

algorithm did not perform as well as the other two optimisers. 

 

6.2 Final Discussion 

Overall, there was not one optimiser that stood out as a ‘clear 

winner’ across all the problem formulations. The DE optimiser 

did not show any trends in its performance. On some occasions, it 

performed with great success, especially in the case of optimising 

the men’s pacing strategy. However, other times it would perform 

poorly. One clear trend is that the NGOpt10 and CMA optimisers 

both had similar performance across all the problem formulations. 

 

The best score found for the men’s team was 262.44 

(default=268.1) which came from optimising the men’s transition 

strategy. The best score for the women’s team 214.08 

(default=219.72) which was also a result of solely optimising the 

transition strategy. This was not expected as it was assumed that 

optimising both the pacing strategy and transition strategy 

simultaneously would produce the best results. However, this 

produced the worst results; around 80 seconds slower for the men 

and 40 seconds slower for the women.  

 

This could be explained by the much larger search space since the 

number of variables to optimise is almost doubled for each 

gender. As stated previously, roughly half these variables are 

continuous for the pacing strategy, and the other half are discrete 

for the transition strategy. However, Nevergrad interpreted all the 

variables as continuous and some ‘rabbit code’ was used to 

implement the transition strategy. Hence, the parameters were not 

setup in the perhaps the correct way which may have had a 

negative effect on the optimisers’ performance.  

 

Another explanation could be that simply the optimisers chosen 

were not the best and that other optimisers may better handle the 

larger search space. In addition, perhaps the budget was set too 

low as only one budget was used being 5000. Yet another note to 

consider is that the problem is also capable of outputting more 

information that would help the optimisers. The energy remaining 

of each rider can be passed to the optimiser. This variable would 

need to be maximised and serves as a secondary objective. 
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7 CODE 

GitHub Link: https://github.com/facebookresearch/nevergrad.git 

 

The above GitHub link is for Nevergrad. The code described in 

this paper can be found in the following directories: 

 

/nevergrad/functions/cycling – implementation of Team Track 

Cycling Problem 

 

/nevergrad/functions/ttp – implementation of Travelling Thief 

Problem 

 

/nevergrad/benchmark/experiments.py (cycling and ttp functions) 

– experiments for both problems. 

 

It must be noted that at the time of writing, neither problem 

instances have been officially contributed to Nevergrad. Both 

problems should be officially integrated by the end of September 

2021. 

 

8 CONCLUSIONS 

Developed by Facebook, Nevergrad is a Python library that 

supports derivative-free and evolutionary optimisation. The 

platform is growing in popularity and is supported by a strong 

community of machine learning scientists and other researchers. 

The maintainers of Nevergrad strongly welcome contributions to 

the platform in the form of new algorithms, benchmark problems 

and other ideas. This project focused on the contribution of two 

benchmark problems, the Team Pursuit Track Cycling Problem 

and the Travelling Thief Problem, both of which have been 

thoroughly researched and developed by the School of Computer 

Science, University of Adelaide.  

 

These two additions will hopefully broaden the scope and 

application of Nevergrad by introducing new and interesting 

problem scenarios for future benchmarking studies. The problem 

instances have not yet been officially contributed to Nevergrad, 

however will be submitted by the end of September, 2021. The 

Team Pursuit Track Cycling Problem will be the first to be 

submitted as it has already essentially been integrated and 

experimented upon with Nevergrad’s API which produced some 

interesting results. 

 

Due to the six different problem formulations, the results 

highlighted the complexity of the cycling problem, and why it is a 

good benchmark problem to be integrated into Nevergrad. It was a 

simple experiment phase, however the goal was not so much to 

find the best solution and best optimiser, but rather ensure the 

problem was integrated correctly into Nevergrad and provide a 

basis for future benchmarking studies. There is clearly an 

opportunity for further work which includes testing more 

optimisers, budgets, and incorporating the second objective of 

maximising the energy remaining for each cyclist after the race. 
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