The Apriori Algorithm

Association rule learning,
the Apriori algorithm and
it's implementation

tommyod @ github

Presentation: github.com/tommyod/Efficient-Apriori/blob/master/docs/presentation/apriori.pdf

December 28, 2018

1/28

Table of contents

A problem: learning association rules

A solution: the Apriori algorithm

A practical matter: writing a Python implementation

Summary and references

2/28

A problem: learning association rules }

3/28

Motivating example

Example (Learning from transactions)

Consider the following set of transactions.

{eggs, bread, jam, bacon}
{apples, eggs, bacon}
{bacon, bread}

{ice cream, bread, bacon}

What interesting information can we infer from this data?
Examples:
e The itemsets {bacon, bread} and {bacon, eggs} often appear in the
transactions, with counts 3 and 2, respectively.

e The rule {bread} = {bacon} is meaningful in the sense that
P(bacon|bread) = 1.

4/28

Formal problem statement

Problem
Given a database T = {t,ts,...,t,}, where the t; are transactions, and a set of
items | = {i, i, ...,in}, learn meaningful rules X =Y, where X, Y C I.

To accomplish this, we need measures of the meaningfulness of association rules.

5/28

Properties of association rules

Definition (Support)

The support of an association rule X = Y is the frequency of which X U Y
appears in the transactions T, i.e. support(X = Y) := P(X,Y).

e No reason to distinguish between the support of an itemset, and the
support of an association rule, i.e. support(X = Y) = support(X U Y).

e An important property of support is that
support({eggs, bacon}) < support({bacon}).

More formally, we observe that:
Theorem (Downward closure property of sets)

If s C S, then support(s) > support(S).

6/28

Properties of association rules

Definition (Confidence)

The confidence of the association rule X = Y is given by

P(X,Y) _ support(X = Y)

confidence(X = Y) = P(Y|X) = P(X) — support(X)

Notice the following interesting property.
Example

The confidence of {A, B} = {C} will always be greater than, or equal to,
{A} = {B, C}. By definition we have

support({A, B} = {C}) S support({A} = {B, C})
support({A, B}) - support({A}) 7

where the numerator is identical, and support({A}) > support({A, B})

7/28

Properties of association rules

Definition (Confidence)

The confidence of the association rule X = Y is given by

P(X,Y) support(X = Y)

confidence(X = Y) = P(Y|X) = P(X) support(X)

Theorem (Downward closure property of rules)

Consider the rule (X —y) =y and (X —Y) =Y, wherey C Y. Then
confidence ((X — y) = y) > confidence ((X — Y) = Y)

Proof. The numerator is identical, but the denominator has
support(X — y) < support(X — Y) by the downward closure property of sets.

8 /28

Examples of support and confidence

Example (Support and confidence of a rule)

Consider again the following set of transactions.

{eggs, bread, jam, bacon}
{apples, eggs, bacon}
{bacon, bread}
{ice cream, bread, bacon}
e The rule {bread} = {bacon} has support 3/4, confidence 1.
— Support 3/4 since {bread, bacon} appears in 3 of the transactions.

— Confidence 1 since {bread} appears 3 times, and in 3 of those
{bacon} also appears.

9/28

A naive algorithm

Example (Naive algorithm for learning rules)

for subsets of every size k =1,...,]|/|
for every subset of size k
for every split of this subset into {X} = {Y}
compute support and confidence of the rule
by counting the support in the transactions

e Fantastic staring point for an algorithm, since it (1) clearly terminates in
finite time, (2) is simple to implement and (3) will run reasonably fast on

small problem instances.
e Terribly slow on realistic problem instances, since it must check every

possible itemset against every transaction.

10/28

A solution: the Apriori algorithm }

11/28

Overview of apriori

e Split the problem into two distinct phases.

— Finding meaningful (high support) itemsets.

— Generating meaningful (high confidence) rules.
e Phase 1

— The user specifies a desired minimum support.

— The algorithm exploits the downward closure property, i.e.
support(S) < support(s) if s C S.

*x No reason to check S if s has low support.
— Bottom-up approach to subset generation.
e Phase 2
— The user specifies a desired minimum confidence.
— Also exploits the above downward closure property.
— Bottom-up approach to rule generation.

12 /28

Phase 1: Generating itemsets (example 1)

Example (Itemset generation via Apriori)

Consider again the following set of transactions.
{eggs, bread, jam, bacon}
{apples, eggs, bacon}
{bacon, bread}
{ice cream, bread, bacon}
e We set the minimum confidence to 50 %.

— ltemsets of size 1 with desired confidence are
{bacon}, {bread} and {eggs}. They are called large itemsets of size 1.

— From these, we can form
{bacon, bread}, {bacon, eggs} and {bread, eggs}. These are
candidate itemsets of size 2.

— Large itemsets of size 2: {bacon, bread} and {bacon, eggs}.

13/28

Phase 1: Generating itemsets (example 2)

Example
Transactions e L
e Running the algorithm with minimum support 50 %.
{1, 2’ ;’i} e Candidate itemsets of size 1:
b - {1}, {2}. {3}, {4). {5}. {6}. {7}
{1,6,3} e Large itemsets of size 1:
{1,2,4,5}

= {15 {2}, 31 {4

14 /28

Phase 1: Generating itemsets (example 2)

Example

Transactions Iteration 2

e Running the algorithm with minimum support 50 %.

{1,2,7,4} e Candidate itemsets of size 2:
{2’ 37 4} - {17 2}7 {1a 3}7 {17 4}7 {27 3}’ {2’ 4}’ {3’ 4}
{1,6,3} e Large itemsets of size 2:

{1,2,4,5}

- {1,2},{1,4},{2,4}

15 /28

Phase 1: Generating itemsets (example 2)

Example

Transactions izl &

e Running the algorithm with minimum support 50 %.

{1,2,7,4} e Candidate itemsets of size 3:
{2’374} - {1,2,4}
{1,6,3} e Large itemsets of size 3:
{1,2,4,5} - {1,2,4}

16 /28

Phase 1: Pseudocode

Algorithm sketch
Create L4, a set of large itemsets of size 1

j=1
while L; is not empty do:
create every candidate set Cj;; from L;
prune candidates a priori Cj;; (every subset must be in L;)

for every transaction t; € T do:
count occurrences of every set in iy in t;

J=Jj+1

lterating through the transactions checking for every possible candidate in Cj; is
expensive. Optimizations: choosing good data structures, pruning transactions.

17 /28

Phase 1: Pseudocode - Details on candidates and pruning

create every candidate set Cj;; from L;
prune candidates a priori Cj1 (every subset must be in L;)

Example Given large itemsets of size 3
{1,2,3},{1,2,4},{1,3,4},{1,3,5}, {2, 3,4}.
e Naive candidates are
{2,3,4,5},{1,3,4,5},{1,2,4,5},{1,2,3,5},{1,2,3,4}.
e Apriori-gen candidates are {1,2,3,4},{1,3,4,5}. Generated efficiently by
keeping the itemsets sorted.
e While the itemset {1,2,3,4} is kept, {1,3,4,5} is discarded since the
subset {1,3,5} C {1,3,4,5} is not among the large itemsets of size 3 .

The example above is from page 4 in the referenced paper.

18 /28

Phase 1: Pseudocode - Details on counting occurences

for every transaction t; € T do:
count occurrences of every set in Ciyq in t;

Example
Check if A={1,3,7} is a subset of B =1{1,2,3,5,7,9}.
e A naive computation checks if every element of A is found in B. This has
computational complexity O(|A||B|), where |A| is the size of A.
e A better approach is to use binary search when B is sorted. The
computational complexity becomes O(|A|log, |B|).
e Using hash tables (e.g. the built-in set.issubset in Python), the
computational complexity is down to O(|A]).
For the given example, this resolves to approximately 18, 8 and 3 operations.

19/28

Phase 2: Building association rules (example)

e In practice this step is much faster than Phase 1.
e The efficient algorithm exploits the downward closure property.

Example

Consider rules made from ABCD. First the algorithm tries to move itemsets of
size 1 to the right hand side, i.e. one of {{A},{B},{C},{D}}.

BCD = A ACD = B
ABD = C ABC = D

Assume that only ABC = D and ACD = B had high enough confidence. Then
the only rule created from ABCD with a size 2 itemset on the right hand side
worth considering is AC = BD. This is a direct result of the downward closure
property.

Recursive function which is not very easy to explain in detail.
20 /28

The Apriori algorithm on real data

Consider the following data set, with 32.561 rows.

Education Marital-status Relationship Race Sex Income Age
Bachelors Never-married Not-in-family White Male <50K middle-aged
Bachelors Married-civ-spouse Husband White Male <50K old

HS-grad Divorced Not-in-family ~White Male <50K middle-aged
11th Married-civ-spouse Husband Black Male <50K old
Bachelors Married-civ-spouse Wife Black Female <50K young
Masters Married-civ-spouse Wife White Female <50K middle-aged
Oth Married-spouse-absent Not-in-family Black Female <50K middle-aged
HS-grad Married-civ-spouse Husband White Male >50K old

Masters Never-married Not-in-family =~ White Female >50K middle-aged

The data may be found at https://archive.ics.uci.edu/ml/datasets/adult.

21/28

https://archive.ics.uci.edu/ml/datasets/adult

The Apriori algorithm on real data

Some rules are obvious in retrospect:

{Husband} = {Male}
{< 50K, Husband} = {Male}
{Husband, middle-aged} = {Male, Married-civ-spouse}

Some are more interesting:

{HS-grad} = {< 50K}
{< 50K, young} = {Never-married}
{Husband} = {Male, Married-civ-spouse, middle-aged}

The meaningfulness of a rule may be measured by confidence, lift and conviction.

22 /28

A practical matter: writing a Python implementation }

23 /28

Overview of workflow

Write simple functions first, i.e. the building blocks (e.g. pruning)

Add doctests and unit tests (e.g. examples from paper)

Implement a naive, but correct algorithm

Implement an asymptotically fast algorithm

Test the preceding two implementations against each other

Optimize implementation by profiling the code (find bottlenecks)

Understand — Naive algorithm — Asymptotically fast — Further optimizations

24 /28

Software testing

e Unit tests

— Test a simple function f(x;) = y; for known cases i = 1,2, ...

— Doubles as documentation when writing doctests in Python
e Property tests

— Fix a property, i.e. f(a,b) = f(b,a) for every a, b

— Generate many random inputs a, b to make sure the property holds
e Testing against R, Wikipedia, etc

— Generate some inputs and test against the arules package

25 /28

Software structure

apriori

Phase 1 Phase 2
X | r ____________________
: \ 4 N \ 4
I I

I
i itemsets_from_transactions i : generate_rules_apriori

|
! b
! L
! Y L Y
| 1|
I apriori_gen : I _ap_genrules
| 1!

|
| b
| |
! \ 4 \ 4 !
I I
I join_step prune_step :
I I
I I

Software found at https://github.com/tommyod/Efficient-Apriori.

26 /28

https://github.com/tommyod/Efficient-Apriori

Summary and references }

27 /28

Summary and references

The Apriori algorithm discovers frequent itemsets in phase 1, and meaningful
association rules in phase 2. Both phases employ clever bottom-up algorithms.
By application of the downward closure property of itemsets (support) and rules
(confidence), candidates may be pruned prior to expensive computations.

e The Python implementation
— github.com/tommyod/Efficient-Apriori
e The original paper
— Agrawal et al, Fast Algorithms for Mining Association Rules, 1994

http://www.cse.msu.edu/~cse960/Papers/
MiningAssoc-AgrawalAS-VLDB94.pdf

28 /28

https://github.com/tommyod/Efficient-Apriori/
http://www.cse.msu.edu/~cse960/Papers/MiningAssoc-AgrawalAS-VLDB94.pdf
http://www.cse.msu.edu/~cse960/Papers/MiningAssoc-AgrawalAS-VLDB94.pdf

	A problem: learning association rules
	A solution: the Apriori algorithm
	A practical matter: writing a Python implementation
	Summary and references

