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Abstract

High-dimensional data in many areas such as computer vision and machine learning
brings in computational and analytical difficulty. Feature selection which select a subset
of features from original ones has been proven to be effective and efficient to deal with
high-dimensional data. In this paper, we propose a novel AutoEncoder Feature Selector
(AEFS) for unsupervised feature selection. AEFS is based on the autoencoder and the
group lasso regularization. Compared to traditional feature selection methods, AEFS can
select the most important features in spite of nonlinear and complex correlation among
features. It can be viewed as a nonlinear extension of the linear method regularized self-
representation (RSR) for unsupervised feature selection. In order to deal with noise and
corruption, we also propose robust AEFS. An efficient iterative algorithm is designed for
model optimization and experimental results verify the effectiveness and superiority of
the proposed method.

1 Introduction
With the development of the big data technology, we have been encountering more and more
high-dimensional data in the field of computer vision and machine learning. A mass of noisy
and useless features existing in high-dimensional space lead to extreme inefficiency in data
analysis. In this case, feature selection plays a crucial role by choosing a small subset of
features in removing nonsense features and decreasing computational complexity. In real
world, sample labels are often unknown while labelling samples is both time-consuming and
finance-consuming. Thus in this paper, we mainly focus on feature selection in unsupervised
scenario.

According to different search strategies, the common feature selection methods can be
divided to filter, wrapper and embedded methods [14] where the embedded method is a
research hotspot currently. Unlike filter and wrapper methods which make feature selection
process and training process into two separate parts, embedded method combines variable
selection in the training process. Thus, embedded method have lots of advantages like being
more efficient, interacting with the learning algorithm and saving plentiful time for model
training.

However, most of traditional embedded methods such as the famous LASSO [22] method
can only explore the linear relationship among features. Therefore, how to make good use of
the nonlinear relationship among features (Fig. 1) brings in a great challenge. Kernel based
feature selection methods [3, 15, 19] were proposed to allow learning of nonlinear represen-
tation, but the representation is limited by the fixed kernel [1]. In this paper, we propose
to use neural network to learn flexible nonlinear relationship among features. The powerful
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Figure 1: Illustration of nonlinear relationship among features. The synthetic dataset consists
of 200 samples with 3 features {A, B, C}. The dataset are split into 2 classes about fifty-fifty.
Feature A and B are independent with each other while feature C can be represented by A
and B: C = sin(A)+ cos(B). In this case, feature C is the redundant and noisy one. Linear
feature selection methods is hard to deal with the case.

nonlinear representation approximating ability of neural network makes it successful in a
wide variety of tasks. Thus we may expect neural network to help deal with the nonlinearity
in feature selection.

The autoencoder is a succinct neural network used for unsupervised learning of efficient
codings [2], aiming to learn a self-representation for a set of data. In real-world data, we
assume that the redundant features can be represented by linear or nonlinear combanition of
other relevant features. In this paper, we use autoencoder to capture the self-representation
property of features and impose group sparsity on the feature weights to select features. This
joint method is efficient and robust for feature selection, and have strong ability to explore
the nonlinear relationship among features. Experimental results verify the superiority of the
proposed method.

2 Related Work
In this section we introduce the most related previous work to ours including regularization
based embedded methods and nonlinear methods.

Embedded feature selection methods can combine feature selection with training process
into a whole part. The most widely used embeded methods are regularization models that
introduce additional constraints into the optimization of a predictive algorithm that bias the
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model toward lower complexity. One of famous regularization algorithms is the Lasso pro-
posed by Tibshirani in 1996 [22]. Let X be the feature matrix, y be the label vector. The
object function of basic Lasso is minθ ∥y−Xθ∥2

2 +λ∥θ∥1, where θ is the coefficients and λ
is the penalty parameter. Some elements of θ may be close to or exact zero, and the important
features are selected according to the indexes of non-zero elements. Recently, a regularized
self-representation (RSR) model have been proposed by Zhu and Zuo [26], which briefly
uses the input data matrix X to reconstruct itself with the group lasso penalization to select
significant features as well as reduce the redundant features.

However, most of the previous embeded methods cannot explore the nonlinear rela-
tionship among features. Although there exist some nonlinear algorithms by using kernels
[3, 15, 19], the specific designed kernels are not sufficient to extract arbitrary nonlinear de-
pendencies of features. In another hand, most of the neural networks used in feature selection
are wrapper methods [17, 20, 23], which are inefficient. In order to solve these problems,
we propose an embedded feature selection method based on autoencoder which attempt to
learn a nonlinear self-representation of input data. The autoencoder is a simple and efficient
neural network and is a powerful tool for unsupervised application.

The proposed method combines the autoencoder with the group lasso regularization for
feature selection. The group lasso method guarantees the sparse solution for selecting signif-
icant features, and autoencoder deals with the nonlinear relationship among features. Within
the scope of our knowledge, we firstly use the autoencoder in an embedded feature selection
method. Besides, this paper contributes an efficient and robust algorithm for unsupervised
feature selection.

3 Autoencoder Feature Selector

3.1 Preliminaries
3.1.1 The problem settings.

The general unsupervised feature selection problem is described as follows. Given the un-
labeled sample matrix X = [xxx1,xxx2, · · · ,xxxm]T ∈ Rm×d where m is the number of unlabeled
samples and d is the number of features, the task of unsupervised feature selection is to
select the most discriminative and informative features among the original ones with the
unlabeled data.

3.1.2 Autoencoder.

The autoencoder [9] is a special feedforward neural network attempting to copy its input to its
output. As shown in Fig. 2, the typical autoencoder with a h-dimension hidden layer consists
of two components: an encoder function H = f (X) = σ1(XW (1)) and a decoder that produces
a reconstruction X̂ = g(H) = σ2(HW (2)), where σ1, σ2 are activation functions of the hidden
layer and the output layer respectively, Θ = {W (1),W (2)} are weight parameters and W (l)

i j
denotes the parameter of the connection between neuron i in layer l and neuron j in layer
l +1. The overall function of the autoencoder could be represented as g( f (X)). In learning
process, autoencdoer is described simply as minimizing a loss function JAE (X ,g( f (X))),
usually in the form of least square or cross entropy loss. In this paper, we just use the
least square loss as the fitting error: JAE (X ,g( f (X))) = 1

2m ∑m
i=1 ∥xxxi −g( f (xxxi))∥2

2 = 1
2m∥X −

g( f (X))∥2
F .
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3.2 The Proposed Model

Most widely used embedded feature selection methods aim to fit a learning model by mini-
mizing the fitting error and force the coefficients of some features to be small (or exact zero)
simultaneously. The object function of the general embedded feature selection methods can
be written as

min
Θ

L(Θ)+λR(Θ) (1)

where Θ is the set of parameters, L is the fitting error of the learning model, R is the regu-
larization term imposed on Θ and λ is the trade-off parameter. As aforementioned in related
work, L and R vary in different methods, for example, L is the least-square loss and R is the
ℓ1 norm regularization in lasso. In this paper, we propose a novel unsupervised embedded
feature selection method based on autoencoder and group lasso penalty. To the best of our
knowledge, this is the first time to use the neural network or autoencoder in an embedded
feature selection method so far.
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Figure 2: An autoencoder with d input (output) nodes and h hidden nodes.

Denote X = [ fff 1, · · · , fff d ], and each column fff i represents the ith feature of X . In autoen-
coder, each feature fff i in X can be well represented by all the features (including fff i itself) and
the autoencoder approximates the representation X̂ = g( f (X)). The weight matrix W (1) con-
necting the input layer and the hidden layer can be written as W (1) = [www1, · · · ,wwwd ]

T , where the
ith row wwwi corresponds to the ith feature fff i. As shown in Fig. 2, the yellow lines (www1) repre-
sent the connection between the 1st feature and the hidden layer, the red lines (wwwi) correspond
to the ith one, and the blue lines (wwwd) correspond to the last one. The coefficients set between
each input node and the hidden layer reflects the contribution of this input node to the self-
reconstruction. Thus the ℓ2 norm ∥wwwi∥2 can be used as the criteria to select features because it
reflects the importance of the ith feature to self-representation. On the one hand, if ∥wwwi∥ ≈ 0,
the ith feature contributes little to the representation of other features; on the other hand, if
ith feature plays important role in the representation of other features, then ∥wwwi∥2 must be
significant. To select the most discriminative features from original ones, we impose row-
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sparse regularization on W (1). That is to say, we use R(Θ) = ∥W (1)∥2,1 = ∑d
i

√
∑h

j(W
(1)
i j )2

in the object function (1). Thus we have

min
Θ

J (Θ) =
1

2m
∥X −g( f (X))∥2

F +α∥W (1)∥2,1, (2)

where α is the trade-off parameter between the fitting loss and the regularization term.
Usually in the training process of a neural network, a weight decay term is added in

the object function to avoid overfitting and promote convergence. Finally, the overall object
function of our model formulates as

min
Θ

J (Θ) =
1

2m
∥X −g( f (X))∥2

F +α∥W (1)∥2,1 +
β
2

2

∑
i=1

∥W (i)∥2
F , (3)

where β is a penalty parameter. We call the model (3) as AutoEncoder Feature Selector
(AEFS).

In real-world data, how to deal with the noise or corruption is a headache in many re-
search areas. Inspired by denoising autoencoder which learn to reconstruct the clean input
X from the artificially corrupted counterpart X̃ [24], we apply the thought to autoencoder
feature selector to make it robust to partial corruption of the input data. Thus denoising
autoencoder feature selector (dAEFS) is to minimize the following object function:

min
Θ

Jdenoising (Θ) = EX̃∼q(X̃ |X)[J (Θ)], (4)

where q(X̃ |X) represents a conditional distribution over corrupted samples X̃ , given data
samples X . There are various typical corruptions of input data, and in this paper we adopt
the additive isotropic Gaussian noise, X̃ = X +[εεε1, · · · ,εεεm]T where εεε i ∼ N (0,σ2I) without
loss of generality.

3.3 Nonlinearity Discuss
As for the nonlinearity property, we compare our method AEFS with a recent work related to
ours – regularized self-representation model which solves the following optimization func-
tion:

min
W

∥X −XW∥2
F +λ∥W∥2,1 (5)

where W is the feature weight matrix each feature. In RSR, each feature can be represented
as the linear combination of its relevant features. By using ℓ21-norm to characterize the
representation coefficient matrix, RSR is effective to select representative features. However,
if the correlation among features is nonlinear, RSR perhaps does not work very well. In
AEFS, the goal is to minimize the object function (3). Since g( f (X)) is a nonlinear function,
each feature can be nonlinearly represented by its relevant features in AEFS. Thus even if
the correlation among features is nonlinear, AEFS could still works well. Moreover, if we
set σ1(X) = X , σ2(X) = X and leave out the weight decay term, AEFS reduces to a linear
form:

min
W (1),W (2)

1
2m

∥X −XW (1)W (2)∥2
F +α∥W (1)∥2,1. (6)

We can find that this form is equivalent to (5), so AEFS is a nonlinear extension of RSR.
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4 Optimization
Similar to other autoencoder variants, the autoencoder feature selector could be optimized
with back-propagation algorithm. Firstly, the error terms of the output layer and the hidden
layer are computed as follows.

δ (o) = −(X − X̂)⊙σ ′
2(H),

δ (h) =
(
(W (2))T δ (o)

)
⊙σ ′

1(X),
(7)

where ⊙ represents element-wise product of two matrix. Then the partial derivative respect
to W (2) is given as

∇W (2)J (Θ) =
1
m

δ (o)X̂T +βW (2), (8)

and W (2) are optimized by gradient descent method.
However, the partial derivative of the object function respect to W (1) is not available at

the zero point, so it can not be directly optimized by gradient descent method. Instead, we
use the proximal gradient descent method [5, 16] to solve the problem. The solving process
includes two steps:

∇W (1)J − (Θ) =
1
m

δ (h)HT +βW (1). (9)

ˆW (1) = Φ#
(

W (1) − t∇W (1)J − (Θ) ;αt
)

(10)

where J − (Θ) denotes the object function leaving out ℓ21 norm regularization, t > 0 is a step
size, Φ# is the group soft thresholding operator and the details are described in Definition 1.
Definition 1. The multivariate soft thresholding operator for any vector www ∈ Rd is

−→
Φ (www;λ ) =

wwwoΦ(∥www∥2;λ ) where wwwo =

{
www

∥www∥2
, if www ̸= 000

000, if www = 000
, and Φ is element-wise soft thresholding op-

erator: Φ(x;λ ) = sign(x)(|x|−λ )+. Then we define the group soft thresholding operator for
any matrix W = [www1,www2, · · · ,wwwn]

T as

Φ#(W ;λ ) =




−→
Φ (www1;λ )T
−→
Φ (www2;λ )T

...−→
Φ (wwwn;λ )T




The optimization algorithm of autoencoder feature selector is described in Algorithm 1.
The algorithm is simple to implement and can easily be extended to other gradient-based
optimization method. The denoising autoencoder feature selector can be trained using back-
propagation algorithm similar to Algorithm 1 and the differ is that the input data is corrupted
artificially.

5 Experiments

5.1 Synthetic Dataset Illustration
We construct a synthetic dataset as shown in Fig. 1. The dataset consists of 200 samples
with 3 features {A, B, C}. The dataset are split into 2 classes about fifty-fifty. Feature A
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Algorithm 1 Optimization Algorithm of Autoencoder Feature Selector

Input: Data matrix X ∈ Rm×d , parameters α,β .
Initialization: W (1),W (2) that satisfy Gaussian distribution.
Output: W (1),W (2)

Repeat
Compute the feedforward activations of the hidden layer H and the output layer X̂ .
Compute the error terms using equations (7).
Compute the partial derivatives using equations (8), (9).
Update W (2) by gradient descent.
Update W (1) by group soft thresholding operator (10).

Until stopping criterion
Select features according to the index of the top-k row-norms of W (1) in descending order.

and B are randomly generated from uniform distribution in the range of {0,2π}, and they
are independent with each other. Meanwhile feature C is fromed from the formulation:
C = sin(A)+ cos(B). In this case, feature C has a nonlinear relationship with A and B, and
it is the redundant and noisy one.

In order to verify the nonlinear property of our method, we apply RSR and AEFS to select
2 features from {A, B, C} respectively. We repeat 10 times to perform feature selection, the
result is that RSR always selects feature B and C while AEFS selects feature A and B in most
cases. With the nonlinear representation ability, AEFS can deal with nonlinear relationship
among features effectively.

5.2 Real-world Datasets and Experiemntal Settings

Experiments are conducted on 8 benchmark datasets to evaluate the performance of AEFS.
The datasets include one spoken letter dataset (i.e., Isolet1 [6]), one face image dataset (i.e.,
warpPIE10P2 [21]), one text dataset (i.e., PCMAC3 [12]), one artificial dataset(i.e., made-
lon4 [7]), two microarray datasets (i.e., lung_discrete5 [18] and Prostate_GE6 [10]), one
handwritten digits dataset (i.e., MNIST7 [13]) and one image hand-crafted feature dataset
(i.e., AWA8 [11]). The detailed information of the six datasets used in the experiments is
summarized in Table 1. In experimental datasets, The dimension varies from 325 to 5,966
and the feature types include image, text and microarray. All the data is normalized before
experiments.

In order to evaluate superiority of our method, We compare AEFS with the following
unsupervised feature selection methods.

AllFea: All original features without feature selection.
LS: Laplacian Score [8] feature selection method which selects features that well pre-

serve the data manifold structure.

1http://archive.ics.uci.edu/ml/datasets/ISOLET
2http://www.ri.cmu.edu/research_project_detail.html?project_id=418&menu_id=261
3http://featureselection.asu.edu/datasets.php
4http://archive.ics.uci.edu/ml/datasets/Madelon
5http://featureselection.asu.edu/datasets.php
6http://www.ncbi.nlm.nih.gov/pubmed/12381711
7http://yann.lecun.com/exdb/mnist/
8http://attributes.kyb.tuebingen.mpg.de/
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Table 1: Summary of used datasets.

Dataset Keywords #Instances #Features #Classes

Isolet Spoken letter,continuous 1560 617 26
warpPIE10P Face image,continuous 210 2420 10
PCMAC Text,discrete 1943 3289 2
madelon Artificial,continuous 2600 500 2
lung_discrete Biological,discrete 73 325 7
Prostate_GE Biological,continuous 102 5966 2
MNIST Handwritten digits,discrete 70000 784 10
AWA Image feature,continuous 14112 4940 20

MCFS: Multi-Cluster Feature Selection [4] method which selects features using spectral
regression with ℓ1 norm regularization.

UDFS: Unsupervised Discriminative Feature Selection [25] method that selects the most
discriminative features by exploiting both the discriminative information and feature corre-
lations.

RSR: Regularized Self-Representation [26] model for feature selection which exploiting
the self-representation ability of features with ℓ21 regularization.

As for parameters setting, in the methods LS, MCFS and UDFS, the size of the neighbors
k is fixed as 5 for all the cases. For fair comparison, the parameters in all the methods are
tuned in the range of {0.001,0.01, · · · ,100,1000}. In AEFS, we set the size of hidden layer
in {128,256,512,1024} and the activation function σ1(X) = 1/(1 + e−X ), σ2(X) = X . For
all datasets, we set the number of selected features as {50,100,150, · · · ,300} and report the
best results from the optimal parameters for all the methods.

5.3 Clustering and Classification Experiments

We conduct clustering experiments using k-means algorithm and classification experiments
using nearest neighbor classifier to evaluate the performance of different feature selection
methods.

5.3.1 Evaluation metrics.

For clustering experiments, two widely used evaluation metrics, Accuracy (ACC) and Nor-
malized Mutual Information (NMI), are used to measure the clustering performance9.

Denote pi as the true label and qi as the clustering result of the sample xxxi. ACC is defined
as

ACC =
∑m

i=1 δ (pi,map(qi))

m
(11)

where δ (x,y) = 1 if x = y; δ (x,y) = 0 otherwise and map(qi) is the best mapping function
that permutes clustering labels to match the ground truth labels, which can be gotten using
the Kuhn-Munkres algorithm. In clustering, a larger ACC is expected.

9Since the result of k-means depends on initialization, we repeat the experiments 20 times with random initial-
ization and report the average results with standard deviation.
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Given two variables P and Q, NMI between them is defined as

NMI(P,Q) =
I(P,Q)√

H(P)H(Q)
(12)

where I(P,Q) is the mutual information between P and Q and H(P), H(Q) are the entropies
of P and Q, respectively. In clustering evaluation, P and Q are the ground truth labels and
the clustering labels respectively. The lager NMI is, the better clustering result is.

For classification experiments, we use the accuracy as evaluation metric and a high clas-
sification accuracy is expected.

5.3.2 Experimental results.

The clustering results is shown in Table 2 and 3, and the classification results are listed
in Table 4. From the results, we observe that feature selection can not only reduce the
dimension of features, but also greatly improve both the clustering and the classification
performance. We also see that AEFS outperform other methods almost in all the cases. This
benefits from the ability to capture the most import features which could represent all the
features and the nonlinearity transformation inside the representation of AEFS.

Table 2: Clustering results (NMI% ± std) of different feature selection methods. The best
results are highlighted in bold.

Dataset AllFea LS MCFS UDFS RSR AEFS
Isolet 72.3±1.5 68.6±1.1 73.5±1.5 65.5±1.1 69.3±1.8 74.6±1.6
warpPIE10P 29.5±4.5 32.4±2.3 44.4±5.6 54.6±5.2 36.0±3.0 55.3±4.8
PCMAC 0.88±0.7 2.14±1.0 2.08±1.4 3.09±1.7 0.93±0.9 4.19±0.6
madelon 1.95±0.0 2.05±0.2 2.43±0.2 2.18±0.1 0.80±0.1 3.54±0.1
lung_discrete 62.5±5.0 63.1±4.4 66.7±6.7 66.3±5.7 68.6±5.4 69.5±5.4
Prostate_GE 3.91±0.0 1.65±0.2 3.96±3.2 7.10±0.9 6.02±6.4 18.6±8.6
MNIST 42.3±1.0 27.5±2.1 47.6±1.2 38.3±2.2 22.5±0.3 46.1±3.2
AWA 9.9±0.4 7.5±0.3 7.4±0.1 7.5±0.2 6.9±0.2 7.6±0.3

Table 3: Clustering results (ACC% ± std) of different feature selection methods. The best
results are highlighted in bold.

Dataset AllFea LS MCFS UDFS RSR AEFS
Isolet 54.0±4.6 51.6±3.1 56.5±3.1 45.8±3.2 54.3±3.4 58.7±3.5
warpPIE10P 28.7±3.1 32.9±2.8 38.8±4.1 50.4±5.2 35.5±2.5 50.7±5.3
PCMAC 50.5±0.2 50.8±0.2 50.9±0.7 51.6±1.0 51.1±0.9 51.7±1.1
madelon 58.2±0.5 58.4±0.2 59.1±0.3 58.7±0.2 51.3±1.1 61.0±0.1
lung_discrete 64.3±7.1 65.1±9.7 70.3±8.4 68.9±6.8 71.6±5.8 71.6±7.2
Prostate_GE 59.9±1.9 57.5±4.6 59.9±5.0 64.5±3.8 60.5±5.2 73.1±6.4
MNIST 46.8±2.6 31.4±1.7 50.9±2.3 49.0±2.7 29.3±0.8 51.8±4.8
AWA 14.4±0.3 11.6±0.3 13.2±0.2 12.2±0.3 12.2±0.3 13.4±0.4
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Table 4: Classification results (ACC%) of different feature selection methods. The best
results are highlighted in bold.

Dataset AllFea LS MCFS UDFS RSR AEFS
Isolet 90.128 83.562 89.615 82.436 85.0 89.167
warpPIE10P 100.0 94.286 100.0 99.524 99.048 100.0
PCMAC 77.458 65.878 70.201 74.472 66.341 76.531
madelon 52.962 68.423 64.346 70.192 51.462 70.769
lung_discrete 83.562 85.256 89.041 89.041 87.671 90.411
Prostate_GE 80.392 62.745 81.373 88.235 79.412 87.255
MNIST 95.006 60.591 95.257 91.921 75.479 96.204
AWA 22.825 17.425 18.998 17.141 17.942 21.514

5.4 Denoising Experiments

In order to evaluate the robustness of denoising AEFS, we compare the clustering and classi-
fication performance of denoising AEFS with AEFS. We add Gaussian noise with zero mean
value and 0.1 standard deviation to all the datasets and conduct clustering and classification
experiments similar to the above. The experimental results are shown in Table 5. We can see
that under noisy circumstance dAEFS perform much better than AEFS. This is because that
dAEFS tries to reconstruct the uncorrupted data from the corrupted input so as to undo the
corruption in the training process.

Table 5: Clustering and classification results of AEFS and dAEFS. The best results are
highlighted in bold.

Dataset Clustering NMI Clustering ACC Classification ACC
AEFS dAEFS AEFS dAEFS AEFS dAEFS

Isolet 72.6±1.6 76.3±1.7 58.4±2.7 61.2±3.6 87.885 90.385
warpPIE10P 49.5±5.0 54.1±4.7 45.9±4.9 49.5±5.1 99.048 99.048
PCMAC 41.0±1.5 45.6±1.8 52.1±1.2 52.5±1.2 75.142 75.965
madelon 29.0±1.0 40.0±0.1 59.5±3.0 61.7±0.1 69.538 71.077
lung_discrete 68.4±6.0 69.7±5.9 71.6±8.2 72.1±8.3 90.411 91.781
Prostate_GE 10.0±9.4 15.4±10.0 63.2±8.6 68.2±9.8 85.294 87.255
MNIST 46.1±3.2 48.8±2.8 51.8±4.8 56.2±4.8 96.204 96.771
AWA 7.6±0.3 7.7±0.2 13.4±0.4 13.7±0.3 21.514 22.499

5.5 Reconstruction Experiments

We conduct reconstruction experiments on the face dataset warpPIE10P using AEFS and
RSR. The results are shown in Fig. 3. In Fig. 3(b) and (f), the large weights of features
learned by AEFS mainly distribute in the area of eyebrow, eye, nose and mouth which
are important for recognition, while the weights learned by RSR is discriminative only in
eye position and the eyebrow, nose and mouth are not distinct from other parts. From
Fig. 3(c)(d)(g)(h), we can see that both AEFS and RSR can well reconstruct the raw face
with much fewer features than the original. However, the reconstructed face of RSR is less
similar to raw face than AEFS, especially when the number of selected features is small.

We also evaluate reconstruction ability of denoising AEFS on the face dataset warp-
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(b)(a) (c) (d)

(f)(e) (g) (g)

Figure 3: Face reconstruction: (a)(e) raw face (55×44px), (b)(f) feature weight map, (c)(g)
reconstructed face using 300 feature, (d)(h) reconstructed face using 1000 features. The first
row is the results of AEFS and the second row is of RSR.

(b)(a) (c) (d)

Figure 4: Face reconstruction using dAEFS: (a) raw face with Gaussian noise, (b) feature
weight map, (c) reconstructed face using 300 feature, (d) reconstructed face using 1000
features.
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PIE10P with Gaussian noise. The noise is set zero mean value and 0.5 standard deviation.
The result is shown in Fig. 4. Although the noise exists in the face images, we can see that
the learned weight map is robust enough and the reconstructed face is noiseless.

6 Conclusion and Future Work
We propose a novel unsupervised feature selection method which could jointly learn a self-
reconstruction autoencoder model and the importance weights of each feature. The autoen-
coder nonlinearly represent each feature using all the features with different weights. With
the ℓ21 norm regularization on the weight matrix, if a feature is important, then it will partic-
ipate in the representation of most of other features, leading to a large row-norm of represen-
tation weight matrix, and vice versa. As a result, the most representative features which can
well reconstruct other features nonlinearly are selected. We also design a denoising AEFS
which could be more robust to corruption and noise. Both AEFS and denoising AEFS can be
efficiently optimized by gradient projection method with back-propagation algorithm. Ex-
perimental results on different real world datasets validate the superiority of our methods.
Future work will include the extension to stacked autoencoders and supervised scenarios.
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