Kerberos Administration Guide
Release 1.18.5

MIT

10

11

12

13

14

15

16

17

18

19

20

21

22

Installation guide
Configuration Files

Realm configuration decisions
Database administration
Database types

Account lockout

Configuring Kerberos with OpenLDAP back-end

Application servers

Host configuration

Backups of secure hosts
PKINIT configuration

OTP Preauthentication
SPAKE Preauthentication
Addressing dictionary attack risks
Principal names and DNS
Encryption types

HTTPS proxy configuration
Authentication indicators
Administration programs
MIT Kerberos defaults
Environment variables

Troubleshooting

CONTENTS

11
41
45
69
73
77
79
83
87
89
95
97
99
101
103
105
107
109
143
147

149

23 Advanced topics 151
24 Various links 159

Index 161

CHAPTER
ONE

INSTALLATION GUIDE

1.1 Contents

1.1.1 Installing KDCs

When setting up Kerberos in a production environment, it is best to have multiple replica KDCs alongside with a
master KDC to ensure the continued availability of the Kerberized services. Each KDC contains a copy of the Kerberos
database. The master KDC contains the writable copy of the realm database, which it replicates to the replica KDCs
at regular intervals. All database changes (such as password changes) are made on the master KDC. Replica KDCs
provide Kerberos ticket-granting services, but not database administration, when the master KDC is unavailable. MIT
recommends that you install all of your KDCs to be able to function as either the master or one of the replicas. This
will enable you to easily switch your master KDC with one of the replicas if necessary (see Switching master and
replica KDCs). This installation procedure is based on that recommendation.

Warning:
* The Kerberos system relies on the availability of correct time information. Ensure that the master and all

replica KDCs have properly synchronized clocks.

* It is best to install and run KDCs on secured and dedicated hardware with limited access. If your KDC is
also a file server, FTP server, Web server, or even just a client machine, someone who obtained root access
through a security hole in any of those areas could potentially gain access to the Kerberos database.

Install and configure the master KDC

Install Kerberos either from the OS-provided packages or from the source (See do_build).

Note: For the purpose of this document we will use the following names:

kerberos.mit.edu — master KDC
kerberos—-1.mit.edu - replica KDC
ATHENA.MIT.EDU - realm name
.k5.ATHENA.MIT.EDU - stash file
admin/admin — admin principal

See MIT Kerberos defaults for the default names and locations of the relevant to this topic files. Adjust the names and
paths to your system environment.

Kerberos Administration Guide, Release 1.18.5

Edit KDC configuration files

Modify the configuration files, krb5.conf and kdc.conf, to reflect the correct information (such as domain-realm map-
pings and Kerberos servers names) for your realm. (See MIT Kerberos defaults for the recommended default locations
for these files).

Most of the tags in the configuration have default values that will work well for most sites. There are some tags in the
krb5.conf file whose values must be specified, and this section will explain those.

If the locations for these configuration files differs from the default ones, set KRB5_CONFIG and
KRBS5_KDC_PROFILE environment variables to point to the krb5.conf and kdc.conf respectively. For example:

export KRB5_CONFIG=/yourdir/krb5.conf
export KRB5_KDC_PROFILE=/yourdir/kdc.conf

krb5.conf

If you are not using DNS TXT records (see Mapping hostnames onto Kerberos realms), you must specify the de-
fault_realm in the /[libdefaults] section. If you are not using DNS URI or SRV records (see Hostnames for KDCs
and KDC Discovery), you must include the kdc tag for each realm in the [realms] section. To communicate with the
kadmin server in each realm, the admin_server tag must be set in the /[realms] section.

An example krb5.conf file:

[libdefaults]
default_realm = ATHENA.MIT.EDU

[realms]
ATHENA.MIT.EDU = {
kdc = kerberos.mit.edu
kdc = kerberos-1.mit.edu
admin_server = kerberos.mit.edu

kdc.conf

The kdc.conf file can be used to control the listening ports of the KDC and kadmind, as well as realm-specific defaults,
the database type and location, and logging.

An example kdc.conf file:

[kdcdefaults]
kdc_listen = 88
kdc_tcp_listen = 88

[realms]
ATHENA .MIT.EDU = {
kadmind_port = 749
max_life = 12h Om Os

max_renewable _life = 7d 0Oh Om Os
master_key_type = aes256-cts
supported_enctypes = aes256-cts:normal aesl28-cts:normal

If the default location does not suit your setup,
explicitly configure the following values:
database_name = /var/krb5kdc/principal

2 Chapter 1. Installation guide

Kerberos Administration Guide, Release 1.18.5

key stash file = /var/krb5kdc/.k5.ATHENA.MIT.EDU
acl_file = /var/krbb5kdc/kadm5.acl

[logging]
By default, the KDC and kadmind will log output using
syslog. You can instead send log output to files like this:
kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmin.log
default = FILE:/var/log/krb51lib.log

Replace ATHENA.MIT.EDU and kerberos.mit .edu with the name of your Kerberos realm and server respec-
tively.

Note: You have to have write permission on the target directories (these directories must exist) used by
database_name, key_stash_file, and acl_file.

Create the KDC database

You will use the kdb5_util command on the master KDC to create the Kerberos database and the optional
stash_definition.

Note: If you choose not to install a stash file, the KDC will prompt you for the master key each time it starts up. This
means that the KDC will not be able to start automatically, such as after a system reboot.

kdb5_util will prompt you for the master password for the Kerberos database. This password can be any string. A
good password is one you can remember, but that no one else can guess. Examples of bad passwords are words that
can be found in a dictionary, any common or popular name, especially a famous person (or cartoon character), your
username in any form (e.g., forward, backward, repeated twice, etc.), and any of the sample passwords that appear in
this manual. One example of a password which might be good if it did not appear in this manual is “MITiys4KS5!”,
which represents the sentence “MIT is your source for Kerberos 5!” (It’s the first letter of each word, substituting the
numeral “4” for the word “for”, and includes the punctuation mark at the end.)

The following is an example of how to create a Kerberos database and stash file on the master KDC, using the kdb5_util
command. Replace ATHENA .MIT.EDU with the name of your Kerberos realm:

shell% kdb5_util create —-r ATHENA.MIT.EDU -s

Initializing database '/usr/local/var/krb5kdc/principal' for realm 'ATHENA.MIT.EDU',
master key name 'K/MEATHENA.MIT.EDU'

You will be prompted for the database Master Password.

It is important that you NOT FORGET this password.

Enter KDC database master key: <= Type the master password.
Re-enter KDC database master key to verify: <= Type it again.
shell%

This will create five files in LOCALSTATEDIR /krb5kdc (or at the locations specified in kdc.conf):
¢ two Kerberos database files, principal, and principal.ok
* the Kerberos administrative database file, principal.kadm5

* the administrative database lock file, principal.kadm5.lock

1.1. Contents 3

Kerberos Administration Guide, Release 1.18.5

* the stash file, in this example . k5.ATHENA.MIT.EDU. If you do not want a stash file, run the above command
without the -s option.

For more information on administrating Kerberos database see Operations on the Kerberos database.

Add administrators to the ACL file

Next, you need create an Access Control List (ACL) file and put the Kerberos principal of at least one of the admin-
istrators into it. This file is used by the kadmind daemon to control which principals may view and make privileged
modifications to the Kerberos database files. The ACL filename is determined by the acl_file variable in kdc.conf’; the
default is LOCALSTATEDIR /krb5kdc/kadm5.acl.

For more information on Kerberos ACL file see kadm5.acl.

Add administrators to the Kerberos database

Next you need to add administrative principals (i.e., principals who are allowed to administer Kerberos database)
to the Kerberos database. You must add at least one principal now to allow communication between the Kerberos
administration daemon kadmind and the kadmin program over the network for further administration. To do this, use
the kadmin.local utility on the master KDC. kadmin.local is designed to be run on the master KDC host without using
Kerberos authentication to an admin server; instead, it must have read and write access to the Kerberos database on
the local filesystem.

The administrative principals you create should be the ones you added to the ACL file (see Add administrators to the
ACL file).

In the following example, the administrative principal admin/admin is created:

shell% kadmin.local
kadmin.local: addprinc admin/admin@ATHENA.MIT.EDU

No policy specified for "admin/admin@ATHENA.MIT.EDU";

assigning "default".

Enter password for principal admin/admin@ATHENA.MIT.EDU: <= Enter a password.
Re-enter password for principal admin/admin@ATHENA.MIT.EDU: <= Type it again.
Principal "admin/admin@ATHENA.MIT.EDU" created.

kadmin.local:

Start the Kerberos daemons on the master KDC

At this point, you are ready to start the Kerberos KDC (krb5kdc) and administrative daemons on the Master KDC. To
do so, type:

shell% krbSkdc
shell% kadmind

Each server daemon will fork and run in the background.

Note: Assuming you want these daemons to start up automatically at boot time, you can add them to the KDC’s
/etc/rcor /etc/inittab file. You need to have a stash_definition in order to do this.

You can verify that they started properly by checking for their startup messages in the logging locations you defined
in krb5.conf (see [logging]). For example:

4 Chapter 1. Installation guide

Kerberos Administration Guide, Release 1.18.5

shell% tail /var/log/krbb5kdc.log

Dec 02 12:35:47 beeblebrox krb5kdc[3187] (info): commencing operation
shell% tail /var/log/kadmin.log

Dec 02 12:35:52 beeblebrox kadmind[3189] (info): starting

Any errors the daemons encounter while starting will also be listed in the logging output.

As an additional verification, check if kinit(1) succeeds against the principals that you have created on the previous
step (Add administrators to the Kerberos database). Run:

shell% kinit admin/admin@ATHENA.MIT.EDU

Install the replica KDCs

You are now ready to start configuring the replica KDCs.

Note: Assuming you are setting the KDCs up so that you can easily switch the master KDC with one of the replicas,
you should perform each of these steps on the master KDC as well as the replica KDCs, unless these instructions
specify otherwise.

Create host keytabs for replica KDCs

Each KDC needs a host key in the Kerberos database. These keys are used for mutual authentication when propa-
gating the database dump file from the master KDC to the secondary KDC servers.

On the master KDC, connect to administrative interface and create the host principal for each of the KDCs” host
services. For example, if the master KDC were called kerberos.mit .edu, and you had a replica KDC named
kerberos-1.mit.edu, you would type the following:

shell% kadmin

kadmin: addprinc -randkey host/kerberos.mit.edu

No policy specified for "host/kerberos.mit.edu@ATHENA.MIT.EDU"; assigning "default"
Principal "host/kerberos.mit.edu@ATHENA.MIT.EDU" created.

kadmin: addprinc -randkey host/kerberos-1.mit.edu
No policy specified for "host/kerberos-1.mit.edu@ATHENA.MIT.EDU"; assigning "default"
Principal "host/kerberos-1.mit.edu@ATHENA.MIT.EDU" created.

It is not strictly necessary to have the master KDC server in the Kerberos database, but it can be handy if you want to
be able to swap the master KDC with one of the replicas.

Next, extract host random keys for all participating KDCs and store them in each host’s default keytab file. Ideally,
you should extract each keytab locally on its own KDC. If this is not feasible, you should use an encrypted session to
send them across the network. To extract a keytab directly on a replica KDC called kerberos-1.mit.edu, you
would execute the following command:

kadmin: ktadd host/kerberos-1.mit.edu
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type aes256-cts-hmac-shal-96 added to keytab FILE:/etc/krb5.keytab.
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type aesl28-cts—hmac-shal-96 added to keytab FILE:/etc/krb5.keytab.
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type aes256-cts-hmac-sha384-192 added to keytab FILE:/etc/krb5.keytab.

1.1. Contents 5

Kerberos Administration Guide, Release 1.18.5

Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption
type arcfour-hmac added to keytab FILE:/etc/krb5.keytab.

If you are instead extracting a keytab for the replica KDC called kerberos—1.mit .edu on the master KDC, you
should use a dedicated temporary keytab file for that machine’s keytab:

kadmin: ktadd -k /tmp/kerberos-1.keytab host/kerberos-1.mit.edu

Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption
type aes256-cts—hmac-shal-96 added to keytab FILE:/etc/krb5.keytab.

Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption
type aesl28-cts-hmac-shal-96 added to keytab FILE:/etc/krb5.keytab.

The file /tmp/kerberos—1.keytab canthen be installed as /etc/krb5.keytab on the host kerberos-1.
mit.edu.

Configure replica KDCs

Database propagation copies the contents of the master’s database, but does not propagate configuration files, stash
files, or the kadm5 ACL file. The following files must be copied by hand to each replica (see MIT Kerberos defaults
for the default locations for these files):

* krb5.conf

* kdc.conf

* kadm5.acl

* master key stash file

Move the copied files into their appropriate directories, exactly as on the master KDC. kadm5.acl is only needed to
allow a replica to swap with the master KDC.

The database is propagated from the master KDC to the replica KDCs via the kpropd daemon. You must explicitly
specify the principals which are allowed to provide Kerberos dump updates on the replica machine with a new database.
Create a file named kpropd.acl in the KDC state directory containing the host principals for each of the KDCs:

host/kerberos.mit.edu@ATHENA.MIT.EDU
host/kerberos—1.mit.edu@ATHENA.MIT.EDU

Note: If you expect that the master and replica KDCs will be switched at some point of time, list the host principals
from all participating KDC servers in kpropd.acl files on all of the KDCs. Otherwise, you only need to list the master
KDC'’s host principal in the kpropd.acl files of the replica KDCs.

Then, add the following line to /etc/inetd.conf on each KDC (adjust the path to kpropd):

’krbS_prop stream tcp nowait root /usr/local/sbin/kpropd kpropd

You also need to add the following line to /et c/services on each KDC, if it is not already present (assuming that
the default port is used):

’krbS_prop 754 /tcp # Kerberos replica propagation

Restart inetd daecmon.

Alternatively, start kpropd as a stand-alone daemon. This is required when incremental propagation is enabled.

6 Chapter 1. Installation guide

Kerberos Administration Guide, Release 1.18.5

Now that the replica KDC is able to accept database propagation, you’ll need to propagate the database from the
master server.

NOTE: Do not start the replica KDC yet; you still do not have a copy of the master’s database.

Propagate the database to each replica KDC

First, create a dump file of the database on the master KDC, as follows:

shell% kdb5_util dump /usr/local/var/krb5kdc/replica_datatrans

Then, manually propagate the database to each replica KDC, as in the following example:

shell% kprop —-f /usr/local/var/krb5kdc/replica_datatrans kerberos-1.mit.edu

Database propagation to kerberos-1.mit.edu: SUCCEEDED

You will need a script to dump and propagate the database. The following is an example of a Bourne shell script that
will do this.

Note: Remember that you need to replace /usr/local/var/krb5kdc with the name of the KDC state directory.

#!/bin/sh

kdclist = "kerberos-l.mit.edu kerberos-2.mit.edu"
kdb5_util dump /usr/local/var/krb5kdc/replica_datatrans
for kdc in $kdclist

do

kprop —-f /usr/local/var/krb5kdc/replica_datatrans S$kdc
done

You will need to set up a cron job to run this script at the intervals you decided on earlier (see Database propagation).

Now that the replica KDC has a copy of the Kerberos database, you can start the krbSkdc daemon:

shell% krbbkdc

As with the master KDC, you will probably want to add this command to the KDCs’ /etc/rcor /etc/inittab
files, so they will start the krb5Skdc daemon automatically at boot time.

Propagation failed?

You may encounter the following error messages. For a more detailed discussion on possible causes and solutions
click on the error link to be redirected to Troubleshooting section.

1. kprop: No route to host while connecting to server
2. kprop: Connection refused while connecting to server

3. kprop: Server rejected authentication (during sendauth exchange) while authenticating to server

1.1. Contents 7

Kerberos Administration Guide, Release 1.18.5

Add Kerberos principals to the database
Once your KDCs are set up and running, you are ready to use kadmin to load principals for your users, hosts, and other
services into the Kerberos database. This procedure is described fully in Adding, modifying and deleting principals.

You may occasionally want to use one of your replica KDCs as the master. This might happen if you are upgrading
the master KDC, or if your master KDC has a disk crash. See the following section for the instructions.

Switching master and replica KDCs
You may occasionally want to use one of your replica KDCs as the master. This might happen if you are upgrading
the master KDC, or if your master KDC has a disk crash.

Assuming you have configured all of your KDCs to be able to function as either the master KDC or a replica KDC (as
this document recommends), all you need to do to make the changeover is:

If the master KDC is still running, do the following on the old master KDC:
1. Kill the kadmind process.
2. Disable the cron job that propagates the database.

3. Run your database propagation script manually, to ensure that the replicas all have the latest copy of the database
(see Propagate the database to each replica KDC).

On the new master KDC:
1. Start the kadmind daemon (see Start the Kerberos daemons on the master KDC).
2. Set up the cron job to propagate the database (see Propagate the database to each replica KDC).

3. Switch the CNAME:s of the old and new master KDCs. If you can’t do this, you’ll need to change the krb5.conf
file on every client machine in your Kerberos realm.

Incremental database propagation

If you expect your Kerberos database to become large, you may wish to set up incremental propagation to replica
KDCs. See Incremental database propagation for details.

1.1.2 Installing and configuring UNIX client machines

The Kerberized client programs include kinit(1), klist(1), kdestroy(1), and kpasswd(1). All of these programs are in
the directory BINDIR.

You can often integrate Kerberos with the login system on client machines, typically through the use of PAM. The
details vary by operating system, and should be covered in your operating system’s documentation. If you do this, you
will need to make sure your users know to use their Kerberos passwords when they log in.

You will also need to educate your users to use the ticket management programs kinit, klist, and kdestroy. If you do
not have Kerberos password changing integrated into the native password program (again, typically through PAM),
you will need to educate users to use kpasswd in place of its non-Kerberos counterparts passwd.

Client machine configuration files

Each machine running Kerberos should have a krb5.conf file. At a minimum, it should define a default_realm setting
in [libdefaults]. If you are not using DNS SRV records (Hostnames for KDCs) or URI records (KDC Discovery), it
must also contain a [realms] section containing information for your realm’s KDCs.

8 Chapter 1. Installation guide

Kerberos Administration Guide, Release 1.18.5

Consider setting rdns to false in order to reduce your dependence on precisely correct DNS information for service
hostnames. Turning this flag off means that service hostnames will be canonicalized through forward name resolution
(which adds your domain name to unqualified hostnames, and resolves CNAME records in DNS), but not through
reverse address lookup. The default value of this flag is true for historical reasons only.

If you anticipate users frequently logging into remote hosts (e.g., using ssh) using forwardable credentials, consider
setting forwardable to true so that users obtain forwardable tickets by default. Otherwise users will need to use
kinit -f to get forwardable tickets.

Consider adjusting the ticket_lifetime setting to match the likely length of sessions for your users. For instance, if
most of your users will be logging in for an eight-hour workday, you could set the default to ten hours so that tickets
obtained in the morning expire shortly after the end of the workday. Users can still manually request longer tickets
when necessary, up to the maximum allowed by each user’s principal record on the KDC.

If a client host may access services in different realms, it may be useful to define a [domain_realm] mapping so that
clients know which hosts belong to which realms. However, if your clients and KDC are running release 1.7 or later,
it is also reasonable to leave this section out on client machines and just define it in the KDC’s krb5.conf.

1.1.3 UNIX Application Servers

An application server is a host that provides one or more services over the network. Application servers can be “secure”
or “insecure.” A “secure” host is set up to require authentication from every client connecting to it. An “insecure” host
will still provide Kerberos authentication, but will also allow unauthenticated clients to connect.

If you have Kerberos VS5 installed on all of your client machines, MIT recommends that you make your hosts secure,
to take advantage of the security that Kerberos authentication affords. However, if you have some clients that do not
have Kerberos V5 installed, you can run an insecure server, and still take advantage of Kerberos V5’s single sign-on
capability.

The keytab file

All Kerberos server machines need a keytab file to authenticate to the KDC. By default on UNIX-like systems this file
is named DEFKTNAME. The keytab file is an local copy of the host’s key. The keytab file is a potential point of entry
for a break-in, and if compromised, would allow unrestricted access to its host. The keytab file should be readable only
by root, and should exist only on the machine’s local disk. The file should not be part of any backup of the machine,
unless access to the backup data is secured as tightly as access to the machine’s root password.

In order to generate a keytab for a host, the host must have a principal in the Kerberos database. The procedure for
adding hosts to the database is described fully in Adding, modifying and deleting principals. (See Create host keytabs
Jor replica KDCs for a brief description.) The keytab is generated by running kadmin and issuing the ktadd command.

For example, to generate a keytab file to allow the host trillium.mit .edu to authenticate for the services host,
ftp, and pop, the administrator joeadmin would issue the command (on trillium.mit .edu):

trillium% kadmin

Authenticating as principal root/admin@ATHENA.MIT.EDU with password.

Password for root/admin@ATHENA.MIT.EDU:

kadmin: ktadd host/trillium.mit.edu ftp/trillium.mit.edu pop/trillium.mit.edu
Entry for principal host/trillium.mit.edu@ATHENA.MIT.EDU with kvno 3, encryption type
—aes256-cts-hmac-sha384-192 added to keytab FILE:/etc/krb5.keytab.

kadmin: Entry for principal ftp/trillium.mit.edu@ATHENA.MIT.EDU with kvno 3,
—encryption type aes256-cts-hmac-sha384-192 added to keytab FILE:/etc/krb5.keytab.
kadmin: Entry for principal pop/trillium.mit.edu@ATHENA.MIT.EDU with kvno 3,
—encryption type aes256-cts-hmac-sha384-192 added to keytab FILE:/etc/krb5.keytab.
kadmin: quit

trillium$

1.1. Contents 9

Kerberos Administration Guide, Release 1.18.5

If you generate the keytab file on another host, you need to get a copy of the keytab file onto the destination host
(trillium, in the above example) without sending it unencrypted over the network.

Some advice about secure hosts

Kerberos V5 can protect your host from certain types of break-ins, but it is possible to install Kerberos V5 and still
leave your host vulnerable to attack. Obviously an installation guide is not the place to try to include an exhaustive list
of countermeasures for every possible attack, but it is worth noting some of the larger holes and how to close them.

We recommend that backups of secure machines exclude the keytab file (DEFKTNAME). If this is not possible, the
backups should at least be done locally, rather than over a network, and the backup tapes should be physically secured.

The keytab file and any programs run by root, including the Kerberos V5 binaries, should be kept on local disk. The
keytab file should be readable only by root.

1.2 Additional references

1. Debian: Setting up MIT Kerberos 5

2. Solaris: Configuring the Kerberos Service

10 Chapter 1. Installation guide

http://techpubs.spinlocksolutions.com/dklar/kerberos.html
https://docs.oracle.com/cd/E19253-01/816-4557/6maosrjv2/index.html

CHAPTER
TWO

CONFIGURATION FILES

Kerberos uses configuration files to allow administrators to specify settings on a per-machine basis. krb5.conf applies
to all applications using the Kerboros library, on clients and servers. For KDC-specific applications, additional settings
can be specified in kdc.conf; the two files are merged into a configuration profile used by applications accessing the
KDC database directly. kadm5.acl is also only used on the KDC, it controls permissions for modifying the KDC
database.

2.1 Contents

2.1.1 krb5.conf

The krb5.conf file contains Kerberos configuration information, including the locations of KDCs and admin servers
for the Kerberos realms of interest, defaults for the current realm and for Kerberos applications, and mappings of
hostnames onto Kerberos realms. Normally, you should install your krb5.conf file in the directory /etc. You can
override the default location by setting the environment variable KRBS_CONFIG. Multiple colon-separated filenames
may be specified in KRB5_CONFIG:; all files which are present will be read. Starting in release 1.14, directory names
can also be specified in KRB5_CONFIG:; all files within the directory whose names consist solely of alphanumeric
characters, dashes, or underscores will be read.

Structure

The krb5.conf file is set up in the style of a Windows INI file. Lines beginning with ‘#* or ‘;* (possibly after initial
whitespace) are ignored as comments. Sections are headed by the section name, in square brackets. Each section may
contain zero or more relations, of the form:

foo = bar

or:

fubar = {
foo = bar
baz = quux

}

Placing a “*’ after the closing bracket of a section name indicates that the section is final, meaning that if the same
section appears within a later file specified in KRBS_CONFIG, it will be ignored. A subsection can be marked as
final by placing a “*’ after either the tag name or the closing brace.

The krb5.conf file can include other files using either of the following directives at the beginning of a line:

11

Kerberos Administration Guide, Release 1.18.5

include FILENAME
includedir DIRNAME

FILENAME or DIRNAME should be an absolute path. The named file or directory must exist and be readable. Includ-
ing a directory includes all files within the directory whose names consist solely of alphanumeric characters, dashes,
or underscores. Starting in release 1.15, files with names ending in “.conf” are also included, unless the name begins
with “.’. Included profile files are syntactically independent of their parents, so each included file must begin with a
section header. Starting in release 1.17, files are read in alphanumeric order; in previous releases, they may be read in
any order.

The krb5.conf file can specify that configuration should be obtained from a loadable module, rather than the file itself,
using the following directive at the beginning of a line before any section headers:

module MODULEPATH:RESIDUAL

MODULEPATH may be relative to the library path of the krb5 installation, or it may be an absolute path. RESIDUAL
is provided to the module at initialization time. If krb5.conf uses a module directive, kdc.conf should also use one if it
exists.

Sections

The krb5.conf file may contain the following sections:

[libdefaults] Settings used by the Kerberos V5 library

[realms] Realm-specific contact information and settings
[domain_realm] | Maps server hostnames to Kerberos realms

[capaths] Authentication paths for non-hierarchical cross-realm
[appdefaults] Settings used by some Kerberos V5 applications
[plugins] Controls plugin module registration

Additionally, krb5.conf may include any of the relations described in kdc.conf, but it is not a recommended practice.

[libdefaults]

The libdefaults section may contain any of the following relations:

allow_weak_crypto If this flag is set to false, then weak encryption types (as noted in Encryption types in kdc.conf’)
will be filtered out of the lists default_tgs_enctypes, default_tkt_enctypes, and permitted_enctypes. The
default value for this tag is false.

canonicalize If this flag is set to true, initial ticket requests to the KDC will request canonicalization of the client
principal name, and answers with different client principals than the requested principal will be accepted. The
default value is false.

ccache_type This parameter determines the format of credential cache types created by kinit(1) or other programs.
The default value is 4, which represents the most current format. Smaller values can be used for compatibility
with very old implementations of Kerberos which interact with credential caches on the same host.

clockskew Sets the maximum allowable amount of clockskew in seconds that the library will tolerate before assuming
that a Kerberos message is invalid. The default value is 300 seconds, or five minutes.

The clockskew setting is also used when evaluating ticket start and expiration times. For example, tickets that
have reached their expiration time can still be used (and renewed if they are renewable tickets) if they have been
expired for a shorter duration than the clockskew setting.

12 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.18.5

default_ccache_name This relation specifies the name of the default credential cache. The default is DEFCCNAME.
This relation is subject to parameter expansion (see below). New in release 1.11.

default_client_keytab_name This relation specifies the name of the default keytab for obtaining client credentials.
The default is DEFCKTNAME. This relation is subject to parameter expansion (see below). New in release 1.11.

default_keytab_name This relation specifies the default keytab name to be used by application servers such as sshd.
The default is DEFKTNAME. This relation is subject to parameter expansion (see below).

default_rcache_name This relation specifies the name of the default replay cache. The defaultis df1 :. This relation
is subject to parameter expansion (see below). New in release 1.18.

default_realm Identifies the default Kerberos realm for the client. Set its value to your Kerberos realm. If this value is
not set, then a realm must be specified with every Kerberos principal when invoking programs such as kinit(1).

default_tgs_enctypes Identifies the supported list of session key encryption types that the client should request when
making a TGS-REQ), in order of preference from highest to lowest. The list may be delimited with commas or
whitespace. See Encryption types in kdc.conf for a list of the accepted values for this tag. Starting in release
1.18, the default value is the value of permitted_enctypes. For previous releases or if permitted_enctypes
is not set, the default value is aes256-cts—hmac—-shal-96 aesl28-cts—hmac-shal-96
aesz256-cts-hmac-sha384-192 aesl28-cts—hmac-sha256-128 des3-cbc-shal
arcfour-hmac-md5 camellia256-cts—-cmac camellial28-cts—-cmac.

Do not set this unless required for specific backward compatibility purposes; stale values of this setting can
prevent clients from taking advantage of new stronger enctypes when the libraries are upgraded.

default_tkt_enctypes Identifies the supported list of session key encryption types that the client
should request when making an AS-REQ, in order of preference from highest to lowest. = The
format is the same as for default tgs enctypes. Starting in release 1.18, the default value
is the value of permitted_enctypes. For previous releases or if permitted_enctypes is not
set, the default value s aes256-cts—-hmac-shal-96 aesl28-cts-hmac-shal-96
aes256-cts-hmac-sha384-192 aesl28-cts—hmac-sha256-128 des3-cbc-shal
arcfour-hmac-md5 camellia256-cts—-cmac camellial28-cts-cmac.

Do not set this unless required for specific backward compatibility purposes; stale values of this setting can
prevent clients from taking advantage of new stronger enctypes when the libraries are upgraded.

dns_canonicalize_hostname Indicate whether name lookups will be used to canonicalize hostnames for use in ser-
vice principal names. Setting this flag to false can improve security by reducing reliance on DNS, but means
that short hostnames will not be canonicalized to fully-qualified hostnames. The default value is true.

If this option is set to fallback (new in release 1.18), DNS canonicalization will only be performed the server
hostname is not found with the original name when requesting credentials.

dns_lookup_kdc Indicate whether DNS SRV records should be used to locate the KDCs and other servers for a realm,
if they are not listed in the krb5.conf information for the realm. (Note that the admin_server entry must be in
the krb5.conf realm information in order to contact kadmind, because the DNS implementation for kadmin is
incomplete.)

Enabling this option does open up a type of denial-of-service attack, if someone spoofs the DNS records and
redirects you to another server. However, it’s no worse than a denial of service, because that fake KDC will
be unable to decode anything you send it (besides the initial ticket request, which has no encrypted data), and
anything the fake KDC sends will not be trusted without verification using some secret that it won’t know.

dns_uri_lookup Indicate whether DNS URI records should be used to locate the KDCs and other servers for a realm,
if they are not listed in the krb5.conf information for the realm. SRV records are used as a fallback if no URI
records were found. The default value is true. New in release 1.15.

enforce_ok_as_delegate If this flag to true, GSSAPI credential delegation will be disabled when the
ok-as—-delegate flag is not set in the service ticket. If this flag is false, the ok—as—delegate ticket
flag is only enforced when an application specifically requests enforcement. The default value is false.

2.1. Contents 13

Kerberos Administration Guide, Release 1.18.5

err_fmt This relation allows for custom error message formatting. If a value is set, error messages will be formatted
by substituting a normal error message for %M and an error code for %C in the value.

extra_addresses This allows a computer to use multiple local addresses, in order to allow Kerberos to work in a net-
work that uses NATs while still using address-restricted tickets. The addresses should be in a comma-separated
list. This option has no effect if noaddresses is true.

forwardable If this flag is true, initial tickets will be forwardable by default, if allowed by the KDC. The default value
is false.

ignore_acceptor_hostname When accepting GSSAPI or krb5 security contexts for host-based service principals,
ignore any hostname passed by the calling application, and allow clients to authenticate to any service principal
in the keytab matching the service name and realm name (if given). This option can improve the administrative
flexibility of server applications on multihomed hosts, but could compromise the security of virtual hosting
environments. The default value is false. New in release 1.10.

kSlogin_authoritative If this flag is true, principals must be listed in a local user’s k5login file to be granted login
access, if a .kS5login(5) file exists. If this flag is false, a principal may still be granted login access through other
mechanisms even if a kSlogin file exists but does not list the principal. The default value is true.

kSlogin_directory If set, the library will look for a local user’s kSlogin file within the named directory, with a filename
corresponding to the local username. If not set, the library will look for k5login files in the user’s home directory,
with the filename .k5login. For security reasons, .k5login files must be owned by the local user or by root.

kem_mach_service On macOS only, determines the name of the bootstrap service used to contact the KCM daemon
for the KCM credential cache type. If the value is —, Mach RPC will not be used to contact the KCM daemon.
The default value is org.h51.kcm.

kem_socket Determines the path to the Unix domain socket used to access the KCM daemon for the KCM credential
cache type. If the value is —, Unix domain sockets will not be used to contact the KCM daemon. The default
value is /var/run/.heim_org.h51.kcm-socket.

kdc_default_options Default KDC options (Xored for multiple values) when requesting initial tickets. By default it
is set to 0x00000010 (KDC_OPT_RENEWABLE_OK).

kdc_timesync Accepted values for this relation are 1 or 0. If it is nonzero, client machines will compute the difference
between their time and the time returned by the KDC in the timestamps in the tickets and use this value to correct
for an inaccurate system clock when requesting service tickets or authenticating to services. This corrective
factor is only used by the Kerberos library; it is not used to change the system clock. The default value is 1.

noaddresses If this flag is true, requests for initial tickets will not be made with address restrictions set, allowing the
tickets to be used across NATs. The default value is true.

permitted_enctypes Identifies the encryption types that servers will permit for session keys and for ticket
and authenticator encryption, ordered by preference from highest to lowest. Starting in release
1.18, this tag also acts as the default value for default_tgs enctypes and default_tkt_enctypes.
The default value for this tag is aes256-cts-hmac-shal-96 aesl28-cts-hmac-shal-96
aes256-cts-hmac-sha384-192 aesl28-cts-hmac-sha256-128 des3-cbc-shal
arcfour-hmac-md5 camellia256-cts—-cmac camellial28-cts-cmac.

plugin_base_dir If set, determines the base directory where krb5 plugins are located. The default value is the krb5/
plugins subdirectory of the krb5 library directory. This relation is subject to parameter expansion (see below)
in release 1.17 and later.

preferred_preauth_types This allows you to set the preferred preauthentication types which the client will attempt
before others which may be advertised by a KDC. The default value for this setting is “17, 16, 15, 14”, which
forces libkrb5 to attempt to use PKINIT if it is supported.

proxiable If this flag is true, initial tickets will be proxiable by default, if allowed by the KDC. The default value is
false.

14 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.18.5

qualify_shortname If this string is set, it determines the domain suffix for single-component hostnames when DNS
canonicalization is not used (either because dns_canonicalize_hostname is false or because forward canoni-
calization failed). The default value is the first search domain of the system’s DNS configuration. To disable
qualification of shortnames, set this relation to the empty string with qualify_ shortname = "". (New in
release 1.18.)

rdns If this flag is true, reverse name lookup will be used in addition to forward name lookup to canonicalizing
hostnames for use in service principal names. If dns_canonicalize_hostname is set to false, this flag has no
effect. The default value is true.

realm_try_domains Indicate whether a host’s domain components should be used to determine the Kerberos realm
of the host. The value of this variable is an integer: -1 means not to search, 0 means to try the host’s domain
itself, 1 means to also try the domain’s immediate parent, and so forth. The library’s usual mechanism for
locating Kerberos realms is used to determine whether a domain is a valid realm, which may involve consulting
DNS if dns_lookup_kdc is set. The default is not to search domain components.

renew_lifetime (duration string.) Sets the default renewable lifetime for initial ticket requests. The default value is 0.

spake_preauth_groups A whitespace or comma-separated list of words which specifies the groups allowed for
SPAKE preauthentication. The possible values are:

edwards25519 | Edwards25519 curve (RFC 7748)
P-256 NIST P-256 curve (RFC 5480)
P-384 NIST P-384 curve (RFC 5480)
P-521 NIST P-521 curve (RFC 5480)

The default value for the client is edwards25519. The default value for the KDC is empty. New in release
1.17.

ticket_lifetime (duration string.) Sets the default lifetime for initial ticket requests. The default value is 1 day.

udp_preference_limit When sending a message to the KDC, the library will try using TCP before UDP if the size of
the message is above udp_preference_limit. If the message is smaller than udp_preference_limit, then UDP
will be tried before TCP. Regardless of the size, both protocols will be tried if the first attempt fails.

verify_ap_req_nofail If this flag is true, then an attempt to verify initial credentials will fail if the client machine
does not have a keytab. The default value is false.

[realms]

Each tag in the [realms] section of the file is the name of a Kerberos realm. The value of the tag is a subsection with
relations that define the properties of that particular realm. For each realm, the following tags may be specified in the
realm’s subsection:

admin_server Identifies the host where the administration server is running. Typically, this is the master Kerberos
server. This tag must be given a value in order to communicate with the kadmind server for the realm.

auth_to_local This tag allows you to set a general rule for mapping principal names to local user names. It will be
used if there is not an explicit mapping for the principal name that is being translated. The possible values are:

RULE:exp The local name will be formulated from exp.

The format for exp is [n:stringl(regexp)s/patterni/replacementl/g. The integer n indicates how many compo-
nents the target principal should have. If this matches, then a string will be formed from string, substituting
the realm of the principal for $0 and the n’th component of the principal for $n (e.g., if the principal was
johndoe/admin then [2:$2$1foo] would result in the string adminjohndoefoo). If this string
matches regexp, then the s// [g] substitution command will be run over the string. The optional g will
cause the substitution to be global over the string, instead of replacing only the first match in the string.

2.1. Contents 15

https://tools.ietf.org/html/rfc7748.html
https://tools.ietf.org/html/rfc5480.html
https://tools.ietf.org/html/rfc5480.html
https://tools.ietf.org/html/rfc5480.html

Kerberos Administration Guide, Release 1.18.5

DEFAULT The principal name will be used as the local user name. If the principal has more than one compo-
nent or is not in the default realm, this rule is not applicable and the conversion will fail.

For example:

[realms]

ATHENA.MIT.EDU = {
auth_to_local RULE:
auth_to_local = RULE:
auth_to_local = RULE:
auth_to_local = DEFAU

2:$1] (johndoe) s/".*$/guest/
2:81;%2] (~.*;admin$)s/;admins//
2:82] (~.x;root)s/*.+x$/root/

T

B —

would result in any principal without root or admin as the second component to be translated with the default
rule. A principal with a second component of admin will become its first component. root will be used as
the local name for any principal with a second component of root. The exception to these two rules are any
principals johndoe/ *, which will always get the local name guest.

auth_to_local_names This subsection allows you to set explicit mappings from principal names to local user names.
The tag is the mapping name, and the value is the corresponding local user name.

default_domain This tag specifies the domain used to expand hostnames when translating Kerberos 4 service prin-
cipals to Kerberos 5 principals (for example, when converting rcmd.hostname to host/hostname.
domain).

disable_encrypted_timestamp If this flag is true, the client will not perform encrypted timestamp preauthentication
if requested by the KDC. Setting this flag can help to prevent dictionary attacks by active attackers, if the realm’s
KDCs support SPAKE preauthentication or if initial authentication always uses another mechanism or always
uses FAST. This flag persists across client referrals during initial authentication. This flag does not prevent the
KDC from offering encrypted timestamp. New in release 1.17.

http_anchors When KDCs and kpasswd servers are accessed through HTTPS proxies, this tag can be used to specify
the location of the CA certificate which should be trusted to issue the certificate for a proxy server. If left
unspecified, the system-wide default set of CA certificates is used.

The syntax for values is similar to that of values for the pkinit_anchors tag:
FILE: filename

filename is assumed to be the name of an OpenSSL-style ca-bundle file.
DIR: dirname

dirname is assumed to be an directory which contains CA certificates. All files in the directory will be examined;
if they contain certificates (in PEM format), they will be used.

ENV: envvar

envvar specifies the name of an environment variable which has been set to a value conforming to one of the
previous values. For example, ENV:X509_PROXY_CA, where environment variable X509_PROXY_CA has
beensetto FILE: /tmp/my_proxy.pem.

kde The name or address of a host running a KDC for that realm. An optional port number, separated from the
hostname by a colon, may be included. If the name or address contains colons (for example, if it is an IPv6
address), enclose it in square brackets to distinguish the colon from a port separator. For your computer to be
able to communicate with the KDC for each realm, this tag must be given a value in each realm subsection in
the configuration file, or there must be DNS SRV records specifying the KDCs.

kpasswd_server Points to the server where all the password changes are performed. If there is no such entry, DNS
will be queried (unless forbidden by dns_lookup_kdc). Finally, port 464 on the admin_server host will be
tried.

16 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.18.5

master_kdc Identifies the master KDC(s). Currently, this tag is used in only one case: If an attempt to get credentials
fails because of an invalid password, the client software will attempt to contact the master KDC, in case the
user’s password has just been changed, and the updated database has not been propagated to the replica servers
yet.

v4_instance_convert This subsection allows the administrator to configure exceptions to the default_domain map-
ping rule. It contains V4 instances (the tag name) which should be translated to some specific hostname (the tag
value) as the second component in a Kerberos V5 principal name.

v4_realm This relation is used by the krb524 library routines when converting a V5 principal name to a V4 principal
name. It is used when the V4 realm name and the V5 realm name are not the same, but still share the same
principal names and passwords. The tag value is the Kerberos V4 realm name.

[domain_realm]

The [domain_realm] section provides a translation from a domain name or hostname to a Kerberos realm name. The
tag name can be a host name or domain name, where domain names are indicated by a prefix of a period (.). The
value of the relation is the Kerberos realm name for that particular host or domain. A host name relation implicitly
provides the corresponding domain name relation, unless an explicit domain name relation is provided. The Kerberos
realm may be identified either in the realms section or using DNS SRV records. Host names and domain names should
be in lower case. For example:

[domain_realm]
crash.mit.edu = TEST.ATHENA.MIT.EDU
.dev.mit.edu = TEST.ATHENA.MIT.EDU
mit.edu = ATHENA.MIT.EDU

maps the host with the name crash.mit .edu into the TEST.ATHENA.MIT.EDU realm. The second entry maps
all hosts under the domain dev.mit .edu into the TEST . ATHENA .MIT .EDU realm, but not the host with the name
dev.mit.edu. That host is matched by the third entry, which maps the host mit .edu and all hosts under the
domain mit . edu that do not match a preceding rule into the realm ATHENA .MIT.EDU.

If no translation entry applies to a hostname used for a service principal for a service ticket request, the library will
try to get a referral to the appropriate realm from the client realm’s KDC. If that does not succeed, the host’s realm
is considered to be the hostname’s domain portion converted to uppercase, unless the realm_try_domains setting in
[libdefaults] causes a different parent domain to be used.

[capaths]

In order to perform direct (non-hierarchical) cross-realm authentication, configuration is needed to determine the
authentication paths between realms.

A client will use this section to find the authentication path between its realm and the realm of the server. The server
will use this section to verify the authentication path used by the client, by checking the transited field of the received
ticket.

There is a tag for each participating client realm, and each tag has subtags for each of the server realms. The value
of the subtags is an intermediate realm which may participate in the cross-realm authentication. The subtags may be
repeated if there is more then one intermediate realm. A value of *“.” means that the two realms share keys directly,
and no intermediate realms should be allowed to participate.

Only those entries which will be needed on the client or the server need to be present. A client needs a tag for its local
realm with subtags for all the realms of servers it will need to authenticate to. A server needs a tag for each realm of
the clients it will serve, with a subtag of the server realm.

2.1. Contents 17

Kerberos Administration Guide, Release 1.18.5

For example, ANL . GOV, PNL. GOV, and NERSC . GOV all wish to use the ES.NET realm as an intermediate realm.
ANL has a sub realm of TEST . ANL . GOV which will authenticate with NERSC . GOV but not PNL . GOV. The [capaths]
section for ANL . GOV systems would look like this:

[capaths]

ANL.GOV = {
TEST.ANL.GOV =
PNL.GOV = ES.NET
NERSC.GOV = ES.NET
ES.NET =

}

TEST.ANL.GOV = {
ANL. GOV

}
PNL.GOV = {
ANL.GOV = ES.NET
}
NERSC.GOV =
ANL.GOV = ES.NET

—~—

}
ES.NET = {
ANL . GOV

The [capaths] section of the configuration file used on NERSC . GOV systems would look like this:

[capaths]
NERSC.GOV = {
ANL.GOV = ES.NET
TEST.ANL.GOV ES.NET
TEST.ANL.GOV = ANL.GOV
PNL.GOV = ES.NET
ES.NET =

ANL.GOV = {
NERSC.GOV = ES.NET
}
PNL.GOV = {
NERSC.GOV = ES.NET
}
ES.NET = {
NERSC. GOV

}

TEST.ANL.GOV = {
NERSC.GOV = ANL.GOV
NERSC.GOV = ES.NET

When a subtag is used more than once within a tag, clients will use the order of values to determine the path. The
order of values is not important to servers.

[appdefaults]

Each tag in the [appdefaults] section names a Kerberos V5 application or an option that is used by some Kerberos V5
application[s]. The value of the tag defines the default behaviors for that application.

For example:

18 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.18.5

[appdefaults]
telnet = {
ATHENA.MIT.EDU = ({
optionl = false

}

}

telnet = {
optionl = true
option2 = true

}

ATHENA.MIT.EDU = {
option2 = false

}

option2 = true

The above four ways of specifying the value of an option are shown in order of decreasing precedence. In this example,
if telnet is running in the realm EXAMPLE.COM, it should, by default, have optionl and option2 set to true. However,
a telnet program in the realm ATHENA .MIT.EDU should have opt ionl set to false and opt ion2 set to true. Any
other programs in ATHENA.MIT.EDU should have opt ion2 set to false by default. Any programs running in other
realms should have option2 set to true.

The list of specifiable options for each application may be found in that application’s man pages. The application
defaults specified here are overridden by those specified in the realms section.

[plugins]

e pwqual interface
* kadm5_hook interface
* clpreauth and kdcpreauth interfaces

Tags in the [plugins] section can be used to register dynamic plugin modules and to turn modules on and off. Not
every krb5 pluggable interface uses the [plugins] section; the ones that do are documented here.

New in release 1.9.
Each pluggable interface corresponds to a subsection of [plugins]. All subsections support the same tags:

disable This tag may have multiple values. If there are values for this tag, then the named modules will be disabled
for the pluggable interface.

enable_only This tag may have multiple values. If there are values for this tag, then only the named modules will be
enabled for the pluggable interface.

module This tag may have multiple values. Each value is a string of the form modulename : pathname, which
causes the shared object located at pathname to be registered as a dynamic module named modulename for the
pluggable interface. If pathname is not an absolute path, it will be treated as relative to the plugin_base_dir
value from [libdefaults].

For pluggable interfaces where module order matters, modules registered with a module tag normally come first, in
the order they are registered, followed by built-in modules in the order they are documented below. If enable_only
tags are used, then the order of those tags overrides the normal module order.

The following subsections are currently supported within the [plugins] section:

2.1. Contents 19

Kerberos Administration Guide, Release 1.18.5

ccselect interface

The ccselect subsection controls modules for credential cache selection within a cache collection. In addition to any
registered dynamic modules, the following built-in modules exist (and may be disabled with the disable tag):

kSidentity Uses a .kSidentity file in the user’s home directory to select a client principal
realm Uses the service realm to guess an appropriate cache from the collection

hostname If the service principal is host-based, uses the service hostname to guess an appropriate cache from the
collection

pwqual interface

The pwqual subsection controls modules for the password quality interface, which is used to reject weak passwords
when passwords are changed. The following built-in modules exist for this interface:

dict Checks against the realm dictionary file
empty Rejects empty passwords
hesiod Checks against user information stored in Hesiod (only if Kerberos was built with Hesiod support)

princ Checks against components of the principal name

kadm5_hook interface

The kadm5_hook interface provides plugins with information on principal creation, modification, password changes
and deletion. This interface can be used to write a plugin to synchronize MIT Kerberos with another database such as
Active Directory. No plugins are built in for this interface.

kadm5_auth interface

The kadm5_auth section (introduced in release 1.16) controls modules for the kadmin authorization interface, which
determines whether a client principal is allowed to perform a kadmin operation. The following built-in modules exist
for this interface:

acl This module reads the kadm5.acl file, and authorizes operations which are allowed according to the rules in the
file.

self This module authorizes self-service operations including password changes, creation of new random keys, fetch-
ing the client’s principal record or string attributes, and fetching the policy record associated with the client
principal.

clpreauth and kdcpreauth interfaces

The clpreauth and kdcpreauth interfaces allow plugin modules to provide client and KDC preauthentication mecha-
nisms. The following built-in modules exist for these interfaces:

pkinit This module implements the PKINIT preauthentication mechanism.
encrypted_challenge This module implements the encrypted challenge FAST factor.

encrypted_timestamp This module implements the encrypted timestamp mechanism.

20 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.18.5

hostrealm interface

The hostrealm section (introduced in release 1.12) controls modules for the host-to-realm interface, which affects the
local mapping of hostnames to realm names and the choice of default realm. The following built-in modules exist for
this interface:

profile This module consults the [domain_realm] section of the profile for authoritative host-to-realm mappings, and
the default_realm variable for the default realm.

dns This module looks for DNS records for fallback host-to-realm mappings and the default realm. It only operates
if the dns_lookup_realm variable is set to true.

domain This module applies heuristics for fallback host-to-realm mappings. It implements the realm_try_domains
variable, and uses the uppercased parent domain of the hostname if that does not produce a result.

localauth interface

The localauth section (introduced in release 1.12) controls modules for the local authorization interface, which affects
the relationship between Kerberos principals and local system accounts. The following built-in modules exist for this
interface:

default This module implements the DEFAULT type for auth_to_local values.
rule This module implements the RULE type for auth_to_local values.
names This module looks for an auth_to_local_names mapping for the principal name.

auth_to_local This module processes auth_to_local values in the default realm’s section, and applies the default
method if no auth_to_local values exist.

kSlogin This module authorizes a principal to a local account according to the account’s .k5login(5) file.

an2ln This module authorizes a principal to a local account if the principal name maps to the local account name.

certauth interface

The certauth section (introduced in release 1.16) controls modules for the certificate authorization interface, which
determines whether a certificate is allowed to preauthenticate a user via PKINIT. The following built-in modules exist
for this interface:

pkinit_san This module authorizes the certificate if it contains a PKINIT Subject Alternative Name for the requested
client principal, or a Microsoft UPN SAN matching the principal if pkinit_allow_upn is set to true for the
realm.

pkinit_eku This module rejects the certificate if it does not contain an Extended Key Usage attribute consistent with
the pkinit_eku_checking value for the realm.

dbmatch This module authorizes or rejects the certificate according to whether it matches the pkinit_cert_match
string attribute on the client principal, if that attribute is present.

PKINIT options

Note: The following are PKINIT-specific options. These values may be specified in [libdefaults] as global defaults, or
within a realm-specific subsection of [libdefaults], or may be specified as realm-specific values in the [realms] section.
A realm-specific value overrides, not adds to, a generic [libdefaults] specification. The search order is:

2.1. Contents 21

Kerberos Administration Guide, Release 1.18.5

1. realm-specific subsection of [libdefaults]:

[libdefaults]
EXAMPLE.COM = {
pkinit_anchors = FILE:/usr/local/example.com.crt

}

2. realm-specific value in the [realms] section:

[realms]
OTHERREALM.ORG = {
pkinit_anchors = FILE:/usr/local/otherrealm.org.crt

}

3. generic value in the [libdefaults] section:

[libdefaults]
pkinit_anchors = DIR:/usr/local/generic_trusted_cas/

Specifying PKINIT identity information

The syntax for specifying Public Key identity, trust, and revocation information for PKINIT is as follows:
FILE:filenamel keyfilename] This option has context-specific behavior.

In pkinit_identity or pkinit_identities, filename specifies the name of a PEM-format file containing the user’s
certificate. If keyfilename is not specified, the user’s private key is expected to be in filename as well. Otherwise,
keyfilename is the name of the file containing the private key.

In pkinit_anchors or pkinit_pool, filename is assumed to be the name of an OpenSSL-style ca-bundle file.
DIR:dirname This option has context-specific behavior.

In pkinit_identity or pkinit_identities, dirname specifies a directory with files named ».crt and *.key
where the first part of the file name is the same for matching pairs of certificate and private key files. When a
file with a name ending with . crt is found, a matching file ending with . key is assumed to contain the private
key. If no such file is found, then the certificate in the . crt is not used.

In pkinit_anchors or pkinit_pool, dirname is assumed to be an OpenSSL-style hashed CA directory where
each CA cert is stored in a file named hash-of-ca-cert . #. This infrastructure is encouraged, but all files
in the directory will be examined and if they contain certificates (in PEM format), they will be used.

In pkinit_revoke, dirname is assumed to be an OpenSSL-style hashed CA directory where each revocation
list is stored in a file named hash-of-ca-cert.r#. This infrastructure is encouraged, but all files in the
directory will be examined and if they contain a revocation list (in PEM format), they will be used.

PKCS12:filename filename is the name of a PKCS #12 format file, containing the user’s certificate and private key.

PKCS11:[module_name=]modname][:slotid=slot-id][:token=token-label][:certid=cert-id][:certlabel=cert-label]
All keyword/values are optional. modname specifies the location of a library implementing PKCS #11. If
a value is encountered with no keyword, it is assumed to be the modname. If no module-name is specified,
the default is opensc-pkcsll.so. slotid= and/or token= may be specified to force the use of a
particular smard card reader or token if there is more than one available. certid= and/or certlabel=
may be specified to force the selection of a particular certificate on the device. See the pkinit_cert_match
configuration option for more ways to select a particular certificate to use for PKINIT.

ENV:envvar envvar specifies the name of an environment variable which has been set to a value conforming to one of
the previous values. For example, ENV: X509_PROXY, where environment variable X509_PROXY has been
setto FILE: /tmp/my_proxy.pemn.

22 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.18.5

PKINIT krb5.conf options

pkinit_anchors Specifies the location of trusted anchor (root) certificates which the client trusts to sign KDC certifi-
cates. This option may be specified multiple times. These values from the config file are not used if the user
specifies X509_anchors on the command line.

pkinit_cert_match Specifies matching rules that the client certificate must match before it is used to attempt PKINIT
authentication. If a user has multiple certificates available (on a smart card, or via other media), there must be
exactly one certificate chosen before attempting PKINIT authentication. This option may be specified multiple
times. All the available certificates are checked against each rule in order until there is a match of exactly one
certificate.

The Subject and Issuer comparison strings are the RFC 2253 string representations from the certificate Subject
DN and Issuer DN values.

The syntax of the matching rules is:
[relation-operator|component-rule . ..
where:

relation-operator can be either &&, meaning all component rules must match, or | |, meaning only one com-
ponent rule must match. The default is & &.

component-rule can be one of the following. Note that there is no punctuation or whitespace between compo-
nent rules.

<SUBJECT>regular-expression
<ISSUER>regular-expression
<SAN>regular-expression
<EKU>extended-key-usage-list
<KU>key-usage-list

extended-key-usage-list is a comma-separated list of required Extended Key Usage values. All values in
the list must be present in the certificate. Extended Key Usage values can be:

* pkinit

* msScLogin

¢ clientAuth

* emailProtection

key-usage-list is a comma-separated list of required Key Usage values. All values in the list must be present
in the certificate. Key Usage values can be:

* digitalSignature
* keyEncipherment

Examples:

pkinit_cert_match = | |<SUBJECT>.*DoE.*<SAN>.«@EXAMPLE .COM
pkinit_cert_match = &&<EKU>msScLogin,clientAuth<ISSUER>.*DoOE. %
pkinit_cert_match = <EKU>msScLogin,clientAuth<KU>digitalSignature

pkinit_eku_checking This option specifies what Extended Key Usage value the KDC certificate presented to the
client must contain. (Note that if the KDC certificate has the pkinit SubjectAlternativeName encoded as the
Kerberos TGS name, EKU checking is not necessary since the issuing CA has certified this as a KDC certificate.)
The values recognized in the krb5.conf file are:

2.1. Contents 23

https://tools.ietf.org/html/rfc2253.html

Kerberos Administration Guide, Release 1.18.5

kpKDC This is the default value and specifies that the KDC must have the id-pkinit-KPKdc EKU as defined in
RFC 4556.

kpServerAuth If kpServerAuth is specified, a KDC certificate with the id-kp-serverAuth EKU will be ac-
cepted. This key usage value is used in most commercially issued server certificates.

none If none is specified, then the KDC certificate will not be checked to verify it has an acceptable EKU. The
use of this option is not recommended.

pkinit_dh_min_bits Specifies the size of the Diffie-Hellman key the client will attempt to use. The acceptable values
are 1024, 2048, and 4096. The default is 2048.

pkinit_identities Specifies the location(s) to be used to find the user’s X.509 identity information. If this option
is specified multiple times, the first valid value is used; this can be used to specify an environment variable
(with ENV:envvar) followed by a default value. Note that these values are not used if the user specifies
X509_user_identity on the command line.

pkinit_kdc_hostname The presence of this option indicates that the client is willing to accept a KDC certificate with
a dNSName SAN (Subject Alternative Name) rather than requiring the id-pkinit-san as defined in RFC 4556.
This option may be specified multiple times. Its value should contain the acceptable hostname for the KDC (as
contained in its certificate).

pkinit_pool Specifies the location of intermediate certificates which may be used by the client to complete the trust
chain between a KDC certificate and a trusted anchor. This option may be specified multiple times.

pkinit_require_crl_checking The default certificate verification process will always check the available revocation
information to see if a certificate has been revoked. If a match is found for the certificate in a CRL, verification
fails. If the certificate being verified is not listed in a CRL, or there is no CRL present for its issuing CA, and
pkinit_require_crl_checking is false, then verification succeeds.

However, if pkinit_require_crl_checking is true and there is no CRL information available for the issuing CA,
then verification fails.

pkinit_require_crl_checking should be set to true if the policy is such that up-to-date CRLs must be present
for every CA.

pkinit_revoke Specifies the location of Certificate Revocation List (CRL) information to be used by the client when
verifying the validity of the KDC certificate presented. This option may be specified multiple times.

Parameter expansion

Starting with release 1.11, several variables, such as default_keytab_name, allow parameters to be expanded. Valid
parameters are:

24 Chapter 2. Configuration Files

https://tools.ietf.org/html/rfc4556.html
https://tools.ietf.org/html/rfc4556.html

Kerberos Administration Guide, Release 1.18.5

9% {TEMP} Temporary directory

% {uid} Unix real UID or Windows SID

90 {euid} Unix effective user ID or Windows SID

% {USERID } Same as %{uid}

90 {null} Empty string

% {LIBDIR } Installation library directory

% { BINDIR } Installation binary directory

% {SBINDIR } Installation admin binary directory

% {username} (Unix) Username of effective user ID

9% { APPDATA } (Windows) Roaming application data for current user
%{ COMMON_APPDATA} | (Windows) Application data for all users
%{LOCAL_APPDATA} (Windows) Local application data for current user
%{SYSTEM} (Windows) Windows system folder

% { WINDOWS } (Windows) Windows folder

% {USERCONFIG} (Windows) Per-user MIT krb5 config file directory
%{ COMMONCONFIG} (Windows) Common MIT krb5 config file directory

Sample krb5.conf file

Here is an example of a generic krb5.conf file:

[libdefaults]
default_realm = ATHENA.MIT.EDU
dns_lookup_kdc = true
dns_lookup_realm = false

[realms]

ATHENA.MIT.EDU = {
kdc = kerberos.mit.edu
kdc = kerberos—-1.mit.edu
kdc = kerberos-2.mit.edu
admin_server = kerberos.mit.edu
master_kdc = kerberos.mit.edu

}

EXAMPLE.COM = {
kdc = kerberos.example.com
kdc = kerberos—1.example.com
admin_server = kerberos.example.com

}

[domain_realm]
mit.edu = ATHENA.MIT.EDU

[capaths]
ATHENA.MIT.EDU = {
EXAMPLE.COM = .
}
EXAMPLE.COM = {
ATHENA.MIT.EDU = .
}

2.1. Contents 25

Kerberos Administration Guide, Release 1.18.5

FILES

/etc/krb5.conf

SEE ALSO

syslog(3)

2.1.2 kdc.conf

The kdc.conf file supplements krb5.conf for programs which are typically only used on a KDC, such as the krb5kdc
and kadmind daemons and the kdb5_util program. Relations documented here may also be specified in krb5.conf; for
the KDC programs mentioned, krb5.conf and kdc.conf will be merged into a single configuration profile.

Normally, the kdc.conf file is found in the KDC state directory, LOCALSTATEDIR/krb5kdc. You can override the

default location by setting the environment variable KRB5_KDC_PROFILE.

Please note that you need to restart the KDC daemon for any configuration changes to take effect.

Structure

The kdc.conf file is set up in the same format as the krb5.conf file.

Sections

The kdc.conf file may contain the following sections:

[kdcdefaults]

Default values for KDC behavior

[realms]

Realm-specific database configuration and settings

[dbdefaults]

Default database settings

[dbmodules |

Per-database settings

[logging]

Controls how Kerberos daemons perform logging

[kdcdefaults]

Some relations in the [kdcdefaults] section specify default values for realm variables, to be used if the [realms] sub-
section does not contain a relation for the tag. See the [realms] section for the definitions of these relations.

* host_based_services
¢ kdc_listen

¢ kdc_ports

e kdc_tcp_listen

* kdc_tcp_ports

¢ no_host_referral

* restrict_anonymous_to_tgt

The following [kdcdefaults] variables have no per-realm equivalent:

26

Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.18.5

kdc_max_dgram_reply_size Specifies the maximum packet size that can be sent over UDP. The default value is
4096 bytes.

kdc_tcp_listen_backlog (Integer.) Set the size of the listen queue length for the KDC daemon. The value may be
limited by OS settings. The default value is 5.

spake_preauth_kdc_challenge (String.) Specifies the group for a SPAKE optimistic challenge. See the
spake_preauth_groups variable in [/ibdefaults] for possible values. The default is not to issue an optimistic
challenge. (New in release 1.17.)

[realms]

Each tag in the [realms] section is the name of a Kerberos realm. The value of the tag is a subsection where the
relations define KDC parameters for that particular realm. The following example shows how to define one parameter
for the ATHENA .MIT.EDU realm:

[realms]
ATHENA.MIT.EDU = {
max_renewable_life = 7d Oh Om Os

}

The following tags may be specified in a [realms] subsection:

acl_file (String.) Location of the access control list file that kadmind uses to determine which principals are allowed
which permissions on the Kerberos database. To operate without an ACL file, set this relation to the empty
string with acl_file = "". The default value is LOCALSTATEDIR/krb5kdc/kadm5.acl. For more
information on Kerberos ACL file see kadm5.acl.

database_module (String.) This relation indicates the name of the configuration section under [dbmodules] for
database-specific parameters used by the loadable database library. The default value is the realm name. If this
configuration section does not exist, default values will be used for all database parameters.

database_name (String, deprecated.) This relation specifies the location of the Kerberos database for this realm, if
the DB2 module is being used and the /dbmodules] configuration section does not specify a database name. The
default value is LOCALSTATEDIR/krb5kdc/principal.

default_principal_expiration (abstime string.) Specifies the default expiration date of principals created in this
realm. The default value is 0, which means no expiration date.

default_principal_flags (Flag string.) Specifies the default attributes of principals created in this realm. The format
for this string is a comma-separated list of flags, with ‘+” before each flag that should be enabled and ‘- before
each flag that should be disabled. The postdateable, forwardable, tgt-based, renewable, proxiable, dup-skey,
allow-tickets, and service flags default to enabled.

There are a number of possible flags:

allow-tickets Enabling this flag means that the KDC will issue tickets for this principal. Disabling this flag
essentially deactivates the principal within this realm.

dup-skey Enabling this flag allows the KDC to issue user-to-user service tickets for this principal.
forwardable Enabling this flag allows the principal to obtain forwardable tickets.

hwauth If this flag is enabled, then the principal is required to preauthenticate using a hardware device before
receiving any tickets.

no-auth-data-required Enabling this flag prevents PAC or AD-SIGNEDPATH data from being added to ser-
vice tickets for the principal.

ok-as-delegate If this flag is enabled, it hints the client that credentials can and should be delegated when
authenticating to the service.

2.1. Contents 27

Kerberos Administration Guide, Release 1.18.5

ok-to-auth-as-delegate Enabling this flag allows the principal to use S4USelf tickets.
postdateable Enabling this flag allows the principal to obtain postdateable tickets.

preauth If this flag is enabled on a client principal, then that principal is required to preauthenticate to the KDC
before receiving any tickets. On a service principal, enabling this flag means that service tickets for this
principal will only be issued to clients with a TGT that has the preauthenticated bit set.

proxiable Enabling this flag allows the principal to obtain proxy tickets.
pwchange Enabling this flag forces a password change for this principal.

pwservice If this flag is enabled, it marks this principal as a password change service. This should only be
used in special cases, for example, if a user’s password has expired, then the user has to get tickets for
that principal without going through the normal password authentication in order to be able to change the
password.

renewable Enabling this flag allows the principal to obtain renewable tickets.

service Enabling this flag allows the the KDC to issue service tickets for this principal. In release 1.17 and
later, user-to-user service tickets are still allowed if the dup-skey flag is set.

tgt-based Enabling this flag allows a principal to obtain tickets based on a ticket-granting-ticket, rather than
repeating the authentication process that was used to obtain the TGT.

dict_file (String.) Location of the dictionary file containing strings that are not allowed as passwords. The file should
contain one string per line, with no additional whitespace. If none is specified or if there is no policy assigned
to the principal, no dictionary checks of passwords will be performed.

encrypted_challenge_indicator (String.) Specifies the authentication indicator value that the KDC asserts into tick-
ets obtained using FAST encrypted challenge pre-authentication. New in 1.16.

host_based_services (Whitespace- or comma-separated list.) Lists services which will get host-based referral pro-
cessing even if the server principal is not marked as host-based by the client.

iprop_enable (Boolean value.) Specifies whether incremental database propagation is enabled. The default value is
false.

iprop_master_ulogsize (Integer.) Specifies the maximum number of log entries to be retained for incremental prop-
agation. The default value is 1000. Prior to release 1.11, the maximum value was 2500.

iprop_replica_poll (Delta time string.) Specifies how often the replica KDC polls for new updates from the master.
The default value is 2m (that is, two minutes). New in release 1.17.

iprop_slave_poll (Delta time string.) The name for iprop_replica_poll prior to release 1.17. Its value is used as a
fallback if iprop_replica_poll is not specified.

iprop_listen (Whitespace- or comma-separated list.) Specifies the iprop RPC listening addresses and/or ports for
the kadmind daemon. Each entry may be an interface address, a port number, or an address and port number
separated by a colon. If the address contains colons, enclose it in square brackets. If no address is specified,
the wildcard address is used. If kadmind fails to bind to any of the specified addresses, it will fail to start. The
default (when iprop_enable is true) is to bind to the wildcard address at the port specified in iprop_port. New
in release 1.15.

iprop_port (Port number.) Specifies the port number to be used for incremental propagation. When iprop_enable is
true, this relation is required in the replica KDC configuration file, and this relation or iprop_listen is required in
the master configuration file, as there is no default port number. Port numbers specified in iprop_listen entries
will override this port number for the kadmind daemon.

iprop_resync_timeout (Delta time string.) Specifies the amount of time to wait for a full propagation to complete.
This is optional in configuration files, and is used by replica KDCs only. The default value is 5 minutes (5m).
New in release 1.11.

28 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.18.5

iprop_logfile (File name.) Specifies where the update log file for the realm database is to be stored. The default is to
use the database_name entry from the realms section of the krb5 config file, with .ulog appended. (NOTE:
If database_name isn’t specified in the realms section, perhaps because the LDAP database back end is being
used, or the file name is specified in the [dbmodules] section, then the hard-coded default for database_name
is used. Determination of the iprop_logfile default value will not use values from the [dbmodules] section.)

kadmind_listen (Whitespace- or comma-separated list.) Specifies the kadmin RPC listening addresses and/or ports
for the kadmind daemon. Each entry may be an interface address, a port number, or an address and port number
separated by a colon. If the address contains colons, enclose it in square brackets. If no address is specified,
the wildcard address is used. If kadmind fails to bind to any of the specified addresses, it will fail to start. The
default is to bind to the wildcard address at the port specified in kadmind_port, or the standard kadmin port
(749). New in release 1.15.

kadmind_port (Port number.) Specifies the port on which the kadmind daemon is to listen for this realm. Port
numbers specified in kadmind_listen entries will override this port number. The assigned port for kadmind is
749, which is used by default.

key_stash_file (String.) Specifies the location where the master key has been stored (via kdb5_util stash). The default
is LOCALSTATEDIR/krb5kdc/ .k5.REALM, where REALM is the Kerberos realm.

kdc_listen (Whitespace- or comma-separated list.) Specifies the UDP listening addresses and/or ports for the krb5kdc
daemon. Each entry may be an interface address, a port number, or an address and port number separated by
a colon. If the address contains colons, enclose it in square brackets. If no address is specified, the wildcard
address is used. If no port is specified, the standard port (88) is used. If the KDC daemon fails to bind to any of
the specified addresses, it will fail to start. The default is to bind to the wildcard address on the standard port.
New in release 1.15.

kdc_ports (Whitespace- or comma-separated list, deprecated.) Prior to release 1.15, this relation lists the ports for the
krb5kdc daemon to listen on for UDP requests. In release 1.15 and later, it has the same meaning as kdc_listen
if that relation is not defined.

kdc_tcp_listen (Whitespace- or comma-separated list.) Specifies the TCP listening addresses and/or ports for the
krbSkdc daemon. Each entry may be an interface address, a port number, or an address and port number
separated by a colon. If the address contains colons, enclose it in square brackets. If no address is specified, the
wildcard address is used. If no port is specified, the standard port (88) is used. To disable listening on TCP, set
this relation to the empty string with kdc_tcp_listen = "". If the KDC daemon fails to bind to any of
the specified addresses, it will fail to start. The default is to bind to the wildcard address on the standard port.
New in release 1.15.

kdc_tcp_ports (Whitespace- or comma-separated list, deprecated.) Prior to release 1.15, this relation lists the ports
for the krb5kdc daemon to listen on for UDP requests. In release 1.15 and later, it has the same meaning as
kdc_tcp_listen if that relation is not defined.

kpasswd_listen (Comma-separated list.) Specifies the kpasswd listening addresses and/or ports for the kadmind
daemon. Each entry may be an interface address, a port number, or an address and port number separated by
a colon. If the address contains colons, enclose it in square brackets. If no address is specified, the wildcard
address is used. If kadmind fails to bind to any of the specified addresses, it will fail to start. The default is to
bind to the wildcard address at the port specified in kpasswd_port, or the standard kpasswd port (464). New in
release 1.15.

kpasswd_port (Port number.) Specifies the port on which the kadmind daemon is to listen for password change
requests for this realm. Port numbers specified in kpasswd_listen entries will override this port number. The
assigned port for password change requests is 464, which is used by default.

master_key_name (String.) Specifies the name of the principal associated with the master key. The default is K /M.

master_key_type (Key type string.) Specifies the master key’s key type. The default value for this is
aes256-cts-hmac-shal-96. For alist of all possible values, see Encryption types.

2.1. Contents 29

Kerberos Administration Guide, Release 1.18.5

max_life (duration string.) Specifies the maximum time period for which a ticket may be valid in this realm. The
default value is 24 hours.

max_renewable_life (duration string.) Specifies the maximum time period during which a valid ticket may be re-
newed in this realm. The default value is 0.

no_host_referral (Whitespace- or comma-separated list.) Lists services to block from getting host-based refer-
ral processing, even if the client marks the server principal as host-based or the service is also listed in
host_based_services. no_host_referral = « will disable referral processing altogether.

reject_bad_transit (Boolean value.) If set to true, the KDC will check the list of transited realms for cross-realm
tickets against the transit path computed from the realm names and the capaths section of its krb5.conf file; if
the path in the ticket to be issued contains any realms not in the computed path, the ticket will not be issued, and
an error will be returned to the client instead. If this value is set to false, such tickets will be issued anyways,
and it will be left up to the application server to validate the realm transit path.

If the disable-transited-check flag is set in the incoming request, this check is not performed at all. Having the
reject_bad_transit option will cause such ticket requests to be rejected always.

This transit path checking and config file option currently apply only to TGS requests.
The default value is true.

restrict_anonymous_to_tgt (Boolean value.) If set to true, the KDC will reject ticket requests from anonymous
principals to service principals other than the realm’s ticket-granting service. This option allows anonymous
PKINIT to be enabled for use as FAST armor tickets without allowing anonymous authentication to services.
The default value is false. New in release 1.9.

spake_preauth_indicator (String.) Specifies an authentication indicator value that the KDC asserts into tickets ob-
tained using SPAKE pre-authentication. The default is not to add any indicators. This option may be specified
multiple times. New in release 1.17.

supported_enctypes (List of key:salt strings.) Specifies the default key/salt combinations of principals for this
realm. Any principals created through kadmin will have keys of these types. The default value for this tag
is aes256-cts-hmac-shal-96:normal aesl28-cts-hmac-shal-96:normal. For lists of pos-
sible values, see Keysalt lists.

[dbdefaults]

The [dbdefaults] section specifies default values for some database parameters, to be used if the [dbmodules] subsec-
tion does not contain a relation for the tag. See the [dbmodules] section for the definitions of these relations.

 ldap_kerberos_container_dn
e ldap_kdc_dn

¢ ldap_kdc_sasl_authcid
 ldap_kdc_sasl_authzid

* ldap_kdc_sasl_mech

* ldap_kdc_sasl_realm

¢ ldap_kadmind_dn

* ldap_kadmind_sasl_authcid
¢ ldap_kadmind_sasl_authzid
¢ ldap_kadmind_sasl_mech

¢ ldap_kadmind_sasl_realm

30 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.18.5

 ldap_service_password_file

* ldap_conns_per_server

[dbmodules]

The [dbmodules] section contains parameters used by the KDC database library and database modules. Each tag in
the [dbmodules] section is the name of a Kerberos realm or a section name specified by a realm’s database_module
parameter. The following example shows how to define one database parameter for the ATHENA.MIT.EDU realm:

[dbmodules]
ATHENA.MIT.EDU = {
disable_last_success = true

}

The following tags may be specified in a [dbmodules] subsection:

database_name This DB2-specific tag indicates the location of the database in the filesystem. The default is LOCAL-
STATEDIR /krb5kdc/principal.

db_library This tag indicates the name of the loadable database module. The value should be db2 for the DB2
module, k 1mdb for the LMDB module, or k1dap for the LDAP module.

disable_last_success If setto t rue, suppresses KDC updates to the “Last successful authentication” field of principal
entries requiring preauthentication. Setting this flag may improve performance. (Principal entries which do not
require preauthentication never update the “Last successful authentication” field.). First introduced in release
1.9.

disable_lockout If set to t rue, suppresses KDC updates to the “Last failed authentication” and “Failed password
attempts” fields of principal entries requiring preauthentication. Setting this flag may improve performance, but
also disables account lockout. First introduced in release 1.9.

Idap_conns_per_server This LDAP-specific tag indicates the number of connections to be maintained per LDAP
server.

ldap_kdc_dn and ldap_kadmind_dn These LDAP-specific tags indicate the default DN for binding to the LDAP
server. The krb5kdc daemon uses ldap_kdc_dn, while the kadmind daemon and other administrative programs
use ldap_kadmind_dn. The kadmind DN must have the rights to read and write the Kerberos data in the LDAP
database. The KDC DN must have the same rights, unless disable_lockout and disable_last_success are true,
in which case it only needs to have rights to read the Kerberos data. These tags are ignored if a SASL mechanism
is set with ldap_kdc_sasl_mech or ldap_kadmind_sasl_mech.

ldap_kdc_sasl_mech and ldap_kadmind_sasl_mech These LDAP-specific tags specify the SASL mechanism
(such as EXTERNAL) to use when binding to the LDAP server. New in release 1.13.

ldap_kdc_sasl_authcid and ldap_kadmind_sasl_authcid These LDAP-specific tags specify the SASL authentica-
tion identity to use when binding to the LDAP server. Not all SASL mechanisms require an authentication
identity. If the SASL mechanism requires a secret (such as the password for DIGEST-MD5), these tags also
determine the name within the ldap_service_password_file where the secret is stashed. New in release 1.13.

ldap_kdc_sasl_authzid and ldap_kadmind_sasl_authzid These LDAP-specific tags specify the SASL authoriza-
tion identity to use when binding to the LDAP server. In most circumstances they do not need to be specified.
New in release 1.13.

ldap_kdc_sasl_realm and ldap_kadmind_sasl_realm These LDAP-specific tags specify the SASL realm to use
when binding to the LDAP server. In most circumstances they do not need to be set. New in release 1.13.

ldap_kerberos_container_dn This LDAP-specific tag indicates the DN of the container object where the realm ob-
jects will be located.

2.1. Contents 31

Kerberos Administration Guide, Release 1.18.5

ldap_servers This LDAP-specific tag indicates the list of LDAP servers that the Kerberos servers can connect to. The
list of LDAP servers is whitespace-separated. The LDAP server is specified by a LDAP URI. It is recommended
touse 1dapi: or 1daps: URLs to connect to the LDAP server.

ldap_service_password_file This LDAP-specific tag indicates the file containing the stashed passwords (created
by kdb5_ldap_util stashsrvpw) for the ldap_kdc_dn and ldap_kadmind_dn objects, or for the
ldap_kdc_sasl_authcid or ldap_kadmind_sasl_authcid names for SASL authentication. This file must be
kept secure.

mapsize This LMDB-specific tag indicates the maximum size of the two database environments in megabytes. The
default value is 128. Increase this value to address “Environment mapsize limit reached” errors. New in release
1.17.

max_readers This LMDB-specific tag indicates the maximum number of concurrent reading processes for the
databases. The default value is 128. New in release 1.17.

nosync This LMDB-specific tag can be set to improve the throughput of kadmind and other administrative agents, at
the expense of durability (recent database changes may not survive a power outage or other sudden reboot). It
does not affect the throughput of the KDC. The default value is false. New in release 1.17.

unlockiter If set to t rue, this DB2-specific tag causes iteration operations to release the database lock while pro-
cessing each principal. Setting this flag to t rue can prevent extended blocking of KDC or kadmin operations
when dumps of large databases are in progress. First introduced in release 1.13.

The following tag may be specified directly in the [dbmodules] section to control where database modules are loaded
from:

db_module_dir This tag controls where the plugin system looks for database modules. The value should be an
absolute path.

[logging]

The [logging] section indicates how krb5kdc and kadmind perform logging. It may contain the following relations:
admin_server Specifies how kadmind performs logging.

kdc Specifies how krbSkdc performs logging.

default Specifies how either daemon performs logging in the absence of relations specific to the daemon.

debug (Boolean value.) Specifies whether debugging messages are included in log outputs other than SYSLOG.
Debugging messages are always included in the system log output because syslog performs its own priority
filtering. The default value is false. New in release 1.15.

Logging specifications may have the following forms:

FILE=filename or FILE:filename This value causes the daemon’s logging messages to go to the filename. If the =
form is used, the file is overwritten. If the : form is used, the file is appended to.

STDERR This value causes the daemon’s logging messages to go to its standard error stream.

CONSOLE This value causes the daemon’s logging messages to go to the console, if the system supports it.
DEVICE=<devicename> This causes the daemon’s logging messages to go to the specified device.
SYSLOG/:severity[:facility]] This causes the daemon’s logging messages to go to the system log.

For backward compatibility, a severity argument may be specified, and must be specified in order to specify a
facility. This argument will be ignored.

The facility argument specifies the facility under which the messages are logged. This may be any of the
following facilities supported by the syslog(3) call minus the LOG_ prefix: KERN, USER, MAIL, DAEMON,

32 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.18.5

AUTH, LPR, NEWS, UUCP, CRON, and LOCALQ through LOCALY7. If no facility is specified, the default
is AUTH.

In the following example, the logging messages from the KDC will go to the console and to the system log under
the facility LOG_DAEMON, and the logging messages from the administrative server will be appended to the file
/var/adm/kadmin.log and sent to the device /dev/tty04.

[logging]
kdc CONSOLE
kdc = SYSLOG:INFO:DAEMON
admin_server = FILE:/var/adm/kadmin.log
admin_server = DEVICE=/dev/tty04

If no logging specification is given, the default is to use syslog. To disable logging entirely, specify default =
DEVICE=/dev/null.

[otp]

Each subsection of [otp] is the name of an OTP token type. The tags within the subsection define the configuration
required to forward a One Time Password request to a RADIUS server.

For each token type, the following tags may be specified:

server This is the server to send the RADIUS request to. It can be a hostname with optional port, an ip address
with optional port, or a Unix domain socket address. The default is LOCALSTATEDIR/krb5kdc/<name>.
socket.

secret This tag indicates a filename (which may be relative to LOCALSTATEDIR /krb5kdc) containing the secret
used to encrypt the RADIUS packets. The secret should appear in the first line of the file by itself; leading and
trailing whitespace on the line will be removed. If the value of server is a Unix domain socket address, this tag
is optional, and an empty secret will be used if it is not specified. Otherwise, this tag is required.

timeout An integer which specifies the time in seconds during which the KDC should attempt to contact the RADIUS
server. This tag is the total time across all retries and should be less than the time which an OTP value remains
valid for. The default is 5 seconds.

retries This tag specifies the number of retries to make to the RADIUS server. The default is 3 retries (4 tries).

strip_realm If this tag is t rue, the principal without the realm will be passed to the RADIUS server. Otherwise, the
realm will be included. The default value is t rue.

indicator This tag specifies an authentication indicator to be included in the ticket if this token type is used to authen-
ticate. This option may be specified multiple times. (New in release 1.14.)

In the following example, requests are sent to a remote server via UDP:

[otp]
MyRemoteTokenType = {
server = radius.mydomain.com:1812
secret = SEmfiajf42s$
timeout = 15
retries = 5
strip_realm = true

}

An implicit default token type named DEFAULT is defined for when the per-principal configuration does not specify
a token type. Its configuration is shown below. You may override this token type to something applicable for your
situation:

2.1. Contents 33

Kerberos Administration Guide, Release 1.18.5

[otp]
DEFAULT = {
strip_realm = false

}

PKINIT options

Note: The following are pkinit-specific options. These values may be specified in [kdcdefaults] as global defaults,
or within a realm-specific subsection of [realms]. Also note that a realm-specific value over-rides, does not add to, a
generic [kdcdefaults] specification. The search order is:

1. realm-specific subsection of [realms]:

[realms]
EXAMPLE.COM = {
pkinit_anchors = FILE:/usr/local/example.com.crt

}

2. generic value in the [kdcdefaults] section:

[kdcdefaults]
pkinit_anchors = DIR:/usr/local/generic_trusted_cas/

For information about the syntax of some of these options, see Specifying PKINIT identity information in krb5.conf.

pkinit_anchors Specifies the location of trusted anchor (root) certificates which the KDC trusts to sign client certifi-
cates. This option is required if pkinit is to be supported by the KDC. This option may be specified multiple
times.

pkinit_dh_min_bits Specifies the minimum number of bits the KDC is willing to accept for a client’s Diffie-Hellman
key. The default is 2048.

pkinit_allow_upn Specifies that the KDC is willing to accept client certificates with the Microsoft UserPrincipal-
Name (UPN) Subject Alternative Name (SAN). This means the KDC accepts the binding of the UPN in the
certificate to the Kerberos principal name. The default value is false.

Without this option, the KDC will only accept certificates with the id-pkinit-san as defined in RFC 4556. There
is currently no option to disable SAN checking in the KDC.

pkinit_eku_checking This option specifies what Extended Key Usage (EKU) values the KDC is willing to accept in
client certificates. The values recognized in the kdc.conf file are:

kpClientAuth This is the default value and specifies that client certificates must have the id-pkinit-
KPClientAuth EKU as defined in RFC 4556.

scLogin If scLogin is specified, client certificates with the Microsoft Smart Card Login EKU (id-ms-kp-sc-
logon) will be accepted.

none If none is specified, then client certificates will not be checked to verify they have an acceptable EKU.
The use of this option is not recommended.

pkinit_identity Specifies the location of the KDC’s X.509 identity information. This option is required if pkinit is to
be supported by the KDC.

pkinit_indicator Specifies an authentication indicator to include in the ticket if pkinit is used to authenticate. This
option may be specified multiple times. (New in release 1.14.)

34 Chapter 2. Configuration Files

https://tools.ietf.org/html/rfc4556.html
https://tools.ietf.org/html/rfc4556.html

Kerberos Administration Guide, Release 1.18.5

pkinit_pool Specifies the location of intermediate certificates which may be used by the KDC to complete the trust
chain between a client’s certificate and a trusted anchor. This option may be specified multiple times.

pkinit_revoke Specifies the location of Certificate Revocation List (CRL) information to be used by the KDC when
verifying the validity of client certificates. This option may be specified multiple times.

pkinit_require_crl_checking The default certificate verification process will always check the available revocation
information to see if a certificate has been revoked. If a match is found for the certificate in a CRL, verification
fails. If the certificate being verified is not listed in a CRL, or there is no CRL present for its issuing CA, and
pkinit_require_crl_checking is false, then verification succeeds.

However, if pkinit_require_crl_checking is true and there is no CRL information available for the issuing CA,
then verification fails.

pkinit_require_crl_checking should be set to true if the policy is such that up-to-date CRLs must be present
for every CA.

pkinit_require_freshness Specifies whether to require clients to include a freshness token in PKINIT requests. The
default value is false. (New in release 1.17.)

Encryption types

Any tag in the configuration files which requires a list of encryption types can be set to some combination of the
following strings. Encryption types marked as “weak” are available for compatibility but not recommended for use.

des3-cbc-raw Triple DES cbc mode raw (weak)
des3-cbc-shal des3-hmac-shal | Triple DES cbc mode with HMAC/shal
des3-cbc-shal-kd

aes256-cts-hmac-shal-96 AES-256 CTS mode with 96-bit SHA-1 HMAC
aes256-cts aes256-shal
aes128-cts-hmac-shal-96 AES-128 CTS mode with 96-bit SHA-1 HMAC

aes128-cts aes128-shal
aes256-cts-hmac-sha384-192 AES-256 CTS mode with 192-bit SHA-384 HMAC
aes256-sha2
aes128-cts-hmac-sha256-128 AES-128 CTS mode with 128-bit SHA-256 HMAC
aes128-sha2
arcfour-hmac rc4-hmac arcfour- | RC4 with HMAC/MD5
hmac-md5
arcfour-hmac-exp rc4-hmac-exp | Exportable RC4 with HMAC/MDS (weak)
arcfour-hmac-md5-exp

camellia256-cts-cmac Camellia-256 CTS mode with CMAC

camellia256-cts

camellial28-cts-cmac Camellia-128 CTS mode with CMAC

camellial28-cts

des3 The triple DES family: des3-cbc-shal

aes The AES family: aes256-cts-hmac-shal-96, aes128-cts-hmac-shal-96, aes256-
cts-hmac-sha384-192, and aes128-cts-hmac-sha256-128

rc4 The RC4 family: arcfour-hmac

camellia The Camellia family: camellia256-cts-cmac and camellial28-cts-cmac

The string DEFAULT can be used to refer to the default set of types for the variable in question. Types or families
can be removed from the current list by prefixing them with a minus sign (“-*). Types or families can be prefixed with
a plus sign (“+”) for symmetry; it has the same meaning as just listing the type or family. For example, “DEFAULT
—rc4” would be the default set of encryption types with RC4 types removed, and “des3 DEFAULT” would be the
default set of encryption types with triple DES types moved to the front.

2.1. Contents 35

Kerberos Administration Guide, Release 1.18.5

While aes128-cts and aes256-cts are supported for all Kerberos operations, they are not supported by very old versions
of our GSSAPI implementation (krb5-1.3.1 and earlier). Services running versions of krb5 without AES support must
not be given keys of these encryption types in the KDC database.

The aes128-sha2 and aes256-sha2 encryption types are new in release 1.15. Services running versions of krb5 without
support for these newer encryption types must not be given keys of these encryption types in the KDC database.

Keysalt lists

Kerberos keys for users are usually derived from passwords. Kerberos commands and configuration parameters that
affect generation of keys take lists of enctype-salttype (“keysalt”) pairs, known as keysalt lists. Each keysalt pair is an
enctype name followed by a salttype name, in the format enc:salt. Individual keysalt list members are separated by

17Xk}

comma (“,”) characters or space characters. For example:

kadmin -e aes256-cts:normal,aesl28-cts:normal

would start up kadmin so that by default it would generate password-derived keys for the aes256-cts and aes128-cts
encryption types, using a normal salt.

To ensure that people who happen to pick the same password do not have the same key, Kerberos 5 incorporates more
information into the key using something called a salt. The supported salt types are as follows:

normal default for Kerberos Version 5

norealm same as the default, without using realm information
onlyrealm | uses only realm information as the salt

special generate a random salt

Sample kdc.conf File

Here’s an example of a kdc.conf file:

[kdcdefaults]
kdc_listen = 88
kdc_tcp_listen = 88
[realms]
ATHENA.MIT.EDU = {
kadmind_port = 749
max_life = 12h Om Os

max_renewable_life = 7d 0Oh Om Os
master_key_type = aes256-cts-hmac-shal-96
supported_enctypes = aes256-cts-hmac-shal-96:normal aesl28-cts-hmac-shal-

—96:normal
database_module = openldap_ldapcont

[logging]
kdc FILE:/usr/local/var/krb5kdc/kdc.log
admin_server = FILE:/usr/local/var/krb5kdc/kadmin.log

[dbdefaults]
ldap_kerberos_container_dn = cn=krbcontainer,dc=mit, dc=edu

[dbmodules]
openldap_ldapconf = {
db_library = kldap

36 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.18.5

disable_last_success = true
ldap_kdc_dn = "cn=krbadmin,dc=mit,dc=edu"
this object needs to have read rights on
the realm container and principal subtrees
ldap_kadmind_dn = "cn=krbadmin,dc=mit, dc=edu"
this object needs to have read and write rights on
the realm container and principal subtrees

ldap_service_password_file = /etc/kerberos/service.keyfile
ldap_servers = ldaps://kerberos.mit.edu
ldap_conns_per_server = 5

FILES

LOCALSTATEDIR/krb5kdc/kdc.conf

SEE ALSO

krb5.conf, krbSkdc, kadm5.acl

2.1.3 kadmb5.acl

DESCRIPTION

The Kerberos kadmind daemon uses an Access Control List (ACL) file to manage access rights to the Kerberos
database. For operations that affect principals, the ACL file also controls which principals can operate on which other
principals.

The default location of the Kerberos ACL file is LOCALSTATEDIR/krb5kdc/kadm5 . acl unless this is overridden
by the acl_file variable in kdc.conf.

SYNTAX

Empty lines and lines starting with the sharp sign (#) are ignored. Lines containing ACL entries have the format:

principal permissions [target_principal [restrictions]]

Note: Line order in the ACL file is important. The first matching entry will control access for an actor principal on a
target principal.

principal (Partially or fully qualified Kerberos principal name.) Specifies the principal whose permissions are to be
set.

Each component of the name may be wildcarded using the * character.

permissions Specifies what operations may or may not be performed by a principal matching a particular entry. This
is a string of one or more of the following list of characters or their upper-case counterparts. If the character is
upper-case, then the operation is disallowed. If the character is lower-case, then the operation is permitted.

2.1. Contents 37

Kerberos Administration Guide, Release 1.18.5

Dis]allows the addition of principals or policies
Dis]allows the changing of passwords for principals
Dis]Jallows the deletion of principals or policies
Dis]allows the extraction of principal keys

Dis]Jallows inquiries about principals or policies
Dis]allows the listing of all principals or policies
Dis]Jallows the modification of principals or policies
Dis]allows the propagation of the principal database (used in /ncremental database propagation)
[Dis]allows the explicit setting of the key for a principal
Short for admcilsp. All privileges (except e)

Same as X.

*| A V)"OB'—‘""('B o0 |

Note: The extract privilege is not included in the wildcard privilege; it must be explicitly assigned. This privilege
allows the user to extract keys from the database, and must be handled with great care to avoid disclosure of important
keys like those of the kadmin/* or krbtgt/* principals. The lockdown_keys principal attribute can be used to prevent
key extraction from specific principals regardless of the granted privilege.

target_principal (Optional. Partially or fully qualified Kerberos principal name.) Specifies the principal on which
permissions may be applied. Each component of the name may be wildcarded using the * character.

target_principal can also include back-references to principal, in which *number matches the corresponding
wildcard in principal.

restrictions (Optional) A string of flags. Allowed restrictions are:

{+|-}flagname flag is forced to the indicated value. The permissible flags are the same as those for
the default_principal_flags variable in kdc.conf.

-clearpolicy policy is forced to be empty.
-policy pol policy is forced to be pol.

-{expire, pwexpire, maxlife, maxrenewlife} time (getdate string) associated value will be forced to
MIN(time, requested value).

The above flags act as restrictions on any add or modify operation which is allowed due to that ACL line.

Warning: If the kadmind ACL file is modified, the kadmind daemon needs to be restarted for changes to take
effect.

EXAMPLE

Here is an example of a kadm5.acl file:

*/admin@ATHENA .MIT.EDU * # line 1
joeadmin@ATHENA.MIT.EDU ADMCIL # line 2
joeadmin/+«@ATHENA.MIT.EDU i */root @ATHENA .MIT.EDU # line 3
*/r00t @RATHENA .MIT.EDU ci *1@ATHENA.MIT.EDU # line 4
*/root @ATHENA .MIT.EDU 1 * # line 5
sms@ATHENA .MIT.EDU b4 x —maxlife 9h -postdateable # line 6

(line 1) Any principal in the ATHENA.MIT.EDU realm with an admin instance has all administrative privileges
except extracting keys.

38 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.18.5

(lines 1-3) The user joeadmin has all permissions except extracting keys with his admin instance,
joeadmin/admin@ATHENA.MIT.EDU (matches line 1). He has no permissions at all with his null instance,
joeadmin@ATHENA .MIT.EDU (matches line 2). His root and other non-admin, non-null instances (e.g., extra
or dbadmin) have inquire permissions with any principal that has the instance root (matches line 3).

(line 4) Any root principal in ATHENA .MIT .EDU can inquire or change the password of their null instance, but not
any other null instance. (Here, 1 denotes a back-reference to the component matching the first wildcard in the actor
principal.)

(line 5) Any root principal in ATHENA .MIT.EDU can generate the list of principals in the database, and the list of
policies in the database. This line is separate from line 4, because list permission can only be granted globally, not to
specific target principals.

(line 6) Finally, the Service Management System principal sms@ATHENA.MIT.EDU has all permissions except
extracting keys, but any principal that it creates or modifies will not be able to get postdateable tickets or tickets
with a life of longer than 9 hours.

MODULE BEHAVIOR

The ACL file can coexist with other authorization modules in release 1.16 and later, as configured in the kadm5_auth
interface section of krb5.conf. The ACL file will positively authorize operations according to the rules above, but will
never authoritatively deny an operation, so other modules can authorize operations in addition to those authorized by
the ACL file.

To operate without an ACL file, set the acl_file variable in kdc.conf to the empty string with acl_file = "".

SEE ALSO

kdc.conf, kadmind

2.1. Contents 39

Kerberos Administration Guide, Release 1.18.5

40

Chapter 2. Configuration Files

CHAPTER
THREE

REALM CONFIGURATION DECISIONS

Before installing Kerberos VS5, it is necessary to consider the following issues:
* The name of your Kerberos realm (or the name of each realm, if you need more than one).
* How you will assign your hostnames to Kerberos realms.
* Which ports your KDC and and kadmind services will use, if they will not be using the default ports.
* How many replica KDCs you need and where they should be located.
* The hostnames of your master and replica KDCs.

* How frequently you will propagate the database from the master KDC to the replica KDCs.

3.1 Realm name

Although your Kerberos realm can be any ASCII string, convention is to make it the same as your domain name, in
upper-case letters.

For example, hosts in the domain example . com would be in the Kerberos realm:

EXAMPLE .COM

If you need multiple Kerberos realms, MIT recommends that you use descriptive names which end with your domain
name, such as:

BOSTON.EXAMPLE .COM
HOUSTON.EXAMPLE .COM

3.2 Mapping hostnames onto Kerberos realms

Mapping hostnames onto Kerberos realms is done in one of three ways.

The first mechanism works through a set of rules in the [domain_realm] section of krb5.conf. You can specify
mappings for an entire domain or on a per-hostname basis. Typically you would do this by specifying the mappings
for a given domain or subdomain and listing the exceptions.

The second mechanism is to use KDC host-based service referrals. With this method, the KDC’s krb5.conf has a full
[domain_realm] mapping for hosts, but the clients do not, or have mappings for only a subset of the hosts they might
contact. When a client needs to contact a server host for which it has no mapping, it will ask the client realm’s KDC
for the service ticket, and will receive a referral to the appropriate service realm.

41

Kerberos Administration Guide, Release 1.18.5

To use referrals, clients must be running MIT krb5 1.6 or later, and the KDC must be running MIT krb5 1.7 or later.
The host_based_services and no_host_referral variables in the [realms] section of kdc.conf can be used to fine-tune
referral behavior on the KDC.

It is also possible for clients to use DNS TXT records, if dns_lookup_realm is enabled in krb5.conf. Such lookups are
disabled by default because DNS is an insecure protocol and security holes could result if DNS records are spoofed. If
enabled, the client will try to look up a TXT record formed by prepending the prefix _kerberos to the hostname in
question. If that record is not found, the client will attempt a lookup by prepending _kerberos to the host’s domain
name, then its parent domain, up to the top-level domain. For the hostname boston.engineering.example.
com, the names looked up would be:

_kerberos.boston.engineering.example.com
_kerberos.engineering.example.com
_kerberos.example.com

_kerberos.com

The value of the first TXT record found is taken as the realm name.

Even if you do not choose to use this mechanism within your site, you may wish to set it up anyway, for use when
interacting with other sites.

3.3 Ports for the KDC and admin services

The default ports used by Kerberos are port 88 for the KDC and port 749 for the admin server. You can, however,
choose to run on other ports, as long as they are specified in each host’s krb5.conf files or in DNS SRV records, and
the kdc.conf file on each KDC. For a more thorough treatment of port numbers used by the Kerberos V5 programs,
refer to the Configuring your firewall to work with Kerberos V5.

3.4 Replica KDCs

Replica KDCs provide an additional source of Kerberos ticket-granting services in the event of inaccessibility of the
master KDC. The number of replica KDCs you need and the decision of where to place them, both physically and
logically, depends on the specifics of your network.

Kerberos authentication requires that each client be able to contact a KDC. Therefore, you need to anticipate any likely
reason a KDC might be unavailable and have a replica KDC to take up the slack.

Some considerations include:

* Have at least one replica KDC as a backup, for when the master KDC is down, is being upgraded, or is otherwise
unavailable.

e If your network is split such that a network outage is likely to cause a network partition (some segment or
segments of the network to become cut off or isolated from other segments), have a replica KDC accessible to
each segment.

* If possible, have at least one replica KDC in a different building from the master, in case of power outages, fires,
or other localized disasters.

3.5 Hostnames for KDCs

MIT recommends that your KDCs have a predefined set of CNAME records (DNS hostname aliases), such as
kerberos for the master KDC and kerberos-1, kerberos-2, ... for the replica KDCs. This way, if you

42 Chapter 3. Realm configuration decisions

Kerberos Administration Guide, Release 1.18.5

need to swap a machine, you only need to change a DNS entry, rather than having to change hostnames.

As of MIT krb5 1.4, clients can locate a realm’s KDCs through DNS using SRV records (RFC 2782), assuming the
Kerberos realm name is also a DNS domain name. These records indicate the hostname and port number to contact
for that service, optionally with weighting and prioritization. The domain name used in the SRV record name is the
realm name. Several different Kerberos-related service names are used:

_kerberos._udp This is for contacting any KDC by UDP. This entry will be used the most often. Normally you
should list port 88 on each of your KDCs.

_kerberos._tcp This is for contacting any KDC by TCP. The MIT KDC by default will not listen on any TCP ports,
so unless you’ve changed the configuration or you’re running another KDC implementation, you should leave
this unspecified. If you do enable TCP support, normally you should use port 88.

_kerberos-master._udp This entry should refer to those KDCs, if any, that will immediately see password changes
to the Kerberos database. If a user is logging in and the password appears to be incorrect, the client will retry
with the master KDC before failing with an “incorrect password” error given.

If you have only one KDC, or for whatever reason there is no accessible KDC that would get database changes
faster than the others, you do not need to define this entry.

_kerberos-adm._tcp This should list port 749 on your master KDC. Support for it is not complete at this time,
but it will eventually be used by the kadmin program and related utilities. For now, you will also need the
admin_server variable in krb5.conf.

_kpasswd._udp This should list port 464 on your master KDC. It is used when a user changes her password. If this
entry is not defined but a _kerberos-adm._tcp entry is defined, the client will use the _kerberos-adm._tcp entry
with the port number changed to 749.

The DNS SRV specification requires that the hostnames listed be the canonical names, not aliases. So, for example,
you might include the following records in your (BIND-style) zone file:

SORIGIN foobar.com.

_kerberos TXT "FOOBAR.COM"
kerberos CNAME daisy
kerberos-1 CNAME use-the-force-luke
kerberos-2 CNAME bunny-rabbit
_kerberos._udp SRV 0 0 88 daisy
SRV 0 0 88 use-the-force-luke
SRV 0 0 88 bunny-rabbit
_kerberos-master._udp SRV 0 0 88 daisy
_kerberos—-adm._tcp SRV 0 0 749 daisy
_kpasswd._udp SRV 0 0 464 daisy

Clients can also be configured with the explicit location of services using the kde, master_kdc, admin_server, and
kpasswd_server variables in the [realms] section of krb5.conf. Even if some clients will be configured with explicit
server locations, providing SRV records will still benefit unconfigured clients, and be useful for other sites.

3.6 KDC Discovery

As of MIT krb5 1.15, clients can also locate KDCs in DNS through URI records (RFC 7553). Limitations with the
SRV record format may result in extra DNS queries in situations where a client must failover to other transport types,
or find a master server. The URI record can convey more information about a realm’s KDCs with a single query.

The client performs a query for the following URI records:
e _kerberos.REALM for finding KDCs.

* _kerberos—adm.REALM for finding kadmin services.

3.6. KDC Discovery 43

https://tools.ietf.org/html/rfc2782.html
https://tools.ietf.org/html/rfc7553.html

Kerberos Administration Guide, Release 1.18.5

* _kpasswd.REALM for finding password services.

The URI record includes a priority, weight, and a URI string that consists of case-insensitive colon separated fields, in
the form scheme: [flags] :transport:residual.

 scheme defines the registered URI type. It should always be krb5srv.

* flags contains zero or more flag characters. Currently the only valid flag is m, which indicates that the record is
for a master server.

* transport defines the transport type of the residual URL or address. Accepted values are t cp, udp, or kkdcp
for the MS-KKDCP type.

* residual contains the hostname, IP address, or URL to be contacted using the specified transport, with an op-
tional port extension. The MS-KKDCP transport type uses a HTTPS URL, and can include a port and/or path
extension.

An example of URI records in a zone file:

_kerberos.EXAMPLE.COM URI 10 1 krbbSsrv:m:tcp:kdcl.example.com
URI 20 1 krbbsrv:m:udp:kdc2.example.com:89
URI 40 1 krbSsrv::udp:10.10.0.23
URI 30 1 krbbsrv::kkdcp:https://proxy:89/auth

URI lookups are enabled by default, and can be disabled by setting dns_uri_lookup in the [libdefaults] section of
krb5.conf to False. When enabled, URI lookups take precedence over SRV lookups, falling back to SRV lookups if
no URI records are found.

3.7 Database propagation

The Kerberos database resides on the master KDC, and must be propagated regularly (usually by a cron job) to the
replica KDCs. In deciding how frequently the propagation should happen, you will need to balance the amount of
time the propagation takes against the maximum reasonable amount of time a user should have to wait for a password
change to take effect.

If the propagation time is longer than this maximum reasonable time (e.g., you have a particularly large database, you
have a lot of replicas, or you experience frequent network delays), you may wish to cut down on your propagation
delay by performing the propagation in parallel. To do this, have the master KDC propagate the database to one set of
replicas, and then have each of these replicas propagate the database to additional replicas.

See also Incremental database propagation

44 Chapter 3. Realm configuration decisions

CHAPTER
FOUR

DATABASE ADMINISTRATION

A Kerberos database contains all of a realm’s Kerberos principals, their passwords, and other administrative informa-
tion about each principal. For the most part, you will use the kdb5_util program to manipulate the Kerberos database as
a whole, and the kadmin program to make changes to the entries in the database. (One notable exception is that users
will use the kpasswd(1) program to change their own passwords.) The kadmin program has its own command-line
interface, to which you type the database administrating commands.

kdb5_util provides a means to create, delete, load, or dump a Kerberos database. It also contains commands to roll
over the database master key, and to stash a copy of the key so that the kadmind and krb5kdc daemons can use the
database without manual input.

kadmin provides for the maintenance of Kerberos principals, password policies, and service key tables (keytabs).
Normally it operates as a network client using Kerberos authentication to communicate with kadmind, but there is
also a variant, named kadmin.local, which directly accesses the Kerberos database on the local filesystem (or through
LDAP). kadmin.local is necessary to set up enough of the database to be able to use the remote version.

kadmin can authenticate to the admin server using the service principal kadmin/HOST (where HOST is the hostname
of the admin server) or kadmin/admin. If the credentials cache contains a ticket for either service principal and the
-c ccache option is specified, that ticket is used to authenticate to KADMS. Otherwise, the -p and -k options are used
to specity the client Kerberos principal name used to authenticate. Once kadmin has determined the principal name,
it requests a kadmin/admin Kerberos service ticket from the KDC, and uses that service ticket to authenticate to
KADMS.

See kadmin for the available kadmin and kadmin.local commands and options.

4.1 kadmin options

You can invoke kadmin or kadmin.local with any of the following options:

kadmin [-OI-N] [-r realm] [-p principal] [-q query] [[-¢ cache_namel]l[-k [-t keytab]]l-n] [-W password] [-s ad-
min_server|[:port]] [command args. ..]

kadmin.local [-r realm] [-p principal] [-q query] [-d dbname] [-e enc:salt ...] [-m] [-x db_args] [command args. ..]
OPTIONS
-r realm Use realm as the default database realm.

-p principal Use principal to authenticate. Otherwise, kadmin will append /admin to the primary principal name of
the default ccache, the value of the USER environment variable, or the username as obtained with getpwuid, in
order of preference.

-k Use a keytab to decrypt the KDC response instead of prompting for a password. In this case, the default principal
will be host /hostname. If there is no keytab specified with the -t option, then the default keytab will be
used.

45

Kerberos Administration Guide, Release 1.18.5

-t keytab Use keytab to decrypt the KDC response. This can only be used with the -k option.

-n Requests anonymous processing. Two types of anonymous principals are supported. For fully anonymous Ker-
beros, configure PKINIT on the KDC and configure pkinit_anchors in the client’s krb5.conf. Then use the
-n option with a principal of the form @REALM (an empty principal name followed by the at-sign and a realm
name). If permitted by the KDC, an anonymous ticket will be returned. A second form of anonymous tickets is
supported; these realm-exposed tickets hide the identity of the client but not the client’s realm. For this mode,
use kinit -n with a normal principal name. If supported by the KDC, the principal (but not realm) will be
replaced by the anonymous principal. As of release 1.8, the MIT Kerberos KDC only supports fully anonymous
operation.

-c credentials _cache Use credentials_cache as the credentials cache. The cache should contain a service ticket for the
kadmin/ADMINHOST (where ADMINHOST is the fully-qualified hostname of the admin server) or kadmin/
admin service; it can be acquired with the kinit(1) program. If this option is not specified, kadmin requests a
new service ticket from the KDC, and stores it in its own temporary ccache.

-w password Use password instead of prompting for one. Use this option with care, as it may expose the password to
other users on the system via the process list.

-q query Perform the specified query and then exit.

-d dbname Specifies the name of the KDC database. This option does not apply to the LDAP database module.
-s admin_server|:port] Specifies the admin server which kadmin should contact.

-m If using kadmin.local, prompt for the database master password instead of reading it from a stash file.

-e “enc:salt ...” Sets the keysalt list to be used for any new keys created. See Keysalt lists in kdc.conf for a list of
possible values.

-0 Force use of old AUTH_GSSAPI authentication flavor.
-N Prevent fallback to AUTH_GSSAPI authentication flavor.

-x db_args Specifies the database specific arguments. See the next section for supported options.

4.2 Date Format

For the supported date-time formats see getdate section in datetime.

4.3 Principals

Each entry in the Kerberos database contains a Kerberos principal and the attributes and policies associated with that
principal.

4.3.1 Adding, modifying and deleting principals

To add a principal to the database, use the kadmin add_principal command.
To modify attributes of a principal, use the kadmin modify_principal command.

To delete a principal, use the kadmin delete_principal command.

46 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.18.5

4.3.2 add_principal

add_principal [options] newprinc

Creates the principal newprinc, prompting twice for a password. If no password policy is specified with the -policy
option, and the policy named default is assigned to the principal if it exists. However, creating a policy named
default will not automatically assign this policy to previously existing principals. This policy assignment can be
suppressed with the -clearpolicy option.

This command requires the add privilege.

Aliases: addprinc, ank

Options:

-expire expdate (getdate string) The expiration date of the principal.

-pwexpire pwexpdate (getdate string) The password expiration date.

-maxlife maxlife (duration or getdate string) The maximum ticket life for the principal.

-maxrenewlife maxrenewlife (duration or getdate string) The maximum renewable life of tickets for the principal.
-kvno kvno The initial key version number.

-policy policy The password policy used by this principal. If not specified, the policy default is used if it exists
(unless -clearpolicy is specified).

-clearpolicy Prevents any policy from being assigned when -policy is not specified.

{-I+}allow_postdated -allow_postdated prohibits this principal from obtaining postdated tickets. +allow_postdated
clears this flag.

{-I+}allow_forwardable -allow_forwardable prohibits this principal from obtaining forwardable tickets. +al-
low_forwardable clears this flag.

{-I+}allow_renewable -allow_renewable prohibits this principal from obtaining renewable tickets. +al-
low_renewable clears this flag.

{-I+}allow_proxiable -allow_proxiable prohibits this principal from obtaining proxiable tickets. +allow_proxiable
clears this flag.

{-l+}allow_dup_skey -allow_dup_skey disables user-to-user authentication for this principal by prohibiting others
from obtaining a service ticket encrypted in this principal’s TGT session key. +allow_dup_skey clears this flag.

{-l+}requires_preauth +requires_preauth requires this principal to preauthenticate before being allowed to kinit.
-requires_preauth clears this flag. When +requires_preauth is set on a service principal, the KDC will only
issue service tickets for that service principal if the client’s initial authentication was performed using preau-
thentication.

{-l+}requires_hwauth +requires_hwauth requires this principal to preauthenticate using a hardware device before
being allowed to kinit. -requires_hwauth clears this flag. When +requires_hwauth is set on a service prin-
cipal, the KDC will only issue service tickets for that service principal if the client’s initial authentication was
performed using a hardware device to preauthenticate.

{-l+}ok_as_delegate +ok_as_delegate sets the okay as delegate flag on tickets issued with this principal as the
service. Clients may use this flag as a hint that credentials should be delegated when authenticating to the
service. -ok_as_delegate clears this flag.

{-I+}allow_svr -allow_svr prohibits the issuance of service tickets for this principal. In release 1.17 and later, user-
to-user service tickets are still allowed unless the -allow_dup_skey flag is also set. +allow_svr clears this
flag.

4.3. Principals 47

Kerberos Administration Guide, Release 1.18.5

{-I+}allow_tgs_req -allow_tgs_req specifies that a Ticket-Granting Service (TGS) request for a service ticket for this
principal is not permitted. +allow_tgs_req clears this flag.

{-l+}allow_tix -allow_tix forbids the issuance of any tickets for this principal. +allow_tix clears this flag.

{-l+}needchange +needchange forces a password change on the next initial authentication to this principal. -
needchange clears this flag.

{-l+}password_changing_service +password_changing_service marks this principal as a password change service
principal.

{-l+}ok_to_auth_as_delegate +ok_to_auth_as_delegate allows this principal to acquire forwardable tickets to itself
from arbitrary users, for use with constrained delegation.

{-l+}no_auth_data_required +no_auth_data_required prevents PAC or AD-SIGNEDPATH data from being added
to service tickets for the principal.

{-l+}lockdown_keys +lockdown_keys prevents keys for this principal from leaving the KDC via kadmind. The
chpass and extract operations are denied for a principal with this attribute. The chrand operation is allowed,
but will not return the new keys. The delete and rename operations are also denied if this attribute is set,
in order to prevent a malicious administrator from replacing principals like krbtgt/* or kadmin/* with new
principals without the attribute. This attribute can be set via the network protocol, but can only be removed
using kadmin.local.

-randkey Sets the key of the principal to a random value.
-nokey Causes the principal to be created with no key. New in release 1.12.

-pw password Sets the password of the principal to the specified string and does not prompt for a password. Note:
using this option in a shell script may expose the password to other users on the system via the process list.

-e enc:salt,... Uses the specified keysalt list for setting the keys of the principal. See Keysalt lists in kdc.conf for a
list of possible values.

-x db_princ_args Indicates database-specific options. The options for the LDAP database module are:
-x dn=dn Specifies the LDAP object that will contain the Kerberos principal being created.
-x linkdn=dn Specifies the LDAP object to which the newly created Kerberos principal object will point.

-x containerdn=container_dn Specifies the container object under which the Kerberos principal is to be cre-
ated.

-x tktpolicy=policy Associates a ticket policy to the Kerberos principal.

Note:
¢ The containerdn and linkdn options cannot be specified with the dn option.

e If the dn or containerdn options are not specified while adding the principal, the principals are created
under the principal container configured in the realm or the realm container.

* dn and containerdn should be within the subtrees or principal container configured in the realm.

Example:

kadmin: addprinc jennifer

No policy specified for "jennifer@ATHENA.MIT.EDU";
defaulting to no policy.

Enter password for principal jennifer@ATHENA.MIT.EDU:
Re—enter password for principal jennifer@ATHENA.MIT.EDU:

48 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.18.5

Principal "Jjennifer@ATHENA.MIT.EDU" created.
kadmin:

4.3.3 modify_principal

modify_principal [options] principal

Modifies the specified principal, changing the fields as specified. The options to add_principal also apply to this
command, except for the -randkey, -pw, and -e options. In addition, the option -clearpolicy will clear the current
policy of a principal.

This command requires the modify privilege.
Alias: modprinc
Options (in addition to the addprinc options):

-unlock Unlocks a locked principal (one which has received too many failed authentication attempts without enough
time between them according to its password policy) so that it can successfully authenticate.

4.3.4 delete_principal

delete_principal [-force] principal

Deletes the specified principal from the database. This command prompts for deletion, unless the -force option is
given.

This command requires the delete privilege.
Alias: delprinc
Examples

If you want to create a principal which is contained by a LDAP object, all you need to do is:

kadmin: addprinc -x dn=cn=jennifer,dc=example,dc=com jennifer

No policy specified for "jennifer@ATHENA.MIT.EDU";

defaulting to no policy.

Enter password for principal Jjennifer@ATHENA.MIT.EDU: <= Type the password.
Re-enter password for principal jennifer@ATHENA.MIT.EDU: <=Type it again.
Principal "Jjennifer@ATHENA.MIT.EDU" created.

kadmin:

If you want to create a principal under a specific LDAP container and link to an existing LDAP object, all you need to
do is:

kadmin: addprinc -x containerdn=dc=example,dc=com -x linkdn=cn=david, dc=example,
—dc=com david

No policy specified for "david@ATHENA.MIT.EDU";

defaulting to no policy.

Enter password for principal david@ATHENA.MIT.EDU: <= Type the password.
Re-enter password for principal david@ATHENA.MIT.EDU: <=Type it again.
Principal "david@ATHENA.MIT.EDU" created.

kadmin:

If you want to associate a ticket policy to a principal, all you need to do is:

4.3. Principals 49

Kerberos Administration Guide, Release 1.18.5

kadmin: modprinc -x tktpolicy=userpolicy david
Principal "david@ATHENA.MIT.EDU" modified.
kadmin:

If, on the other hand, you want to set up an account that expires on January 1, 2000, that uses a policy called “stduser”,
with a temporary password (which you want the user to change immediately), you would type the following:

kadmin: addprinc david -expire "1/1/2000 12:0lam EST" -policy stduser +needchange
Enter password for principal david@ATHENA.MIT.EDU: <= Type the password.
Re-enter password for principal

david@ATHENA.MIT.EDU: <= Type it again.

Principal "david@ATHENA.MIT.EDU" created.

kadmin:

If you want to delete a principal:

kadmin: delprinc jennifer

Are you sure you want to delete the principal
"jennifer@ATHENA.MIT.EDU"? (yes/no): yes

Principal "jennifer@ATHENA.MIT.EDU" deleted.

Make sure that you have removed this principal from
all ACLs before reusing.

kadmin:

4.3.5 Retrieving information about a principal
To retrieve a listing of the attributes and/or policies associated with a principal, use the kadmin get_principal com-
mand.

To generate a listing of principals, use the kadmin list_principals command.

4.3.6 get_principal

get_principal [-terse] principal
Gets the attributes of principal. With the -terse option, outputs fields as quoted tab-separated strings.

This command requires the inquire privilege, or that the principal running the the program to be the same as the one
being listed.

Alias: getprinc

Examples:

kadmin: getprinc tlyu/admin

Principal: tlyu/admin@BLEEP.COM

Expiration date: [never]

Last password change: Mon Aug 12 14:16:47 EDT 1996
Password expiration date: [never]

Maximum ticket life: 0 days 10:00:00

Maximum renewable life: 7 days 00:00:00

Last modified: Mon Aug 12 14:16:47 EDT 1996 (bjaspan/admin@BLEEP.COM)
Last successful authentication: [never]

Last failed authentication: [never]

Failed password attempts: 0

Number of keys: 1

50 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.18.5

Key: vno 1, aes256-cts—hmac-sha384-192
MKey: vno 1

Attributes:

Policy: [none]

kadmin: getprinc -terse systest

systest@BLEEP .COM 3 86400 604800 1
785926535 753241234 785900000

tlyu/admin@BLEEP .COM 786100034 0 0
kadmin:

4.3.7 list_principals

list_principals [expression]

Retrieves all or some principal names. expression is a shell-style glob expression that can contain the wild-card
characters ?, =, and []. All principal names matching the expression are printed. If no expression is provided, all
principal names are printed. If the expression does not contain an @ character, an @ character followed by the local
realm is appended to the expression.

This command requires the list privilege.
Alias: listprincs, get_principals, get_princs

Example:

kadmin: listprincs testx
test3@RSECURE-TEST.OV.COM
test2@RSECURE-TEST.OV.COM
test1@RSECURE-TEST.OV.COM
testuser@SECURE-TEST.OV.COM
kadmin:

4.3.8 Changing passwords

To change a principal’s password use the kadmin change_password command.

4.3.9 change_password

change_password [options] principal
Changes the password of principal. Prompts for a new password if neither -randkey or -pw is specified.

This command requires the changepw privilege, or that the principal running the program is the same as the principal
being changed.

Alias: cpw
The following options are available:
-randkey Sets the key of the principal to a random value.

-pw password Set the password to the specified string. Using this option in a script may expose the password to other
users on the system via the process list.

-e enc:salt,... Uses the specified keysalt list for setting the keys of the principal. See Keysalt lists in kdc.conf for a
list of possible values.

4.3. Principals 51

Kerberos Administration Guide, Release 1.18.5

-keepold Keeps the existing keys in the database. This flag is usually not necessary except perhaps for krbtgt
principals.

Example:

kadmin: cpw systest

Enter password for principal systest@BLEEP.COM:
Re-enter password for principal systest@BLEEP.COM:
Password for systest@BLEEP.COM changed.

kadmin:

Note: Password changes through kadmin are subject to the same password policies as would apply to password
changes through kpasswd(1).

4.4 Policies

A policy is a set of rules governing passwords. Policies can dictate minimum and maximum password lifetimes,
minimum number of characters and character classes a password must contain, and the number of old passwords kept
in the database.

4.4.1 Adding, modifying and deleting policies

To add a new policy, use the kadmin add_policy command.
To modify attributes of a principal, use the kadmin modify_policy command.

To delete a policy, use the kadmin delete_policy command.

4.4.2 add_policy

add_policy [options] policy
Adds a password policy named policy to the database.
This command requires the add privilege.
Alias: addpol
The following options are available:
-maxlife fime (duration or getdate string) Sets the maximum lifetime of a password.
-minlife time (duration or getdate string) Sets the minimum lifetime of a password.
-minlength length Sets the minimum length of a password.

-minclasses number Sets the minimum number of character classes required in a password. The five character classes
are lower case, upper case, numbers, punctuation, and whitespace/unprintable characters.

-history number Sets the number of past keys kept for a principal. This option is not supported with the LDAP KDC
database module.

-maxfailure maxnumber Sets the number of authentication failures before the principal is locked. Authentication
failures are only tracked for principals which require preauthentication. The counter of failed attempts resets to
0 after a successful attempt to authenticate. A maxnumber value of 0 (the default) disables lockout.

52 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.18.5

-failurecountinterval failuretime (duration or getdate string) Sets the allowable time between authentication fail-
ures. If an authentication failure happens after failuretime has elapsed since the previous failure, the number of
authentication failures is reset to 1. A failuretime value of 0O (the default) means forever.

-lockoutduration lockouttime (duration or getdate string) Sets the duration for which the principal is locked from
authenticating if too many authentication failures occur without the specified failure count interval elapsing.
A duration of O (the default) means the principal remains locked out until it is administratively unlocked with
modprinc -unlock.

-allowedkeysalts Specifies the key/salt tuples supported for long-term keys when setting or changing a principal’s
password/keys. See Keysalt lists in kdc.conf for a list of the accepted values, but note that key/salt tuples must
be separated with commas (°,’) only. To clear the allowed key/salt policy use a value of ‘-°.

Example:

kadmin: add_policy -maxlife "2 days" -minlength 5 guests
kadmin:

4.4.3 modify_policy

modify_policy [options] policy
Modifies the password policy named policy. Options are as described for add_policy.
This command requires the modify privilege.

Alias: modpol

4.4.4 delete_policy

delete_policy [-force] policy

Deletes the password policy named policy. Prompts for confirmation before deletion. The command will fail if the
policy is in use by any principals.

This command requires the delete privilege.
Alias: delpol

Example:

kadmin: del_policy guests

Are you sure you want to delete the policy "guests"?
(yes/no) : yes

kadmin:

Note: You must cancel the policy from all principals before deleting it. The delete_policy command will fail if the
policy is in use by any principals.

4.4.5 Retrieving policies

To retrieve a policy, use the kadmin get_policy command.

You can retrieve the list of policies with the kadmin list_policies command.

4.4. Policies 53

Kerberos Administration Guide, Release 1.18.5

4.4.6 get_policy

get_policy [-terse] policy

Displays the values of the password policy named policy. With the -terse flag, outputs the fields as quoted strings
separated by tabs.

This command requires the inquire privilege.
Alias: getpol

Examples:

kadmin: get_policy admin

Policy: admin

Maximum password life: 180 days 00:00:00
Minimum password life: 00:00:00

Minimum password length: 6

Minimum number of password character classes: 2
Number of old keys kept: 5

Reference count: 17

kadmin: get_policy -terse admin
admin 15552000 O 6 2 5 17
kadmin:

The “Reference count” is the number of principals using that policy. With the LDAP KDC database module, the
reference count field is not meaningful.

4.4.7 list_policies

list_policies [expression]

Retrieves all or some policy names. expression is a shell-style glob expression that can contain the wild-card characters
?, »,and []. All policy names matching the expression are printed. If no expression is provided, all existing policy
names are printed.

This command requires the list privilege.
Aliases: listpols, get_policies, getpols.

Examples:

kadmin: listpols
test-pol
dict-only
once—a-min
test-pol-nopw

kadmin: listpols t=
test-pol
test-pol-nopw
kadmin:

4.4.8 Policies and principals

Policies can be applied to principals as they are created by using the -policy flag to add_principal. Existing principals
can be modified by using the -policy or -clearpolicy flag to modify_principal.

54 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.18.5

4.4.9 Updating the history key
If a policy specifies a number of old keys kept of two or more, the stored old keys are encrypted in a history key, which
is found in the key data of the kadmin/history principal.

Currently there is no support for proper rollover of the history key, but you can change the history key (for example,
to use a better encryption type) at the cost of invalidating currently stored old keys. To change the history key, run:

kadmin: change_password -randkey kadmin/history

This command will fail if you specify the -keepold flag. Only one new history key will be created, even if you specify
multiple key/salt combinations.

In the future, we plan to migrate towards encrypting old keys in the master key instead of the history key, and imple-
menting proper rollover support for stored old keys.

4.5 Privileges

Administrative privileges for the Kerberos database are stored in the file kadm5.acl.

Note: A common use of an admin instance is so you can grant separate permissions (such as administrator access to
the Kerberos database) to a separate Kerberos principal. For example, the user joeadmin might have a principal for
his administrative use, called joeadmin/admin. This way, joeadmin would obtain joeadmin/admin tickets
only when he actually needs to use those permissions.

4.6 Operations on the Kerberos database

The kdb5_util command is the primary tool for administrating the Kerberos database.

kdb5_util [-r realm] [-d dbname] [-k mkeytype] [-kv mkeyVNO] [-M mkeyname] [-m] [-sf stashfilename] [-P pass-
word] [-X db_args] command [command_options)

OPTIONS
-r realm specifies the Kerberos realm of the database.

-d dbname specifies the name under which the principal database is stored; by default the database is that listed in
kdc.conf. The password policy database and lock files are also derived from this value.

-k mkeytype specifies the key type of the master key in the database. The default is given by the master_key_type
variable in kdc.conf.

-kv mkeyVNO Specifies the version number of the master key in the database; the default is 1. Note that O is not
allowed.

-M mkeyname principal name for the master key in the database. If not specified, the name is determined by the
master_key_name variable in kdc.conf.

-m specifies that the master database password should be read from the keyboard rather than fetched from a file on
disk.

-sf stash_file specifies the stash filename of the master database password. If not specified, the filename is determined
by the key_stash_file variable in kdc.conf.

4.5. Privileges 55

Kerberos Administration Guide, Release 1.18.5

-P password specifies the master database password. Using this option may expose the password to other users on the
system via the process list.

-x db_args specifies database-specific options. See kadmin for supported options.

4.6.1 Dumping a Kerberos database to a file

To dump a Kerberos database into a file, use the kdb5_util damp command on one of the KDCs.

dump [-b7I-r13|-r18] [-verbose] [-mKkey_convert] [-new_mkey_file mkey_file] [-rev] [-recurse] [file-
name [principals. . .]]

Dumps the current Kerberos and KADMS database into an ASCII file. By default, the database is dumped in current
format, “kdb5_util load_dump version 7”. If filename is not specified, or is the string “-*, the dump is sent to standard
output. Options:

-b7 causes the dump to be in the Kerberos 5 Beta 7 format (“kdb5_util load_dump version 4”). This was the dump
format produced on releases prior to 1.2.2.

-r13 causes the dump to be in the Kerberos 5 1.3 format (“kdb5_util load_dump version 57). This was the dump
format produced on releases prior to 1.8.

-r18 causes the dump to be in the Kerberos 5 1.8 format (“kdb5_util load_dump version 6). This was the dump
format produced on releases prior to 1.11.

-verbose causes the name of each principal and policy to be printed as it is dumped.

-mkey_convert prompts for a new master key. This new master key will be used to re-encrypt principal key data in
the dumpfile. The principal keys themselves will not be changed.

-new_mkey_file mkey_file the filename of a stash file. The master key in this stash file will be used to re-encrypt the
key data in the dumpfile. The key data in the database will not be changed.

-rev dumps in reverse order. This may recover principals that do not dump normally, in cases where database corrup-
tion has occurred.

-recurse causes the dump to walk the database recursively (btree only). This may recover principals that do not dump
normally, in cases where database corruption has occurred. In cases of such corruption, this option will probably
retrieve more principals than the -rev option will.

Changed in version 1.15: Release 1.15 restored the functionality of the -recurse option.

Changed in version 1.5: The -recurse option ceased working until release 1.15, doing a normal dump instead of
a recursive traversal.

Examples

shell% kdb5_util dump dumpfile
shell%

shell% kbd5_util dump -verbose dumpfile
kadmin/admin@RATHENA.MIT.EDU

krbtgt /ATHENA.MIT.EDU@ATHENA.MIT.EDU
kadmin/history@ATHENA.MIT.EDU
K/MQATHENA.MIT.EDU
kadmin/changepw@ATHENA.MIT.EDU

shell%

If you specify which principals to dump, you must use the full principal, as in the following example:

56 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.18.5

shell% kdb5_util dump -verbose dumpfile K/MERATHENA.MIT.EDU kadmin/admin@ATHENA.MIT.EDU
kadmin/admin@ATHENA.MIT.EDU

K/MQ@ATHENA .MIT.EDU

shell%

Otherwise, the principals will not match those in the database and will not be dumped:

shell% kdb5_util dump -verbose dumpfile K/M kadmin/admin
shell%

If you do not specify a dump file, kdb5_util will dump the database to the standard output.

4.6.2 Restoring a Kerberos database from a dump file

To restore a Kerberos database dump from a file, use the kdb5_util load command on one of the KDCs.
load [-b7|-r13I|-r18] [-hash] [-verbose] [-update] filename

Loads a database dump from the named file into the named database. If no option is given to determine the format
of the dump file, the format is detected automatically and handled as appropriate. Unless the -update option is given,
load creates a new database containing only the data in the dump file, overwriting the contents of any previously
existing database. Note that when using the LDAP KDC database module, the -update flag is required.

Options:

-b7 requires the database to be in the Kerberos 5 Beta 7 format (“kdb5_util load_dump version 4”). This was the
dump format produced on releases prior to 1.2.2.

-r13 requires the database to be in Kerberos 5 1.3 format (“kdb5_util load_dump version 5”). This was the dump
format produced on releases prior to 1.8.

-r18 requires the database to be in Kerberos 5 1.8 format (“kdb5_util load_dump version 6”). This was the dump
format produced on releases prior to 1.11.

-hash stores the database in hash format, if using the DB2 database type. If this option is not specified, the database
will be stored in btree format. This option is not recommended, as databases stored in hash format are known to
corrupt data and lose principals.

-verbose causes the name of each principal and policy to be printed as it is dumped.

-update records from the dump file are added to or updated in the existing database. Otherwise, a new database is
created containing only what is in the dump file and the old one destroyed upon successful completion.

Examples

To dump a single principal and later load it, updating the database:

shell% kdb5_util dump dumpfile principal@REALM
shell%

shell% kdb5_util load -update dumpfile
shell%

Note: If the database file exists, and the -update flag was not given, kdb5_util will overwrite the existing database.

4.6. Operations on the Kerberos database 57

Kerberos Administration Guide, Release 1.18.5

Note: Using kdb5_util to dump and reload the principal database is only necessary when upgrading from versions of
krb5 prior to 1.2.0—newer versions will use the existing database as-is.

4.6.3 Creating a stash file

A stash file allows a KDC to authenticate itself to the database utilities, such as kadmind, krb5kdc, and kdb5_util.
To create a stash file, use the kdb5_util stash command.
stash [-f keyfile]

Stores the master principal’s keys in a stash file. The -f argument can be used to override the keyfile specified in
kdc.conf.

Example

shell% kdb5_util stash kdb5_util: Cannot find/read stored master key while reading master key kdb5_util:
Warning: proceeding without master key Enter KDC database master key: <= Type the KDC database
master password. shell%

If you do not specify a stash file, kdb5_util will stash the key in the file specified in your kdc.conf file.

4.6.4 Creating and destroying a Kerberos database

If you need to create a new Kerberos database, use the kdb5_util create command.
create [-s]

Creates a new database. If the -s option is specified, the stash file is also created. This command fails if the database
already exists. If the command is successful, the database is opened just as if it had already existed when the program
was first run.

If you need to destroy the current Kerberos database, use the kdb5_util destroy command.
destroy [-f]

Destroys the database, first overwriting the disk sectors and then unlinking the files, after prompting the user for
confirmation. With the -f argument, does not prompt the user.

Examples

shell% kdb5_util -r ATHENA.MIT.EDU create -s

Loading random data

Initializing database '/usr/local/var/krb5kdc/principal' for realm 'ATHENA.MIT.EDU',
master key name 'K/MQ@ATHENA.MIT.EDU'

You will be prompted for the database Master Password.

It is important that you NOT FORGET this password.

Enter KDC database master key: <= Type the master password.

Re-enter KDC database master key to verify: <= Type it again.

shell%

shell% kdb5_util -r ATHENA.MIT.EDU destroy
Deleting KDC database stored in '/usr/local/var/krb5kdc/principal', are you sure?
(type 'yes' to confirm)? <= yes

58 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.18.5

OK, deleting database '/usr/local/var/krbbSkdc/principal'...
*x Database '/usr/local/var/krb5kdc/principal' destroyed.
shell%

4.6.5 Updating the master key

Starting with release 1.7, kdb5_util allows the master key to be changed using a rollover process, with minimal loss of
availability. To roll over the master key, follow these steps:

1.

On the master KDC, run kdb5_util 1list_mkeys to view the current master key version number (KVNO).
If you have never rolled over the master key before, this will likely be version 1:

$ kdb5_util list_mkeys

Master keys for Principal: K/M@KRBTEST.COM

KVNO: 1, Enctype: aes256-cts-hmac-sha384-192, Active on: Thu Jan 01 00:00:00 UTC_
1970 =

On the master KDC, run kdb5_util use_mkey 1 to ensure that a master key activation list is present in
the database. This step is unnecessary in release 1.11.4 or later, or if the database was initially created with
release 1.7 or later.

. On the master KDC, run kdb5_util add_mkey -s to create a new master key and write it to the stash file.

Enter a secure password when prompted. If this is the first time you are changing the master key, the new key
will have version 2. The new master key will not be used until you make it active.

Propagate the database to all replica KDCs, either manually or by waiting until the next scheduled propagation.
If you do not have any replica KDCs, you can skip this and the next step.

On each replica KDC, run kdb5_util list_mkeys to verify that the new master key is present, and then
kdb5_util stash to write the new master key to the replica KDC’s stash file.

On the master KDC, run kdb5_util use_mkey 2 to begin using the new master key. Replace 2 with the
version of the new master key, as appropriate. You can optionally specify a date for the new master key to
become active; by default, it will become active immediately. Prior to release 1.12, kadmind must be restarted
for this change to take full effect.

On the master KDC, run kdb5_util update_princ_encryption. This command will iterate over
the database and re-encrypt all keys in the new master key. If the database is large and uses DB2, the master
KDC will become unavailable while this command runs, but clients should fail over to replica KDCs (if any are
present) during this time period. In release 1.13 and later, you can instead run kdb5_util -x unlockiter
update_princ_encryption to use unlocked iteration; this variant will take longer, but will keep the
database available to the KDC and kadmind while it runs.

Wait until the above changes have propagated to all replica KDCs and until all running KDC and kadmind
processes have serviced requests using updated principal entries.

On the master KDC, run kdb5_util purge_mkeys to clean up the old master key.

4.7 Operations on the LDAP database

The kdb5_ldap_util is the primary tool for administrating the Kerberos LDAP database. It allows an administrator to
manage realms, Kerberos services (KDC and Admin Server) and ticket policies.

kdb5_ldap_util [-D user_dn [-w passwd]] [-H ldapuri] command [command_options]
OPTIONS

4.7. Operations on the LDAP database 59

Kerberos Administration Guide, Release 1.18.5

-r realm Specifies the realm to be operated on.

-D user_dn Specifies the Distinguished Name (DN) of the user who has sufficient rights to perform the operation on
the LDAP server.

-w passwd Specifies the password of user_dn. This option is not recommended.
-H ldapuri Specifies the URI of the LDAP server.

By default, kdb5_ldap_util operates on the default realm (as specified in krb5.conf) and connects and authenticates to
the LDAP server in the same manner as :ref:kadmind(8)‘ would given the parameters in [dbdefaults] in kdc.conf.

4.7.1 Creating a Kerberos realm

If you need to create a new realm, use the kdb5_Ildap_util create command as follows.

create [-subtrees subtree_dn_list] [-sscope search_scope] [-containerref container_reference_dn] [-
k mkeytype] [-kv mkeyVNO] [-M mkeyname] [-ml-P passwordl-st stashfilename] [-s] [-maxtktlife
max_ticket_life] [-maxrenewlife max_renewable_ticket_life] [ticket_flags]

Creates realm in directory. Options:

-subtrees subtree_dn_list Specifies the list of subtrees containing the principals of a realm. The list contains the DNs
of the subtree objects separated by colon (:).

-sscope search_scope Specifies the scope for searchi