
ava i lab le at www.sc ienced i rec t . com

journa l homepage : www. e lsev ier . com/ loca te / d i in

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 6 5 – S 7 2
Introducing the Microsoft Vista event log file format

Andreas Schuster

Deutsche Telekom AG, Friedrich-Ebert-Allee 140, D-53113 Bonn, Germany

Keywords:

Digital evidence

Forensic examination

Microsoft Windows Vista

Windows event logging

Log file

evtx

a b s t r a c t

Several operating systems provide a central logging service which collects event messages

from the kernel and applications, filters them and writes them into log files. Since more

than a decade such a system service exists in Microsoft Windows NT. Its file format is

well understood and supported by forensic software. Microsoft Vista introduces an event

logging service which entirely got newly designed. This confronts forensic examiners

and software authors with unfamiliar system behavior and a new, widely undocumented

file format.

This article describes the history of Windows system loggers, what has been changed over

time and for what reason. It compares Vista log files in their native binary form and in a tex-

tual form. Based on the results, this paper for the first time publicly describes the key-

elements of the new log file format and the proprietary binary encoding of XML. It discusses

the problems that may arise during daily work. Finally it proposes a procedure for how to re-

cover information from log fragments. During a criminal investigation this procedure was

successfully applied to recover information from a corrupted event log.

ª 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Log files belong to the most important sources of forensic in-

formation because they usually connect a certain event to

a point in time. Major operating systems like UNIX or Micro-

soft Windows1 provide system-wide services to collect, pro-

cess and store event messages. Section 1.1 gives a brief

introduction into UNIX syslog and the history of Microsoft

Windows event logging services.

The structure of a Microsoft Vista event log file down to

a single record will be documented in Section 2. Section 3

will explain the key concepts of Microsoft’s binary XML, which

forms the main part of an event record.

Finally Section 4 looks at the impact of the new event log

file format on daily computer forensic work. This section

also provides the examiner with a process to extract data

from single records which were recovered from unallocated

clusters or file slack.
1.1. Event logging services

1.1.1. Syslog
UNIX syslog is one of the most commonly found system loggers.

The daemon accepts incoming messages from local processes

and from the network. Based on the facility the message is orig-

inating from and the severity of the event the message can be

written to the console, stored into a file or sent to another syslog

daemon on another host over the network (Lonvick, 2001).

This flexibility allows to build extensive logging architectures.

System logging services derived from the original syslog provide

enhanced filtering capabilities and transmit log messages

through secured communication channels (Scheidler).

A typical log message consists of a constant text explaining

the kind of reported event. This is complemented by variable

data which provide the specifics for the individual event. The

constant part comes as a format string which also defines the

type (i.e. string, integer) and the position of the variable parts.
E-mail address: andreas.schuster@telekom.de
1 This article only covers the versions of Microsoft Windows which are based on either the NT or Vista kernel. Versions based on

MS-DOS do not provide a logging service.
1742-2876/$ – see front matter ª 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2007.06.015

mailto:andreas.schuster@telekom.de
http://www.elsevier.com/locate/diin

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 6 5 – S 7 2S66
The following example shows how a log message gets con-

structed from its constant part and a single variable part, the

user name:

syslog (LOG_DEBUG, "password changed for user %s \n",

uname);

Then the syslog daemon would record an entry like the fol-

lowing in the appropriate log file:

Feb 26 10:18:13 mycomputer passwd: password changed

for user joe

Note that constant and variable parts get bound together

before the message is sent to the syslog service. Each event

message results in a single line of plain text written into

a log file. So each log record is self-contained.

1.1.2. Microsoft Windows NT
When Microsoft Windows NT 3.5 was released in 1994, it was

shipped with an event logging service, which at that time was

a novelty for the Microsoft Windows family of operating sys-

tems. Unlike syslog, the NT event logging service can receive

messages only from local processes. Also it is unable to for-

ward messages to other instances through a network.

When compared to syslog, the major difference, however,

is that constant and variable parts of a message are joined at

the time of viewing. While this might be surprising at first,

there is a good reason for it: obviously syslog style log files

contain a lot of redundant information. If in the example

above three users would change their passwords this would

result in three lines containing the phrase ‘‘password changed

for user’’. On Windows NT the constant part of this message

would be moved into a message table resource of a suitable

executable file. Then this file would be registered with the

event log service as an event source.

Now instead of a string the index and the source will be

sent to the logging service along with the variable data. The

service then stores all of that information in a binary format

(Microsoft Corporation, 2007a).

As soon as a record is requested, the event log service will

look up the file holding the message table from the source given

in the event record. Then it uses the EventID, which is also given

in the record, as an index into the message table and retrieves

the format string. Finally the service combines the format string

and the variable parts to form the message text.

This design effectively cuts down the size of log space re-

quired by eliminating large and possibly redundant strings

from the log file. It also supports localized log messages: events

recorded by an English version of Windows NT can be read in

another language on a localized version of Windows.

If the original message tables are unavailable during an in-

vestigation, the examiner still can look up the constant part

from conversion tables generated by suitable tools (Morgan,

2005), documentation provided by the vendor (Microsoft

Corporation, 2007b) or specialized look-up services (Altair

Technologies, 2001; Prism Microsystems, 1999).

So even though the event record does not contain the plain

text message, it still provides enough information to recon-

struct its meaning.
1.1.3. Microsoft Windows Vista
While it was in use over more than a decade from NT 3.5 to

Windows Server 2003, several problems were discovered in

the event log service. So Microsoft came up with a new design

which was code-named Crimson to go with Windows Vista. It

was renamed to Windows event logging as soon as Vista was

released.

One major drawback of the NT event log service is its need

to map the whole log file into memory (Hess et al.). Large files

waste precious address space in a region which is also used for

inter-process communication and shared memory. This could

impose a problem on busy domain controllers and exchange

servers. According to Microsoft the total size of all active event

logs should not exceed 300 MiB2 (Microsoft Corporation, 2007c,

2005).

The new log file format consists of a small file header (see

Section 2.1) which is followed by a series of chunks (described

in Section 2.2). Chunks are self-contained. No event record

will extend over the boundary between two chunks. So for ev-

ery event log only the current chunk (64 kiB) and the file

header (4 kiB) have to be mapped into memory. This signifi-

cantly reduces the impact on system resources.

The NT event log service is unable to filter records based on

the message text or the binary data which are associated with

an event record. Conversely, Windows event logging is based

on XML technology. This allows for queries based on the

XPath language (Clark and DeRose, 1999). XML also has the

benefit of flexible output customization through XML Style

Sheets and Transformations.

One of the drawbacks of XML is the high amount of compu-

tational resources, CPU cycles and memory, which are needed

to parse the file format. Also XML is known to contain lots of

redundant text, thus wasting disk space. Microsoft, like others

before, mitigated this disadvantage through a binary encoding

of XML. This will be covered in-depth in Section 3.

1.2. Method

There is no publicly available and authoritative documenta-

tion completely covering the Windows event log file format.

So the most definitive source of information would be a disas-

sembly of wevtsvc.dll, the library implementing the event

log service. However, publicizing the results of any sort of

decompilation is interdicted in the jurisdiction the author

lives in.

So a clean-room analysis was conducted. For this Vista Ulti-

mate version 6.0.6000.16386 was installed with default settings.

No additional applications were installed. The applications

shipped with Vista Ultimate were tried out for some time. The

system was also connected with multiple wired and wireless

networks. While connected to networks, the system was not ex-

posed to targeted attacks. Afterwards the logs were exported in

their native and XML format through the Event Viewer applet.

This resulted in 47 log files, of which 30 files were empty. The

2 This article follows the notation approved by the International
Electrotechnical Commission to indicate a binary multiple, see
also National Institute of Standards and Technology.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 6 5 – S 7 2 S67
remaining 17 files contained 2616 event records. Five files con-

sisted of more than a single chunk.3

Then both the binary and the textual representation of an

event log were compared. Structures and data types discov-

ered were implemented in a recursive-descent parser. Then

the next file was fed to the parser, which marked any block

of data that it was unable to parse. These blocks were com-

pared to the corresponding XML, leading to the discovery of

new structures, and so on. The iterative process came to an

end as soon as no new structures could be identified in all

available log files.

Additionally single log files were obtained in their native

form under less common conditions. These were later con-

verted through the Event Viewer applet into their textual

form.

(1) A log file was extracted through 010 Editor version 2.1.3

(Sweetscape Software, 2007) while the file was opened by

the event log service.

(2) The Application log was configured for minimum size and

to reuse space as needed. Then the log was flooded with

events by means of logevent.exe (Microsoft Corporation,

2006), forcing it to wrap around and overwrite the oldest

records.

(3) The Application log was configured for minimal size and

automatic maintenance mode. Then the log was flooded

with events, forcing the service to save the file and to con-

tinue operation with a blank file.

(4) The Application log was configured for minimal size and

manual maintenance mode. Then the log was flooded until

it refused to accept new messages.

The log files that were obtained through these experiments

helped to improve the understanding of several fields in the

file and chunk headers.

2. Log file format

2.1. File

The file header provides some basic information about the log

file (see Table 1). The magic string ‘‘ElfFile’’ along with a

version of 3.1 identify the file as a Windows event logging

file. While the header consists of 4096 bytes, only 128 bytes

are in use. The header’s integrity is protected by a 32 bit

check sum.

The header states the count of chunks in the log file. Exam-

iners should be aware that the actual file size might be much

larger than the size calculated from the header. The service

seemingly pre-allocates free space suitable to hold several

chunks in case of frequently used log files like the Application,

Security and System logs.

Also given is the number of the chunk which is currently in

use. Chunk numbers are zero-based. If the current chunk is

not also the last chunk, then the oldest records were overwrit-

ten due to the retention policy.

3 For an explanation of the term ‘‘chunk’’ please refer to Section
2.2.
Bit 0 of the flags indicates a dirty log. If set, the log has been

opened and was changed, though not all changes might be

reflected in the file header. If a dirty log is re-opened by the

event logging service, it will scan through all the chunks and

attempt to update the file header accordingly. Thereafter it

will clear the flag and adjust the check sum.

Bit 1 of the flags indicates a full log. This flag is set if the log

has reached its maximum configured size and the retention

policy in effect does not allow to reclaim a suitable amount

of space from the oldest records and an event message could

not be written to the log file. For a forensic examiner this

means that some information of possible evidential value

was not recorded.

2.2. Chunk

Besides the file header only the current chunk needs to be

mapped into memory for operation. Every chunk consists of

a small header, hashed tables of strings and XML templates

and finally a series of event records.

The chunk header is 128 bytes in size. It starts with the

magic string ‘‘ElfChnk’’, which allows for easy identification

of chunks. Pointers indicate the beginnings of the last record

and free space. Again the integrity is protected by a 32 bit

check sum (see Table 2).

Seemingly the new event logging service now uses two dif-

ferent counters for record numbers. The difference becomes

evident if an event log has been configured for automatic

maintenance mode. As soon as the file reaches its maximum

size the event log service renames the file and creates a new

Table 1 – File header

No. Ofs Len Meaning

1 0x00 8 Magic string ‘‘ElfFile’’ 0x00

2 0x10 8 No. of current chunk

3 0x18 8 No. of next record

4 0x20 4 Header space used,

constant 0x80

5 0x24 2 Minor version,

constant 1

6 0x26 2 Major version, constant 3

7 0x28 2 Size of header, constant 4096

8 0x2a 2 Chunk count

9 0x78 4 Flags

10 0x7c 4 Check sum

Table 2 – Chunk header

No. Ofs Len Meaning

1 0x00 8 Magic string ‘‘ElfChnk’’ 0x00

2 0x08 8 Number of first record in log

3 0x10 8 Number of last record in log

4 0x18 8 Number of first record in file

5 0x20 8 Number of last record in file

6 0x28 4 Size of header

7 0x2c 4 Offset of last record

8 0x30 4 Offset of next record

9 0x7c 4 Check sum

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 6 5 – S 7 2S68
one under the old name. Now record-based counting con-

tinues, while the file-based counter gets reset. So far clearing

the log seems to be the only way to reset the log-based

counter.

The chunk header is immediately followed by the string

table. For every string a 16 bit hash is calculated. The hash

value is divided by 64, the number of buckets in the string

table. The remainder then indicates what hash bucket to use.

Every bucket contains the 32 bit offset relative to the chunk

where the string can be found. If a hash collision occurs, the

offset of the last string will be stored in the bucket. The string

object will then provide the offset of the preceding string, thus

building a single-linked list.

In a similar way XML templates are handled by the tem-

plate table. This table consists of 32 buckets.

Both tables help the service to avoid redundant definitions

of string and template objects while it writes records into the

log file. Both tables are of limited use during the reconstruc-

tion phase, though. A decoding parser would preferably build

its own set of tables, based on the object’s offsets instead of

their hash values.

2.3. Event record

The event record merely is a wrapper for the event message,

which is encoded in a proprietary, binary form of XML. Details

regarding the encoding are provided in Section 3.

Matching length indications at the beginning and the end of

the event record allow the service to traverse the list of records

forward and backwards in an efficient manner (see Table 3).

Two important values, the record number as well as the

date and time the event message was created are also pro-

vided outside of the XML structure. This allows to sort event

messages in their chronological and numerical order without

the burden to parse the whole XML data.

3. Binary XML

3.1. Schema

Microsoft provides a detailed documentation of the XML

schema for event records in the Microsoft Developers Network

(MSDN) (Microsoft Corporation, 2007d). Accordingly the Events

element is the top-level container. It keeps all of the Event el-

ements, each of them describes a single event (see Fig. 1).

Each record is required to start with a System element. This

element is ‘‘automatically populated by the system if the

Table 3 – Event record

No. Ofs Len Meaning

1 0x00 4 Magic string ‘‘))’’ 0x00 0x00

2 0x04 4 Record length

3 0x08 8 EventRecordID

4 0x10 8 TimeCreated (FILETIME)

5 0x18 var. Event message, binary XML

6 var. 4 Length (repeated)
event is raised or when it is saved into the log file’’ (Microsoft

Corporation, 2007e). It provides a lot of basic information,

among them the record number, the name of the computer

it originates from, time stamp, the subsystem and a number

describing the event (Microsoft Corporation, 2007f).

Additionally there may appear one out of the following el-

ements: BinaryEventData, DebugData, EventData, Processin-

gErrorData, RenderingInfo and UserData. Among these the

element which is most likely to be found in production logs

will be EventData. It contains a sub-element for every parame-

ter passed by the originating subsystem. If the event was re-

ceived through the NT compatible API then it may also

contain a block of binary data.

3.2. Concepts

For an event log service the most important design goals are to

minimize the disk space needed to store a message and to

minimize the CPU time needed to write and, even more im-

portant, to read these records.

Obviously XML files do not fit well within these require-

ments. They are known to contain lots of redundant data;

the deflate algorithm (Deutsch, 1996) was able to reduce the

author’s set of XML test files to less than 10% of their original

size. Also a significant amount of CPU time is needed to parse

the text format.

This problem has already been solved by engineers work-

ing in the field of mobile devices. Though the solutions differ

slightly, they all are based on a binary representation of

XML. Where documentation is publicly available, it also adds

to a better understanding of the measures which were imple-

mented by Microsoft (Bruce, 2006; Martin and Jano, 1999).

Three key concepts will be discussed below.

3.2.1. Tokenization
According to Bruce (2006, p. 25) tokens are ‘‘used to encode the

content of the [.] file in discrete ‘packets’ that correspond

roughly to XML markups’’. In case of the Windows event log

files tokens can be further differentiated into system tokens

and application tokens. System tokens are hard-coded into the

executables which produce and consume binary XML. So sys-

tem tokens provide a static mapping between a number and

an associated function. Application tokens refer to applica-

tion-specific entities like the names of elements and attributes

(NameStrings, see Fig. 2) and constant blocks of XML state-

ments (Templates, see Section 3.2.3).

Fig. 1 – Structure of an XML event log file.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 6 5 – S 7 2 S69
Microsoft implemented system tokens as byte values. The

lower nibble determines the function (see Table 4), while the

upper nibble contains flags (compare to Martin and Jano,

1999). So far only one flag has been discovered: 0x40 indicates

that at least one attribute will follow the XML tag (Table 4).

A group of system tokens marks start tags, end tags and

empty element tags as defined by the W3C (Bray et al., 2006,

Section 3.1). Other system tokens indicate attributes and

values or mark the beginning and end of the binary XML

stream.

The main advantage of translating XML structures into sys-

tem tokens is a gain in speed. Several time-consuming calcu-

lations have to be done only once, at the time of translating

the document from its textual into the binary form. This in-

cludes the check for shapeliness and the calculation of block

lengths.

So far the tokenization process does not provide a signifi-

cant gain in storage efficiency. This is mainly achieved

through application tokens. An application token denotes

the offset where the corresponding object has been defined.

In case of the first reference made, the application token

points to the nearest free space suitable to hold the object’s

data. Later references to the same object will point back to

that position. So if the application token’s value is lower

than the current offset, the object already has been defined.

0 7 8 15 16 23 24 31

Fig. 2 – NameString structure.

Table 4 – System token codes

Value Meaning Example

0x00 EndOfBXmlStream

0x01 OpenStartElementTag <name>
0x02 CloseStartElementTag <name>
0x03 CloseEmptyElementTag <name/>
0x04 EndElementTag </name>
0x05 Value attribute¼‘‘value’’

0x06 Attribute attribute¼‘‘value’’

0x0c TemplateInstance

0x0d NormalSubstitution

0x0e OptionalSubstitution

0x0f StartOfBXmlStream
3.2.2. Substitution
The substitution mechanism allows to segregate structure

from content.

For example every log record starts with a System element,

which will look almost the same for every record. The varying

parts, the contents of XML elements and the values of attri-

butes, can be replaced with a substitution token and moved

into a SubstitutionArray. The token then points to the array’s

element which stores the varying data. The token also informs

about the data type (as defined in Microsoft Corporation,

2007g).

The SubstitutionArray is the last structure in a record’s bi-

nary XML stream. For every entry it lists the size and data type.

This is succeeded by the actual data for every non-empty ele-

ment (see Fig. 3).

There are two different kinds of substitution tokens. A

normal substitution token will unconditionally insert the data

from the SubstitutionArray into the XML structure.

But XML is also known to support optional elements and

attributes. This case will be handled by optional substitution to-

kens. If the substitution array’s element the token is pointing

to is not empty, then the optional substitution will work like

a normal substitution. However, if the element is empty,

which will be indicated by a type of EvtVarTypeNull, then the

optional substitution will suppress the corresponding element

or attribute.

3.2.3. Templating
As mentioned earlier, every event message will start with

a System element. The variable parts were already factored

out by the substitution mechanism discussed above. Optional

substitutions also take care of optional elements. So, finally,

every event record will start with the same sequence of

tokens.

Fig. 3 – SubstitutionArray structure.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 6 5 – S 7 2S70
This never changing sequence of binary XML statements

will be called a Template. Henceforth it is represented by an ap-

plication token. Whenever needed, a template can be instanti-

ated through the TemplateInstance system token in conjunction

with the proper application token. Obviously the use of tem-

plates dramatically reduces the demands for storage space. A

sample template for the System element is shown in Fig. 4.

From the same template every record will produce

a slightly different XML structure, controlled by the data in

its substitution array. The substitution array frequently con-

tains other XML structures or refers to other templates. For ex-

ample the EventData element gets appended to a record’s

System element this way. Unfortunately the corresponding

data type 33 is not documented by Microsoft.

The log files analyzed during this study defined between 10

and 20 different templates per chunk. Of course the exact

numbers depend on the degree of freedom allowed by the

log file’s XML schema. So for example more templates could

be found in the Application log than in the Security log or

a log file dedicated to a single application.

4. Impact on the forensic practice

Log files generally are an important source of information in

a forensic examination. This also applies to log files created by

Windows event logging, possibly more than ever before: the

new service promises a lot more of flexibility and less impact
on system resources. So, hopefully, it will find wide acceptance

among application developers and system administrators.

Months after Microsoft Vista became publicly available,

still none of the major forensic tools supports the new log

file format. Until now the only means to analyze a given bi-

nary Vista log file is to open it in the Event Viewer applet

and convert it into a textual form.

Fortunately the Windows event logging service seems to be

more robust against light cases of file corruption than its pre-

decessor. During an investigation a computer running Micro-

soft Vista was shut down ungracefully. The log files showed

slight signs of distortion, for example the record count as

reported in the header did not match what could be found in

the chunks. The new logging service still was able to open

the files in most cases. Seemingly triggered by the header’s

dirty flag, the service scanned the whole file and corrected

chunk and record counts accordingly.

Unfortunately this robustness will not help if only parts of

a deleted or corrupted log file can be recovered from a system.

The remainder of this section will provide some guidance how

parts of Vista log files can be recovered through file carving. It

also describes a technique how to extract a basic set of infor-

mation from single event records and chunk fragments.

4.1. File carving

Unique magic strings and a block-oriented file layout will help

a forensic examiner to carve out the file header and chunks of

Vista event log files from a raw file system image.
Fig. 4 – The XML template with unresolved substitutions.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 6 5 – S 7 2 S71
The file header and chunks are expected to start at a sector

boundary. They are easily identifiable through their magic

strings ‘‘ElfFile’’ and ‘‘ElfChunk’’, respectively. The blocks to

be carved out are always 4096 bytes and 65,536 bytes in size.

The file header will be of little forensic value, though. The

flags tell whether the file was properly closed and if data

were lost due to exceeding the available log space.

The predominant part of information is contained within

the chunks. Again the information provided by the chunk

header might be useful, but strictly speaking it is not required

to transform the binary data in a textual representation. This

also applies to the NameString and Template tables following

the header.

Single event records are easy to spot by their 32 bit magic

string 0x2a 0x2a 0x00 0x00. The following length indication

could instruct a carver how much data need to be processed.

The matching length field at the record’s end allows for

a speedy verification.

The last event record found in a chunk may be incomplete.

Obviously the service starts writing the event record to file

while it is still working on it. If the remaining space does not

suffice to complete the record, the service will close the chunk

and open a new one. Then it will write the record from its

beginning.

4.2. Transformation into a textual form

So far the recovered data are in a binary form, which generally

will be of little help in an investigation. A transformation into

a textual representation, be it either the explanatory message

shown by the Event Viewer applet or the textual XML, is badly

needed.

In order to transform binary XML into a textual form the

author developed a simple recursive-descent parser (Schus-

ter, 2007a). While processing all the event records of a chunk

the parser builds NameString and Template tables on-the-fly

as it encounters suitable definitions. The produced XML is

similar to what will be generated by the Vista Event Viewer ap-

plet. In contrast to the system tools provided by Microsoft this

parser is not bound to the Microsoft Vista platform. Further-

more it is able to operate on single chunks.

4.3. Recovering single records

Even if event log files already were deleted and partially over-

written, the examiner may still recover single records from

unallocated clusters or file slack. Transforming an isolated re-

cord into its textual form unveils a problem: the record is

likely to refer to NameStrings and XML templates which

have been defined earlier and now are not available for anal-

ysis. So strictly speaking it is impossible to transform the bi-

nary data into text under that conditions.

In this situation an educated guess may help: as already

mentioned the XML schema requires every event record to

start with a System element containing a well-defined set of

other elements. This part of an event record is populated by

the operating system and beyond control of the application

programmer. It is safe to assume, and backed by observation,

that the mapping between variable elements in the XML struc-

ture and slots in the SubstitutionArray is constant.
The parser was modified to provide information about the

mapping instead of actually performing the substitution. This

produced output as shown in Fig. 4.

Of course there is no guarantee that this particular map-

ping will remain unchanged in future versions of Microsoft

Vista. So an examiner should carefully validate the correlation

using either intact log files which were found on the system or

which were obtained from a clean system running the very

same version of Microsoft Vista.

The next step is to locate the SubstitutionArray that is asso-

ciated with the System element. Every record will start with

a similar byte sequence. First comes the StartOfBXmlStream

system token, which consists of a byte sequence of 0x0f

0x01 0x01 0x00. Next is the TemplateInstance system token

(0x0c), followed by an unknown byte (usually 0x01), the Tem-

plateID (4 bytes) and the template’s application token (4 bytes).

Usually the System element will not be (re-)defined. The

next four bytes will match the SubtitutionArray’s element

count (20 elements, that is 0x14 0x00 0x00 0x00), thus mark-

ing the array’s location.

However, if the next four bytes contain a different value (usu-

ally just null bytes) and are followed by four bytes repeating the

TemplateID, thentheexaminerhastoskipovertheembeddedbi-

nary XML stream. The proper way to do so would be to interpret

the stream until one reaches the EndOfBXmlStream system token.

As a rule of thumb the examiner can skip bytes until he/she

reaches a sequence of 0x04 0x04 0x00 0x14 0x00 0x00 0x00.

This translates into the two EndElementTag system tokens for

</System> and </Event>, followed by the EndOfBXml-

Stream marker. The next four bytes already belong to the

SubstitutionArray.

The examiner now can interpret the SubstitutionArray

according to the structure laid out in Fig. 3. Two values, Even-

tRecordID and CreateTime, which are given in the event re-

cord structure as well as in slots 10 and 6 of the

SubstitutionArray allow for further cross-checking. While

this can be done by hand, a hex editor with templating capa-

bilities will help to speed up the process (Schuster, 2007b).

This procedure can recover most of the information that is

known from the days of the NT event log. Unfortunately it

does not enable an examiner to find out the subsystem which

created the event message, because the Provider Name and

GUID strings are not kept in the SubstitutionArray but in the

template. Depending on the case these strings may be found

in an earlier record.

5. Conclusion and future work

Windows event logging, the new event logger service of Micro-

soft Windows Vista, is expected to consume less resources

than its predecessor. Therefore one can hope to find more

event data than ever before. Without question this will be ben-

eficial to a forensic examination. And also without question the

undocumented, proprietary binary XML format that Microsoft

designed will be a major obstacle in accessing all of this infor-

mation. Because event records are no longer self-contained but

now depend on information stored elsewhere, it may be almost

impossible to fully decode an event record which has been

carved from unallocated clusters or file slack.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 6 5 – S 7 2S72
Through the comparison of Vista event log files in their bi-

nary and textual form the author gained sufficient knowledge

in order to develop a parser which transforms slightly dam-

aged log files and single chunks into plain XML. A slightly

modified version of this parser was successfully used to recon-

struct a corrupted log file during an investigation conducted

by the Criminal Police at Lörrach in south-western Germany.

Constructing a static mapping between parts of the XML

structure and slots in the SubstitutionArray can help to re-

trieve at least basic information from single event records.

Further research is needed to unveil more elements of

Microsoft’s binary XML. The ‘‘holes’’ in the table of system to-

ken codes are obvious. When compared to other implementa-

tions of binary XML and the XML standard, language elements

like CDATA sections and processing instructions seem to be

missing. Also some data types that were documented by

Microsoft could not be found in the test data.

Several system binaries of Windows Vista contain WEVT_

TEMPLATE resources. Further examination shows that the

resources refer to ‘‘Crimson’’, the former code name of

Windows event logging, as well as to other elements of the

new logging architecture like template, opcode, level, task

and keyword. Potentially this could be helpful in reconstruct-

ing even more information from single event records.

r e f e r e n c e s

Altair Technologies Ltd. eventid.net, <http://www.eventid.net/
>; 2001 [accessed 2007-03-18].

Bray Tim, Paoli Jean, Sperberg-McQueen CM, Maler Eve, Yergeau
François. Extensible Markup Language (XML) 1.0. W3C
recommendation, World Wide Web Consortium; 29
September 2006. <http://www.w3.org/TR/2006/REC-xml-
20060816/> [accessed 2007-03-18].

Bruce Craig. Binary Extensible Markup Language (BXML) Encoding
Specification. Technical Report OGC 03-002r9. Open Geospatial
Consortium Inc.; 13 January 2006. <http://portal.
opengeospatial.org/files/?artifact_id¼13636> [accessed
2007-03-18].

Clark James, DeRose Steve. XML Path Language (XPath), Version
1.0. W3C recommendation, World Wide Web Consortium; 16
November 1999. <http://www.w3.org/TR/1999/REC-xpath-
19991116>.

Deutsch L. Peter. DEFLATE compressed data format specification
version 1.3. RFC 1951; May 1996. <ftp://ftp.rfc-editor.org/in-
notes/rfc1951.pdf> [accessed 2007-03-18].

Hess Robert, Sutton Alex, Hough Marty. Management services.
The .NET show (52). <http://msdn.microsoft.com/theshow/
transcripts/Episode52Transcript.aspx> [accessed 2007-03-18].

Lonvick Chris. The BSD syslog protocol. RFC 3164; August 2001.
<ftp://ftp.rfc-editor.org/in-notes/rfc3164.txt> [accessed
2007-03-18].

Martin Bruce, Jano Bashar. WAP Binary XML Content Format.
W3C Note, World Wide Web Consortium; 24 June 1999.
<http://www.w3.org/1999/06/NOTE-wbxml-19990624>
[accessed 2007-03-18].

Microsoft Corporation, Redmond. Threats and countermeasures.
Chapter 6: Event Log, <http://www.microsoft.com/technet/
security/guidance/serversecurity/tcg/tcgch06n.mspx>; 27
December 2005 [accessed 2007-03-18].

Microsoft Corporation, Redmond. How to use the event logging
utility (Logevent.exe) to create and log custom events in
Event Viewer in Windows 2000, <http://support.microsoft.
com/kb/315410/en-us/>; 28 February 2006 [accessed
2007-03-18].

Mircrosoft Corporation, Redmond. EVENTLOGRECORD, <http://
msdn2.microsoft.com/en-us/library/aa363646.aspx>; 2007a
[accessed 2007-03-18].

Microsoft Corporation, Redmond. Events and Errors Message
Center, <http://www.microsoft.com/technet/support/ee/ee_
advanced.aspx>; 2007b [accessed 2007-03-18].

Microsoft Corporation, Redmond. Event log may not grow to
configured size, <http://support.microsoft.com/kb/183097/
en-us>; 22 January 2007c [accessed 2007-03-18].

Microsoft Corporation, Redmond. Event schema, <http://msdn2.
microsoft.com/en-us/library/aa385201.aspx>; 2007d
[accessed 2007-03-18].

Microsoft Corporation, Redmond. EventType complex type,
<http://msdn2.microsoft.com/en-us/library/aa384584.
aspx>; 2007e [accessed 2007-03-18].

Microsoft Corporation, Redmond. SystemPropertiesType complex
type, <http://msdn2.microsoft.com/en-us/library/aa385206.
aspx>; 2007f [accessed 2007-03-18].

Microsoft Corporation, Redmond. EVT_VARIANT_TYPE, http://
msdn2.microsoft.com/en-us/library/aa385616.aspx; 2007g
[accessed 2007-03-18].

Morgan Timothy. GrokEVT, <http://projects.sentinelchicken.
org/grokevt/>; 2005 [accessed 2007-03-18].

National Institute of Standards and Technology, Gaithersburg,
MD. Prefixes for binary multiples, <http://physics.nist.gov/
cuu/Units/binary.html> [accessed 2007-03-18].

Prism Microsystems, Inc. EventTracker knowledge base, <http://
www.evtcatalog.com/>; 1999 [accessed 2007-03-18].

Scheidler Balazs. syslog-ng. BalaBit IT Ltd. <http://www.balabit.
com/products/syslog_ng/> [accessed 2007-03-18].

Schuster Andreas. A parser to transform vista event log files into
plain text, <http://computer.forensikblog.de/en/2007/08/.
evtx_parser.html>; 10 August 2007a.

Schuster Andreas. A template to parse substitution arrays,
<http://computer.forensikblog.de/en/2007/08/evtx_
substarray_template.html>; 1 August 2007b.

Sweetscape Software. 010 Editor, <http://www.sweetscape.com/
010editor/>; 2007 [accessed 2007-03-18].

Andreas Schuster is a Computer Forensic Specialist with the secu-
rity department of Deutsche Telekom AG since December 2003.
Previously he led a commercial computer incident response
team and had worked in the Internet business for about seven
years. He had got his first computer in 1981. In order to make
the most out of 1024 bytes of main memory he had to acquire
low-level programming skills. Though times have significantly
changed he regularly falls back to low-level tools like disassem-
blers and hex editors when he explores the inner mechanics of
an operating system or a new piece of malware.

http://www.eventid.net/
http://www.eventid.net/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D13636
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D13636
http://portal.opengeospatial.org/files/%3Fartifact%5Fid%3D13636
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://ftp%3A//ftp.rfc-editor.org/in-notes/rfc1951.pdf
http://ftp%3A//ftp.rfc-editor.org/in-notes/rfc1951.pdf
http://msdn.microsoft.com/theshow/transcripts/Episode52Transcript.aspx
http://msdn.microsoft.com/theshow/transcripts/Episode52Transcript.aspx
http://ftp://ftp.rfc-editor.org/in-notes/rfc3164.txt
http://www.w3.org/1999/06/NOTE-wbxml-19990624
http://www.microsoft.com/technet/security/guidance/serversecurity/tcg/tcgch06n.mspx
http://www.microsoft.com/technet/security/guidance/serversecurity/tcg/tcgch06n.mspx
http://support.microsoft.com/kb/183097/en-us
http://support.microsoft.com/kb/183097/en-us
http://msdn2.microsoft.com/en-us/library/aa385616.aspx
http://msdn2.microsoft.com/en-us/library/aa385616.aspx
http://www.microsoft.com/technet/support/ee/ee_advanced.aspx
http://www.microsoft.com/technet/support/ee/ee_advanced.aspx
http://support.microsoft.com/kb/183097/en-us
http://support.microsoft.com/kb/183097/en-us
http://msdn2.microsoft.com/en-us/library/aa385616.aspx
http://msdn2.microsoft.com/en-us/library/aa385616.aspx
http://msdn2.microsoft.com/en-us/library/aa385616.aspx
http://msdn2.microsoft.com/en-us/library/aa385616.aspx
http://msdn2.microsoft.com/en-us/library/aa385616.aspx
http://msdn2.microsoft.com/en-us/library/aa385616.aspx
http://msdn2.microsoft.com/en-us/library/aa385616.aspx
http://msdn2.microsoft.com/en-us/library/aa385616.aspx
http://projects.sentinelchicken.org/grokevt/
http://projects.sentinelchicken.org/grokevt/
http://physics.nist.gov/cuu/Units/binary.html
http://physics.nist.gov/cuu/Units/binary.html
http://www.evtcatalog.com/
http://www.evtcatalog.com/
http://www.balabit.com/products/syslog%5Fng/
http://www.balabit.com/products/syslog%5Fng/
http://computer.forensikblog.de/en/2007/08/.evtx%5Fparser.html
http://computer.forensikblog.de/en/2007/08/.evtx%5Fparser.html
http://computer.forensikblog.de/en/2007/08/evtx%5Fsubstarray%5Ftemplate.html
http://computer.forensikblog.de/en/2007/08/evtx%5Fsubstarray%5Ftemplate.html
http://www.sweetscape.com/010editor/
http://www.sweetscape.com/010editor/

	Introducing the Microsoft Vista event log file format
	Introduction
	Event logging services
	Syslog
	Microsoft Windows NT
	Microsoft Windows Vista
	Method

	Log file format
	File
	Chunk
	Event record

	Binary XML
	Schema
	Concepts
	Tokenization
	Substitution
	Templating

	Impact on the forensic practice
	File carving
	Transformation into a textual form
	Recovering single records

	Conclusion and future work
	References

